
Designing Connected Content
for a Conference Web Site

Yannik Rauter

Designing Connected Content
for a Conference Web Site

Yannik Rauter

Bachelor’s Thesis

Bachelor’s Degree Programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Human-Centred Computing (HCC)

Graz, 24 Jan 2025

© Copyright 2025 by Yannik Rauter, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Designing Connected Content
für eine Konferenzwebseite

Yannik Rauter

Bachelorarbeit

Bachelorstudium: Software Engineering and Management

an der

Technischen Universität Graz

Begutachter

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Human-Centred Computing (HCC)

Graz, 24 Jan 2025

Diese Arbeit ist in englischer Sprache verfasst.

© Copyright 2025 Yannik Rauter, sofern nicht anders gekennzeichnet.

Diese Arbeit steht unter der Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz.

https://creativecommons.org/licenses/by/4.0/

Abstract

Designing Connected Content (DCC) is an approach to designing and building web sites through
domain and content modelling. Content is typically stored in a Content Management System (CMS),
conceptually separate from any particular frontend user interface which uses and presents the content.
This approach attempts to increase maintainability and reusability of content, while simultaneously
reducing duplication and repetition. Content becomes available, findable, memorable, and connected.

This thesis describes the steps involved in Designing Connected Content from start to finish, taking
the example of a conference web site. First, the domain is modelled, and a corresponding content model
is created. Then, the content model is implemented in Contentful, a commercial Headless CMS with
a fairly generous free plan, and sample conference content is created and uploaded. Finally, the Static
Site Generator (SSG) Hugo is used to fetch content from the CMS and build a static web site for the
conference.

Kurzfassung

Designing Connected Content (DCC) beschäftigt sich mit dem Entwurf von Websites durch Modellie-
rung der zugehörigen Domäne rund um die Inhalte. Ein Content Management System (CMS) dient dabei
als Speicher für Inhalte, wodurch diese konzeptionell von sämtlichen Frontend-Benutzeroberflächen zur
Präsentation entkoppelt werden. Dieser Ansatz zielt darauf ab, die Wartbarkeit und Wiederverwendbar-
keit der Inhalte zu erhöhen, während zugleich Duplikate und Wiederholungen vermindert werden. Die
Inhalte sind hierdurch weniger separiert, sondern werden miteinander verbunden, um die Sichtbarkeit zu
fördern.

Diese Bachelorarbeit beschreibt den gesamten Prozess von Designing Connected Content am Beispiel
einer Konferenzwebseite. Anfangs wird die Domäne modelliert und ein zugehöriges Content Model
erstellt. Dieses Modell wird anschließend in Contentful implementiert, einem kommerziellen Headless
CMS mit großzügigem Funktionsumfang in der kostenfreien Variante. Beispielhafte Inhalte werden dort
erstellt und hochgeladen. Zuletzt wird der Static Site Generator (SSG) Hugo verwendet, um die Inhalte
des CMS auszulesen und damit eine statische Konferenzwebseite zu entwerfen.

Contents

Contents ii

List of Figures iii

List of Listings v

Acknowledgements vii

Credits ix

1 Introduction 1

2 Designing Connected Content 3
2.1 Process Overview . 3

2.2 User Research. 4

2.3 Domain Modelling . 4

2.4 Content Modelling . 5

2.5 Implementing the Content Store . 6

2.6 Creating Content. 6

2.7 Presenting Content . 6

2.8 Discussion . 7

3 Content Management Systems 9
3.1 Decoupled vs. Headless CMS . 9

3.2 The Content API. 9

3.3 Entity-Based vs. Page-Based CMS . 10

3.4 Hosted vs. Self-Hosted CMS . 10

3.5 Discussion . 11

4 Static Site Generators 13
4.1 Static Sites vs. Dynamic Sites . 13

4.2 The Process of Generating Static Pages 13

4.3 Discussion . 15

i

5 Conference Domain Model 17
5.1 Design Choices . 17
5.2 Noteworthy Considerations . 17
5.3 Resulting Model . 18

6 Conference Content Model 21
6.1 Design Choices . 21
6.2 Noteworthy Considerations . 22
6.3 The Person – Role – Session Relationship. 22
6.4 Resulting Model . 24

7 Backend: Contentful (Headless CMS) 25
7.1 Choosing a Content Management System 25
7.2 Setting Up Contentful . 25
7.3 Implementing the Content Model in Contentful. 26
7.4 Creating Content for a Conference Web Site 32
7.5 Content API in Contentful . 32
7.6 Limitations of Contentful . 33

8 Frontend: Hugo (SSG) 35
8.1 Choosing a Static Site Generator . 35
8.2 Setting up Hugo . 36
8.3 Configuring Hugo . 36
8.4 Fetching Content for Hugo . 37
8.5 Templates in Hugo . 38
8.6 Modelling a Conference Web Site in Hugo 41
8.7 Conference Programme Using CSS Subgrid 44
8.8 Limitations of Hugo . 47

9 Outlook and Future Work 49

10 Concluding Remarks 51

A Full Page Figures 53

Bibliography 57

ii

List of Figures

1.1 Home Page of UX Day Graz 2024 . 2

2.1 Six Steps for Designing Connected Content 4

3.1 Decoupled vs. Headless CMS . 10

4.1 Static vs. Dynamic Site . 14

5.1 Domain Model: Initial Draft . 19
5.2 Domain Model: Final Version . 19

6.1 Content Model: Initial Draft . 23
6.2 Content Model: Final Version. 23

7.1 Creating a Content Type in Contentful. 26
7.2 Available Data Types for Fields in Contentful 27
7.3 Creating a Text Field in Contentful . 28
7.4 Editing a Text Field in Contentful . 29
7.5 Creating a Reference in Contentful . 30
7.6 Editing a Content Type in Contentful . 30
7.7 Content Model as Implemented in Contentful 31
7.8 Editing a Session Entry in Contentful . 32

8.1 Example Web Page for a Person Entry . 41
8.2 Programme Page for a Conference . 45

A.1 Domain Model: Final Version . 54
A.2 Content Model: Final Version. 55

iii

iv

List of Listings

8.1 Hugo Configuration File for UX Day Graz 2024 37
8.2 Markdown File of a Person Entry . 39
8.3 Single Template for a Person . 40
8.4 Markdown File of a Room Entry . 42
8.5 Example Loop in Hugo . 43
8.6 Markdown File of a Venue Entry . 43
8.7 Example Loop in Hugo . 44
8.8 Conference Programme using CSS Subgrid 46

v

vi

Acknowledgements

To begin with, I would like to thank my parents for encouraging me throughout and enabling my academic
career. Being able to enjoy this high level of education here in Austria is an opportunity which should
not be taken for granted.

Next, thank you to my partner and friends, who endured my seemingly endless turmoil, yet ultimately
inspired me to challenge my procrastination and finish this work of art.

I also want to acknowledge Christian Gütl and Tobias Schreck for their feedback on my domain and
content models in the role of subject-matter experts for conferences.

Finally, I would like to thank Keith Andrews for supervising my thesis over the course of (too) many
months, matching my perfectionist tendencies and appreciating the attention to detail.

Yannik Rauter

Graz, Austria, 24 Jan 2025

vii

viii

Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2021].

ix

x

Chapter 1

Introduction

The Designing Connected Content (DCC) approach to designing and building web sites was introduced
in the book of the same name by Atherton and Hane [2017]. It builds upon earlier work known under the
moniker Domain-Driven Design [Millett and Tune 2015]. DCC straddles the fields of content strategy
[Kissane 2011; Casey 2023] and information architecture [Rosenfeld et al. 2015; Spencer 2014].

According to Atherton and Hane [2017, page 198], DCC addresses the key question of how to “structure
and create your content based on the mental models of your audience before you start to represent it through
an interface”. Crucially, the design is performed bottom up. This starts with understanding the subject
domain through research, aided by discussions with subject-matter experts. Through a procedure called
domain modelling, a structure of logical concepts and their relationships is assembled. These objects are
further evolved during the subsequent step of content modelling, by defining attributes to hold individual
pieces of content. At its core, this effort aims to minimise unnecessary and error-prone duplication of
data, which would inevitably lead to inconsistencies over time. Every instance of content must have its
dedicated place, relating and linking to others, but ultimately existing only once [Atherton and Hane
2017, Chapters 1–6].

The derived content model maps the subject domain to a form which can be stored electronically
in a data store. Typically, a (Web) Content Management System (CMS) is used as the data store.
Once implemented, a CMS allows non-technical individuals (content creators, authors) to add, edit, and
remove content through a user-friendly interface. There is no need for complex database queries and
table manipulation [Barker 2016, page 80-81]. Content in this context may refer to any asset, be it writing
in textual form (like names, descriptions, addresses, contact details), documents (forms, papers, slide
decks), images, graphics, videos, music, audio recordings, and so forth [Naik and Shivalingaiah 2009,
page 225]. Only after the content is structured and created in a meaningful way, can its presentation be
considered.

Most CMSs provide an Application Programming Interface (API), over which content can be program-
matically accessed and retrieved. This allows a frontend user interface to be decoupled from content in
the content store. One way to build a frontend user interface is to use a Static Site Generator (SSG). This
type of software tool enables the generation of individual pages for various instances of the previously
defined content, based on highly customisable templates [Petersen 2016, page 9]. Any page’s layout may
be supplemented by reusable blocks containing content.

The next chapter, Chapter 2, provides an overview of the DCC approach. Chapter 3 describes Content
Management Systems and their use as a content store for connected content. Chapter 4 describes Static
Site Generators and how they can be used to provide a frontend user interface to connected content.

The remaining chapters take the example of building a web site for a small, fictitious conference,
UX Day Graz 2024. Chapters 5 and 6 describe the creation of the domain and content model for the
conference, respectively. Chapter 7 describes how the modern, commercial, headless CMS Contentful

1

2 1 Introduction

Figure 1.1: The UX Day Graz 2024 home page. [Screenshot taken by Yannik Rauter.]

was configured and populated for use as the content store for the conference web site. Chapter 8 describes
the use of the Hugo SSG to build a static web site for the conference. The home page of this web site
is shown in Figure 1.1. The code can be found at Rauter [2025]. Content is fetched from Contentful at
build time to populate the various web pages. The resulting static web site can then be deployed, allowing
attendees to browse the conference programme, speakers, materials, and so forth. Finally, Chapter 9 gives
an outlook to potential future work.

Chapter 2

Designing Connected Content

Designing Connected Content (DCC) is about designing from the bottom up, which starts at understanding
the subject domain [Atherton and Hane 2017, Chapter 1]. Attaining this basis is essential for breaking
down the content into meaningful parts, thereby giving it structure. This in turn allows for more flexibility
in organisation, arrangement, and ultimately, representation. Developing the facade only makes sense
once the cornerstone has been set. When a piece of content is stored in one central location, the need for
error-prone and inevitably inconsistent duplication disappears. At the same time, altering data becomes
more convenient. In this spirit, DCC goes beyond making the right content, but extends into making the
content right. Without a solid foundation, collapse is just a question of time.

Building a collective understanding of a subject domain is the role of a content strategist or information
architect. Ensuring the development team and any stakeholders have a common view of the terminology
and structure of the domain forms an essential foundation for any project.

Designing Connected Content (DCC) builds historically on previous work known as Domain-Driven
Design (DDD): “a process that aligns your code with the reality of your problem domain” [Millett and Tune
2015]. The requirement for linking data in a machine-readable format was realised early on, accompanied
by the trend of open-sourcing information as open data. This greatly improved discoverability, while
simplifying redirection to related sources, thereby further extending knowledge.

DCC makes it possible to decouple content from presentation. Multiple frontends can be built, all
drawing content from the same content store. Early solutions were implemented as Linked Open Data
(LOD) [Yankulov 2024], with content stored in a data server (a so-called triple store) and accessed
using the SPARQL query language [DuCharme 2013]. In the corresponding frontend, each instance of
a content object is typically assigned its own URL and can be accessed independently [Andrews 2024,
page 66]. Oliver [2024] describes a modern version of this approach. Most solutions today use a Content
Management System of some kind to store the content. Access is provided either by a bespoke REST
API or using the GraphQL query language [Porcello and Banks 2018].

2.1 Process Overview
Designing Connected Content may be summarised as a process consisting of six steps, shown in Figure 2.1:

1. User Research: Understanding the subject domain through research and interviews with experts in
the field.

2. Domain Modelling: Structuring the domain into logical units of related information (domain objects)
and their relationships to create a domain model.

3. Content Modelling: Evolving the domain objects into content types, adding attributes and entity
relationships along the way to derive a content model.

3

4 2 Designing Connected Content

User Research
Domain

Modelling Content
Modelling Implementing

the Content Store

Presenting
Content

Person

Name
Gender
Age

Person

Feedback

Planning

Creating
Content

Figure 2.1: The six steps for Designing Connected Content. Insights from later steps feed back into
previous steps. [Diagram drawn by Yannik Rauter.]

4. Implementing the Content Store: Implementing the content types in a content store, specifying data
types for attributes and entity references for relationships.

5. Creating Content: Creating instances of relevant content in the content store.

6. Presenting Content: Designing a frontend user interface, with composable templates populated by
fetching content from the content store.

2.2 User Research
The first step in the DCC process is user research. Structuring content into logical units of related
information (so-called domain objects) requires extensive research of the subject domain, in order to
gain a comprehensive understanding of the individual demands that various stakeholders have for the
product. The necessary level of insight may only be achieved by preparing some probing questions and
interviewing Subject-Matter Experts (SMEs), who are (in most cases) keen on having their voices be
heard and gladly share intricate details. Talking to actual end users is important as well, since these
conversations hold the key to unlocking the secrets of what real consumers want.

It is then the content strategist’s duty to condense the resulting avalanche of information, filtering out
redundancies, separating what is right from what is wrong, and identifying basic key concepts. A list of
terms along with their definitions may be compiled, which will later aid the creation of an initial draft
for the domain model. Product owners or managers often struggle to appreciate the importance of user
research, pushing for quick progress in the interest of saving costs. Again, the content strategist must
highlight and explain why this step should not be cut short.

2.3 Domain Modelling
This step builds a so-called domain model, an example of which will be elaborated on in Chapter 5.
The two basic components of a domain model are the domain objects and their relationships. Crucially,
this model does not list any attributes for its objects yet, although they may be saved for later, in case
their discussion arises. The process of its creation involves all members of the team and often takes the
form of an informal meeting under the content strategist’s moderation. Using coloured pens and sticky
notes, domain objects are selected and connected to each other through relationships, while considering
cardinality and recursion. Defining strict boundary objects which mark the gateway to adjacent domains
(and might just as well belong to a completely different domain) is important to prevent diverging too far.
The process is described in detail by Atherton and Hane [2017, pages 74–76]

Content Modelling 5

The goal is for the model to be reusable and flexible, which requires a certain level of abstraction.
Therefore, the objects should be broad, real-world concepts, which are named using singular nouns.
Beware of confusing objects with instances. An object is an abstract concept. An instance is a particular
example of an object. Atherton and Hane [2017, pages 78–79] list some questions to help decide which
concepts to select as objects.

Relationships between objects are used to build understanding. They are given names as verbs (in
camel case), describing the nature of the relationship. The direction of naming follows no strict rules, but
should be consistent across the model (for example, larger objects may contain smaller ones). Cardinality
is expressed using one-to-many relationships in most cases, which may be optional at any of their ends
and should utilise a common notation throughout. One-to-one relationships can always be omitted simply
by merging the connected objects, usually without any loss of information. In contrast, many-to-many
relationships should be resolved into separate one-to-many relationships by inserting a new domain object
wherever possible.

The resulting domain model should be tested by trying to fill it with some instances, making adjustments
as needed. It is good practice to periodically confer with SMEs, not just to gather feedback, but also
for knowing when to stop. At this stage, objects and their relationships are important, methods for
representing the content are not yet considered.

2.4 Content Modelling
This step creates a so-called content model, an example of which is given in Chapter 6. Any additional
knowledge gained which necessitates updates to the preceding domain model should be viewed as cost-
savings for being revealed at this stage already, as compared to surfacing even later in the process.

In contrast to the domain model, the content model strives not to map the domain, but to provide the
relevant structure for the content of its objects. The general layout and approach, as well as the domain
object’s names are inherited. Advancing through this stage involves all team members once more,
including SMEs. During another meeting (again moderated by the content strategist), the previously
mapped domain objects are reconsidered and potentially filtered out as an initial step. One key question at
this point is whether content exists for the concept. Which objects to keep or remove must be determined
also with respect to the core business, the relevance for the audience, and the object’s influence on
connecting relationships.

Next, attributes (sometimes referred to as properties) are attached to the remaining domain objects,
each describing a characteristic or quality. Such attributes are typically selected based on the requirements
of the particular subject domain. This evolves the objects into content types, which describe a reusable
container tailored to the consistent form of similar content. Any concepts which must not necessarily
be displayed on their own, or end up having just one attribute, may be discarded or merged to become
attributes of other objects. Likewise, discussions may lead to the need to add further content types.
New insights are reflected back to the domain model. Along the way, any deciding factors should be
documented for later reference.

Content becomes connected when one content type is referenced by adding it to another content type’s
list of attributes. Switching over to designing content in a literal sense, Atherton and Hane [2017,
pages 118–120] explain that well-designed content should be useful, usable, findable, focused, targeted,
distinctive, and connected. At this point, all the pieces of the puzzle start fitting together. Every entity
is a specific instance of a content type. Each entity will soon be available as a specific resource via a
dedicated URL.

When auditing existing content, a certain willingness to change is required. Change comes in the form
of adapting the current models to newly derived insights, expanding or restructuring attributes where
necessary [Atherton and Hane 2017, pages 135–137]. Some content might simply not fit the model, for

6 2 Designing Connected Content

example if it maps to no attribute, belongs to no objects, or is too broad for a single content type. When
some information is as yet unavailable, an attribute may be left empty for the moment and be populated
later. Alternatively, adding a text attribute to store a URL provides the benefit of linking to external
content for further reference, thereby filling any gaps.

One crucial task is to determine the right chunk size for the content, striking a balance between keeping
it focused and distinctive while staying useful and relevant. Chunks strive to be valuable on their own.
However, only through their connection do they really come to life. Deciding on the scope for these
minimal reusable units often proves difficult, but once this structure is set, the content model is ready for
its actual content.

2.5 Implementing the Content Store
Nowadays, a Content Management System (CMS) is often used as a content store. They are described in
Chapter 3. An implementation example using a particular CMS is described in Chapter 7.

The previously derived content model is now manually implemented in a CMS of choice by configuring
all content types and their attributes (which become fields). This creates containers for data entries and
allows individual instances of content to be entered and stored in the CMS afterwards. Incompatibilities
or issues may surface at any point in this process and for various reasons. Times or dates may be split
into ranges, buildings and rooms merged into a single location, or seemingly minor details like the name
given to an attribute might be ambiguous or imprecise. Changes to the model caused by these differences
should (as always) be documented for later reference.

This step also necessitates the specification of a data type for each field, enforcing a limitation on the
allowed values according to typical restrictions like number formats, text lengths, selection of predefined
values, and so forth. Moreover, it is possible to require the provision of assets in the shape of documents
(forms, papers, presentations), images/graphics, videos, music, audio recordings, and more. Since content
authors are sometimes overwhelmed by the task of entering data into a CMS, these data types already
provide crucial indirect hints regarding the type of information contained in every field.

Entity references are the relationships between instances of content types (entities). Such a connection
usually works best from a changing concept to a fixed one, meaning: If an entity a1 of content type A
(with its fixed set of properties) may be part of many other entities b1, b2, and b3 of content type B, then
that one entity a1 should be referenced from all of those many other entities b1, b2, and b3.

The robustness of the model should be tested by periodically by adding sample content, aiming to
discover potential flaws early on. This ensures that all types and fields are appropriately populated and
serve their intended purpose.

2.6 Creating Content
To create new instances of content, creators generally use a form-based user interface to enter data into
the corresponding fields. Creators sometimes struggle with adjusting to this new, structured approach
of authoring. They might be in need of a content spec sheet as a sort of conceptual guideline. Such a
document can contain a set of rules, instructions, specifications and other noteworthy considerations for
every content type and its fields, thus assisting the work of producing relevant high-quality content.

2.7 Presenting Content
In the final step, content is fetched from the content store and presented to the end user by some form of
frontend solution. The content may be accessed on a wide range of devices and in a number of ways.

Discussion 7

One way is to create a static web site with a Static Site Generator (SSG). Here, the content is fetched and
integrated at build time. Changes in content are incorporated in the next build. Static sites generally offer
faster load times and more efficient scalability. The data from the CMS is accessed programmatically
using a REST API or GraphQL. Often, JavaScript is used to fetch content and create markup and additional
metadata (a typical Jamstack example [Andrews 2024, page 67]), but other languages like Python can
also be used. SSGs are described in Chapter 4. An implementation example using a particular SSG is
presented in Chapter 8.

As an alternative to the static approach described above, a dynamic approach allows a web frontend to
query the content store and fetch content at run time. Changes in the content are reflected immediately
the next time the page is loaded, rather than when the site is next built. However, in this approach, routes
(URLs) to individual instances have to be generated dynamically, which has to be implemented carefully
[Das 2025].

Based on the needs of the application, instances of core content types may be given their own page
with their own URL. Other content is included as part of other pages. Configurable templates are used to
construct and style the core content pages. Every occurrence of a core entity should be labelled with the
title of the corresponding content type (by employing breadcrumbs, for example), to provide a sense of
location within the web site to the user. The site’s global navigation typically resides in the header and is
designed around the previously selected core content types (those having their own singe page templates).
Furthermore, customised lists of entities allow users to traverse the site, with contextual links placed on
connected content (often via a sidebar), enabled by the relationships modelled through attributes.

The URL of every entity permits its most direct form of access. URLs should therefore be based on
the core content type’s title in plural (like /sessions), which presents a list of all corresponding elements.
Particular instances are available a level deeper, each at their own unique path (like /sessions/ux).
Incorporating volatile attributes should be avoided due to their non-persistent nature, while aliases via
redirects simplify references for marketing purposes.

2.8 Discussion
In the past, not enough thought was put into structuring content, possibly for the lack of dedicated
disciplines like content strategy and information architecture. Systems hardly ever shrink over time, but
growth demands scalability. Often, stakeholders and key decision makers fail to focus on a product’s
longevity by prioritising short term gains instead.

The DCC approach forces a domain-driven focus on content modelling first, with applications building
on this sound foundation. As Atherton and Hane [2017, page 147] appropriately put it, “You want to
build your tool to fit the model, not model your content to fit the tool”.

8 2 Designing Connected Content

Chapter 3

Content Management Systems

In simple terms, a Content Management System (CMS) is a software component whose purpose is to
store, manage, and provision content. It allows non-technical authors to create and maintain content
(text, images, etc. and associated metadata) with a straightforward user interface which interacts with the
underlying database (the backend content layer). This includes the ability to add new content, as well as
editing and removing existing content [Naik and Shivalingaiah 2009, page 226].

As part of the setup process, an administrator or developer configures a content model to suit the
needs of the application. It specifies the content types, their fields and attributes, and entity relationships
between content types. Storage is usually handled under the hood with a relational database system,
whose internal structure (tables and columns) is flexible and can therefore be customised [Barker 2016,
page 80–81].

CMSs often include their own implementation of the frontend presentation layer, which displays
content to the end user, typically in the form of web pages. Authors with appropriate access rights can
enter an edit mode and make use of a WYSIWYG-style (What You See Is What You Get) [IONOS 2023]
editor to change it.

3.1 Decoupled vs. Headless CMS
A decoupled CMS provides its frontend presentation layer clearly separated from its backend content
storage, as shown in Figure 3.1a. Content may be fetched over an API, or the provided frontend may be
used instead [Howey 2023; Singh et al. 2023, page 88].

A headless CMS forgoes the presentation layer, completely separating content and presentation [Barker
2016, page 82], and fully relying on another frontend solution to display its content using an API [Atherton
and Hane 2017, page 146], as shown in Figure 3.1b. A headless CMS usually provides a separate
authenticated editor for authors to create and maintain content.

3.2 The Content API
Every CMS typically provides programmatic access to its content, usually in the form of one or more
Application Programming Interfaces (APIs), which allow other software applications to interact with the
content using typical create, remove, update, and delete (CRUD) operations. However, the most important
aspect of this interface is the capability of reading data from the database (for example, in JSON format).
This is what ultimately enables the creation of proprietary solutions for representing content tailored to
diverse target audiences with various device types and screen sizes through omnichannel distribution
[Yermolenko and Golchevskiy 2021, page 6].

9

10 3 Content Management Systems

Internal
API

Content Layer

Presentation Layer

Content
API

Custom Frontend

(a) Decoupled CMS.

No additional
presentation layer

Content Layer

Content
API

Custom Frontend

(b) Headless CMS.

Figure 3.1: Decoupled and headless CMS both provide access to their content via an API. However,
a headless CMS completely lacks any form of frontend presentation layer. [Diagram drawn by Yannik
Rauter.]

3.3 Entity-Based vs. Page-Based CMS
An entity-based CMS focuses on structuring content per resource (entity), which is the desired approach
in domain modelling. Every resource provides the structure for its content by defining attributes and
relationships with other resources. Such resources are subsequently populated with content, essentially
reusing the defined structure numerous times. This approach ensures that any entity is completely
independent of the page (or whatever other medium) it may be displayed on within the end product,
effectively separating the content from the presentation layer [Atherton and Hane 2017, pages 143–145].
Examples of entity-based CMSs include Contentful [Contentful 2024c] and Strapi [Strapi 2024].

A page-based (or page-centric) CMS offers an alternative to this, in the form of structuring content per
page [Barker 2016, page 84]. Markup and sometimes style are bound to and stored with the content, so
each item of content is addressable with its own URL [Barker 2012]. Repopulating a page with a different
instance of content overwrites the previously held data. To create multiple instances of content with a
similar structure, the whole page must be duplicated first before changing the copy’s content in order
to retain the original copy. This strongly limits reusability and means that page-based CMS are most
applicable to web site paradigms rather than more general content repurposing. Examples of page-based
CMSs include Drupal [Drupal 2024] and Episerver (now Optimizely CMS) [Optimizely 2024].

3.4 Hosted vs. Self-Hosted CMS
There are many commercial providers of hosted CMS. These are complete server solutions maintained
by the provider, often with a basic free plan and paid commercial plans, with the benefit that the provider
takes care of maintenance issues such as updates, performance, availability, backups, and other issues.
A hosted, headless CMS solution is sometimes referred to as Content-as-a-Service (CaaS) [Singh et al.
2023, page 89]. Examples include Contentful [Contentful 2024c], Sanity [Sanity 2025], and Storyblok
[Storyblok 2025].

The alternative is to install and self-host one’s own instance of a CMS, with the drawback of having to
take care of maintenance issues oneself. Some of the many available open-source CMSs include Strapi
[Strapi 2024], Directus [Storyblok 2025], and Cockpit [Cockpit 2025].

Discussion 11

3.5 Discussion
From the perspective of supporting the Designing Connected Content (DCC) approach to modelling and
building a web site, using a headless, entity-based CMS has the following benefits:

• Integrated functionality is available for creating a content model and modelling relationships between
entities.

• An authoring interface allows content to be created and maintained by non-technical personnel.

• Content can be made accessible on a wide variety of platforms and devices over an API.

12 3 Content Management Systems

Chapter 4

Static Site Generators

A web site consists of a collection of related, interconnected web pages [MDN 2024b]. A Static Site
Generator (SSG) builds a web site by generating a collection of static pre-rendered pages. Static pages can
be sent by the web server to the browser as soon as they have been requested, without having to perform
any further processing, resulting in much faster response times. There are dozens of SSGs, written
in a variety of programming languages, including Jekyll (Ruby) [Jekyll 2024], Metalsmith (JavaScript)
[Van Lierde 2025], Eleventy (JavaScript) [Leatherman 2025], and Hugo (Go) [Hugo 2025g].

SSGs typically support the use of a template language to include metadata and reusable pieces of code
(so-called partials) for shared elements such as a header, footer, or navigation block [Petersen 2016,
page 9]. Some SSGs may offer support for additional features like themes for layouts, multi-language
support, and plug-ins to extend their capabilities in various directions.

4.1 Static Sites vs. Dynamic Sites
Static sites are generated as a whole (including markup, styles, multimedia content like images, and
client-side scripts) at a predetermined build time [Boiko 2004, page 76; Petersen 2016, page 7]. A static
site only changes through manual intervention, either by directly altering any of its files, or by rebuilding
its files following an update to the content. This characteristic enables efficient delivery by web servers,
since the files are essentially pre-rendered and ready to send to the client (web browser) at any time.
When loading the page, no further intermediate processing must be performed, as shown in Figure 4.1a,
ensuring optimal response times. Static pages can also be efficiently cached by the web browser.

In contrast, a dynamic site only generates its final response page upon the client’s request, after further
backend processing. Thus, a dynamic site has the ability to adapt to user input or changing content
[Petersen 2016, page 8]. It is important to note, however, that a dynamic site is by no means a CMS.
While content is read from a database before being processed and assembled into a page for viewing
(closely resembling a decoupled Content Management System), the similarities end there. This approach
is visualised in Figure 4.1b.

4.2 The Process of Generating Static Pages
To generate a static page, an SSG requires two complementary components: one or more templates, and
one or more instances of content to populate the template(s) with. A template is typically written using a
templating language [Dhillon 2016], such as Nunjucks [Long 2025], Liquid [Luetke 2025], or Pug [Pug
2025]. Some SSGs support only one templating language, others support many. A template often consists
of a base file defining a particular type of page’s layout in general, as well as additional files including
specialised instructions about where to place different types of content. In the context of Designing

13

14 4 Static Site Generators

Web ServerClient

Request

Response

Files

No additional
requests or
processing

(a) Static site.

Web ServerClient Database Server

Request

Response Response

Request

Processing

Files Data

(b) Dynamic site.

Figure 4.1: A static web site can serve its pages immediately upon request without any further
processing. [Diagram drawn by Yannik Rauter.]

Connected Content (DCC), every content type will typically have its own specialised template file. List
pages, which generate a list of instances of a particular content type, will have their own template too.
Some special pages, like the landing page or the imprint page, might be hand-coded in HTML, without
much templating at all.

At build time, the SSG iterates through all the provided instances of content, combining the individual
parts of the corresponding template into one final static page for that instance of content [Petersen 2016,
page 9]. In essence, the various raw inputs are merely converted from one format into another.

When using DCC, there are two approaches to populating pages with content from a headless CMS:
either at build time by the SSG, or at run time by the browser. In the first approach, all content is fetched
from the CMS at build time and is saved as static input files. Metadata from the CMS can be included in
the form of so-called front matter, often written in YAML [Petersen 2016, page 19]. Then, the build is
triggered to generate the static web site. The entire web site must be rebuilt to incorporate changes in the
content in the CMS.

Alternatively, in the second approach, API calls are formulated in JavaScript to retrieve specific pieces
of content or metadata from the CMS. These calls are initiated by the web browser once the page has
loaded. The content of the web page on the server does not change, but pieces of content or metadata
from the CMS are fetched on demand, as each particular page is displayed by the browser. In this case,
changes to content in the CMS do not necessitate rebuilding and redeploying the entire web site.

The metadata accompanying instances of content can include things like:

• A unique identifier for cross-referencing between instances of content.

• The content type for determining the applicable template.

• Keywords or categories for the particular instance of content.

• A publishing date, before which the piece of content is not included.

• An alias, used to provide an alternative URL for a page.

Discussion 15

4.3 Discussion
In terms of supporting the DCC approach to modelling and building a web site, using an SSG has the
following benefits (see also Vepsäläinen and Vuorimaa [2022, page 437]):

• The use of templates drastically decreases the complexity of making changes to any shared elements
(like the site layout or navigation bar) across all pages.

• Reusable blocks of content reduce the potential for inconsistency on the site.

• Listing instances of content (for example in the site navigation) can be automated, resulting in fewer
repetitive processes during implementation.

• The computation of the final page only occurs once, regardless of the number of end user requests
to view the page.

• Static pages can be served immediately upon request.

• No complex backend beyond a simple web server is necessary.

• Modern web browsers may benefit from an improved caching ability when frontend components
(like client-side scripts) are being reused across pages.

One major drawback to using an SSG, in contrast to using the presentation layer of a CMS with an
integrated editor, is that even minor changes in content may require a rebuild and new deployment of the
site, which usually requires an experienced developer.

16 4 Static Site Generators

Chapter 5

Conference Domain Model

The Designing Connected Content (DCC) approach was used to create a web site for a fictitious conference
called UX Day Graz 2024. As a first step, Subject-Matter Experts (SMEs) were interviewed and a domain
model for a small conference was created over a period of several weeks. It was later refined to address
insights and issues as they came to light. This chapter builds on the premise of domain modelling, as
described in Section 2.3.

5.1 Design Choices
The various domain objects represent key concepts from the underlying conference domain. Interviews
were conducted with two SMEs (Christian Gütl and Tobias Schreck), who have both attended many
conferences and also organised conferences. Their input strongly shaped the model in its initial stages.
Insights gained during subsequent steps further shaped the domain model into its current form.

One major decision while creating the domain model was to have Event be its own domain object.
Despite holding only one instance in the final product for now (UX Day Graz 2024), this allows the
domain model to be reused for other similar conferences. It also serves the dual purpose of a boundary
object, marking the gateway to adjacent domains, while tying everything inside it together. The initial
intention was to model a single-stream conference located in just one room. However, it quickly became
apparent that support was needed for Sessions located across multiple Rooms, sometimes even spanning
different Venues. The initial draft domain model can be seen in Figure 5.1.

Concerning the cardinality of connections, Role is an example for resolving a many-to-many relationship.
Since a Session involves many Persons, and any Person may at the same time be part of many Sessions, an
intermediary object was inserted. Role proved to be a perfect fit, since a Person may serve one Role in
one Session and a different Role in another Session. Furthermore, certain Roles may concern the Event as a
whole, not just a single Session.

5.2 Noteworthy Considerations
Role and Session rose to be the most prominent domain objects, around which all others revolve. Consider-
ing the subject domain from a distance, this arguably makes sense, since a conference typically involves
speakers participating in a variety of sessions. All other objects enhance these core concepts, providing
structure and detail to form a holistic view.

The direction of naming is generally suggested to lead from larger concepts to smaller ones. However,
this principle is not always strictly followed (for example, a Role requires an Event). With an understanding
of the relevance of individual objects within the domain (which is naturally developed over time), it was

17

18 5 Conference Domain Model

deemed sensible to direct from more important, central concepts (like Role) to contextually less significant
ones (like Event in this example).

5.3 Resulting Model
The final version of the domain model is shown in Figure 5.2. The arrangement in the domain model
diagram is purely aesthetic, based on the relationships between objects.

When comparing the two versions, it is clear to see just how much this model evolved over the course
of many iterations. Some of these changes worth mentioning include:

• Session Format was initially modelled as its own domain object, before turning into an attribute of
Session later on.

• Topic used to be a separate domain object, until becoming an attribute in Session and Track (the two
objects it had relationships with).

• Slot was missing in the initial draft, Interestingly, it was a topic of discussion on numerous occasions,
being added intermittently as Segment, only to be removed, and then finally added again as Slot.

• The relationship between Role and Track (required to declare its chair person) had not yet been
considered.

• The early version is missing a legend explaining the meaning of the various cardinality symbols.
Furthermore, the symbols themselves changed over time.

A full-page version of the final domain model is provided in Appendix A as Figure A.1.

Resulting Model 19

hasMaterialSession Format

hasFormat

hasTopic

consistsOfSessionEvent

Person

hasTopic

Track

hostedBy

Role

locatedAtVenue

sponsoredBySponsor

involvedIn

hasRole

sponsoredBy

hostedAt hostedIn

Topic

Room

populatedWith

Day

Material

Domain Model v0.1

Figure 5.1: The initial draft (v0.1) of a domain model for a small conference. [Diagram drawn by Yannik
Rauter.]

hasMaterial

hasSlotconsistsOf

Session

Event

Person Track

hostedBy
participatesIn

hostedBy

Role

locatedAt

Venue

sponsoredBy

sponsoredBy

Sponsor

requires

hasRole

sponsoredBy

hostedAt

hostedIn
Room

populatedWith

Day

Material

Slot

Domain Model v1.0

 Legend

 One

 Zero or one

 Many

 One or many

 Zero or many

Figure 5.2: The final version (v1.0) of a domain model for a small conference. [Diagram drawn by Yannik
Rauter.]

20 5 Conference Domain Model

Chapter 6

Conference Content Model

Once the domain model was fairly stable, a content model was created for a small conference, following
the DCC approach. Work on the content model started on the basis of version 0.6 of the domain model. To
keep both models synchronised, the initial version of the content model was also denoted as version 0.6,
and development continued in parallel. This chapter builds on the idea of content modelling, as described
in Section 2.3.

6.1 Design Choices
None of the inherited domain objects were dropped when conceiving the first version of the content
model, because at the time, content was believed to exist for all of them. After adding attributes, three
content types Role, Day, and Session Format ended up with just one property. At first, all of these were
supposed to be presentable on their own. Careful consideration showed that the relationships of Role play
an important part in the structure of connecting adjacent objects. Thus, it was decided to retain all three
as independent content types for the time being. Furthermore, no additional content types were created
for the content model itself. Relationships are only modelled as connecting lines between content types
at this point. The placement of entity references is deferred until implementation of the content model in
the CMS later. The initial draft content model (v0.6) for a small conference is shown in Figure 6.1.

Technically, the Topic(s) attribute of Event could be implemented as an automatically generated concat-
enation of all the values from the Topic attributes across Session and Track. However, these topics must not
coincide literally. Those in Session are more specific than their parent Track, and Event is yet another level
of abstraction above. For this reason, topic is not a separate domain object, since its entities would yield
limited reusability at best.

The Picture(s) attribute of Venue is designed to hold multiple assets within the CMS. If this property
could be reused outside of Venue, it might have become its own content type. However, these images
only have meaning in the context they relate to, hence they were modeled as attribites. Extending this
principle, a Day concerns all Tracks on a specific date. Extracting this date obviates avoidable duplication,
increases maintainability, and enables listing all Tracks on the same Day in the frontend later.

The DOI field in Material gives the digital object identifier (DOI) of academic documents like papers.
Similar to an ISBN for a book, this identifier serves as a unique handle for one specific paper [Andrews
2021, pages 12–14]. Since not every document must have a DOI, this field is optional (and because not
every Material must be a document).

The Web Site URL attribute, which is present in various content types, provides a field for linking to
additional content of undefined structure. This creates room for information which does not fit into any
of the available fields, thereby extending the scope of the content.

21

22 6 Conference Content Model

6.2 Noteworthy Considerations
Contrary to the method suggested by Atherton and Hane [2017, page 149], no spreadsheet was used in the
creation of the content model. Instead, any discussions concerning individual attributes and necessary
adaptations of domain objects were recorded as a bulleted list in a document. This approach worked well
in the beginning (or perhaps for smaller projects like this one), but will probably fail to scale efficiently
over the course of time, as remarks and insights accumulate.

Throughout the process of its inception, the suitability of provisional content was trialled on the model,
to detect incompatibilities early on and reduce the need for major changes later. While the frontend is
easy to adapt, redesigning the content model entails adaptations on all intermediary platforms (like the
CMS) as well, which requires increased effort. Any attributes marked with an asterisk are implemented as
mandatory fields in the CMS later, meaning these must always be populated when adding an entity. They
also generally take precedence in the ordering of properties, which are sorted by descending relevance.

6.3 The Person – Role – Session Relationship
The cardinality between Role and Person strongly influences their threefold relationship with Session,
forming an integral component within the conference subject domain together. Problems with this
structure started to surface only late in the process, during the frontend implementation. However, the
issue could be resolved by altering the magnitude of the connection on the Person’s side. Previously, one
Role could be related to zero or many Persons, whereas now every Role may relate to only zero or one Person.

First, take an example situation which produces a valid setup independent of this change. Consider a
Session SA, whose Session Chair is the Person P. Consider another Session SB, whose Session Chair is also
the Person P. Here, SA and SB can be related to the same Role R. That Role R then relates to the Person P.

Another common situation cannot be clearly modelled. Consider a Session SA whose Session Chair is
the Person PA. Consider another Session SB whose Session Chair is the Person PB. Previously, SA might be
related to Role R, while SBmight simultaneously also be related to R (which causes issues soon). However,
Role R could be related to Person PA as well as Person PB. This setup created an unclear connection from
Session SA through Role R, since it is no longer distinguishable whether PA or PB is related to SA!

As mentioned before, this problematic situation was resolved by correcting the allowed cardinality
from Role to Person to be at most one person. For example, consider a Session SA, whose Session Chair is
Person PA. Consider another Session SB, whose Session Chair is Person PB. Now, SA must be related to Role
RA, and RA must be related only to Person PA. Likewise, Session SB must be related to Role RB, and RB must
be related only to Person PB. This setup creates a clear, unmistakable connection from Session SA through
Role RA to Person PA (the same holds true concerning all B-entities). For this to work, the limitation of zero
or one Person per Role is required.

It is not necessary to change the cardinality between Session and Role, since there may still be different
Sessions sharing one Person through a Role. Furthermore, there may also still be multiple Roles (all
related to their own Person) sharing the same Session, for example if two people are co-chairing a
session.

The Person – Role – Session Relationship 23

hasMaterial

hasSlot

hasFormat

consistsOf

hostedBy

participatesIn

hasChair

locatedAt
sponsoredBy

requires

hasRole

sponsoredBy

hostedAt

hostedIn

populatedWith

Content Model v0.6
Event

Title*
Start Date*
End Date*
City*
Country*
Topic(s)
Description
Capacity
Website URL

Venue

Title*
Street*
City*
Country*
Description
Total Capacity
Picture(s)
Google Maps Link
Directions
Website URL

Room

Location*
Title
Description
Capacity
Wheelchair Access.

Session

Title*
Start Time*
End Time*
Topic
Description
Stream URL

Session Format

Type*

Material

Title*
Format*
Description
Abstract
Filetype
Thumbnail
URL
DIO

hasMaterial

Slot

Title*
Start Time*
End Time*
Description

Day

Date*

Track

Title*
Topic
Description

Sponsor

Name*
Sponsorship Level*
Website URL

Person

Surname(s)*
Street*
City*
Country*
Forename(s)
Job Title
Affiliation
Biography
Picture
Email Address
Phone Number
Social Media Hand.
Website URL

Role

Title*

Figure 6.1: The initial draft (v0.6) of a content model for a small conference. [Diagram drawn by Yannik
Rauter.]

hasMaterial

hasSlotconsistsOf

hostedBy
participatesIn

hostedBy

locatedAt

sponsoredBy

requires

hasRole

sponsoredBy

hostedAt

hostedIn

populatedWith

Content Model v1.0

Event

Title*
Start Date*
End Date*
City*
Country*
Topic(s)
Description
Capacity
Web Site URL

Venue

Title*
Street*
City*
Country*
Description
Total Capacity
Picture(s)
Google Maps Link
Directions
Web Site URL

Room

Location*
Name
Description
Capacity
Wheelchair Access

Session

Title*
Format*
Start Time*
End Time*
Topic
Description
Stream URL

Material

Title*
Format*
Description
Abstract
Filetype
Thumbnail
Link
DOI

Slot

Title*
Start Time*
End Time*
Description

Day

Date*

Track

Title*
Topic
Description

sponsoredBy

Sponsor

Name*
Sponsorship Level*
Logo
Web Site URL

Person

Surname(s)*
Forename(s)
Street*
City*
Country*
Job Title
Affiliation
Biography
Picture
Email Address
Phone Number
Social Handle
Web Site URL

Role

Title*

 Legend

 One

 Zero or one

 Many

 One or many

 Zero or many

Figure 6.2: The final content model for a small conference. [Diagram drawn by Yannik Rauter.]

24 6 Conference Content Model

6.4 Resulting Model
The final content model (v1.0) for a small conference is shown in Figure 6.2. When comparing the final
content model to the initial draft content model, the differences are less striking than when comparing the
final and initial versions of the domain model (see Section 5.3). This is most likely because there were
fewer significant structural changes to the content types along the way, since most of these alterations had
already been made while creating the domain model.

Some key distinctions between the initial and final content models include:

• Session Format was initially modelled as its own domain object. After dropping the need for listing its
entities, it was turned into an attribute of Session.

• A Logo attribute was added to the Sponsor content type, to provide a logo asset to the frontend
implementation.

• As discussed, the cardinality of the relationship between the Role and Person content types was
updated, so that every Role may only relate to at most one person.

A full-page version of the final content model is provided in Appendix A as Figure A.2.

Chapter 7

Backend: Contentful (Headless CMS)

The next steps in the project work for this thesis involved implementing the content model for a small
conference in a Content Management System (CMS), and then filling it with content for the example
conference web site.

7.1 Choosing a Content Management System
There is a vast array of CMSs to choose from, all with varying feature sets and popularity [Netlify 2024a].
The properties sought in a CMS for the purpose of this thesis work are firstly being entity-based rather
than page-based, and secondly being headless rather than decoupled. This initially limits the choices,
while further research and deliberations turned up two promising potential candidates.

Strapi [Strapi 2024] is an open-source, self-hosted, headless CMS. The choice of on-premise or cloud
hosting is left to the developer. It advertises high customisability, not least through a wide range of plugins
available via a centralised marketplace. Furthermore, Strapi provides integrations for many databases,
frameworks (like React, Angular and Flutter), and Static Site Generators. Extensive documentation and
an active community support the development process.

In comparison, Contentful [Contentful 2024c] is a cloud-hosted CMS, which touts itself as being
API-first and content-centric. These traits describe its headless, entity-based nature, with a strong focus
on reusability, facilitated by access to content through dedicated interfaces. Contentful offers many apps
and integrations for third-party services, as well as AI suggestions and content creation features woven
into its web application. Development is simplified through openly available documentation, showcases,
and blog posts. Contentful offers a free tier with a limited feature set suitable for smaller projects.

Contentful requires no installation, no dedicated server, and very little configuration to get started,
rooted in its approach of Content-as-a-Service (CaaS) [Singh et al. 2023, page 89]. For this reason,
Contentful’s free tier was selected to be used in the implementation of this project.

7.2 Setting Up Contentful
To start using Contentful, a user account must first be registered, setting up an organisation [Contentful
2024f] in the process. This serves as a home for spaces (basically a workspace), which are used to differ-
entiate projects in development from those in production. In Contentful, an environment [Contentful 2024e]
encapsulates different versions of content types and alternative configurations within a space, typically to
separate development, staging, and production settings. Multiple users may have access to the same space,
where roles (like Administrator, Author or Editor) optionally restrict their ability to alter content and change
settings.

25

26 7 Backend: Contentful (Headless CMS)

Figure 7.1: Creating a content type in Contentful. [Screenshot taken by Yannik Rauter.]

Content entities (instances) are called entries in Contentful. A space contains content types, entries, and
assets. Every entry has a status, which defaults to Draft, before an entry is manually elevated by a user to
being Published. Archived entries cannot be edited.

7.3 Implementing the Content Model in Contentful
A content type is created interactively in Contentful using the dialogue shown in Figure 7.1. It is given
an automatically inferred API Identifier. Fields are then added to the content type using the dialogue shown
in Figure 7.2.

The following data types are available in Contentful for fields:

• Rich text: Formatted text, including markup.

• Text: Unformatted text.
– Short text: Maximum of 256 characters, enables sorting.

– Long text: Maximum of 50.000 characters, no sorting.

• Number: Limits possible values to numbers.
– Integer: Non-fractional numbers, positive or negative.

– Decimal: Fractional numbers, positive or negative.

• Date and time: Date, with optional time and time zone.

• Location: Address or coordinates.

• Media: Assets of various file types.

• Boolean: True or false.

• JSON object: JSON-formatted data.

• Reference: A connection to an entry of a related content type.

Implementing the Content Model in Contentful 27

Figure 7.2: The available data types for fields in Contentful. [Screenshot taken by Yannik Rauter.]

Any new field requires a Name, from which the Field ID is inferred using camel case, as shown in
Figure 7.3 for a Text field. The interface points out that these settings (meaning the field type Short Text or
Long Text) cannot be changed later. Attributes of a field, such as whether it is optional or required, can be
set later, as shown in Figure 7.4.

All content types from the content model were implemented in Contentful. Their attributes become
optional or mandatory fields, specifying data types and assets along the way. Limitations for allowed
values were added to Role > Title, Session > Format, Material > Format, and Sponsor > Sponsorship Level.

In Contentful, every entry (instance) should have a non-unique Entry title whenever possible, which is
used to represent an entry by giving it a name, for example to identify it in a list view. By default, the
value of the first field whose type is Short text becomes the entry title. Any field of type Text (regardless of
being short or long) can be specified as the Entry title for that content type [Contentful 2024b]. Other fields
(including Rich text) cannot be used as the Entry title. As a consequence, entries of content types without
any Text fields have no entry title, potentially leading to problems in the frontend if an entry title is always
expected.

Entity references between content types are implemented by creating a field of type Reference. The
resulting dialogue is shown in Figure 7.5. A decision must be made as to where to place the list of
connected entities:

• One-to-one relationships should not exist (refer to Section 2.3).

• For one-to-many relationships (like the one connecting Person with Role), a single reference is always
placed in the many side (in this case, Role). This way, any number of entries of the many side (any
number of Roles) may all reference exactly one other entry (one Person each).

• With many-to-many relationships (like the one connecting Session with Role), a decision is required.
Since duplication causes redundancy and the potential for inconsistencies, best practice dictates not
to put a list of references to each other’s content types on both sides of a many-to-many link (allowing

28 7 Backend: Contentful (Headless CMS)

Figure 7.3: The interface for creating a field of type Text in Contentful, by example of the Job Title
field in the Person content type. [Screenshot taken by Yannik Rauter.]

multiple Sessions in one Role and multiple Roles in one Session). Instead, the option for adding
entity references should be placed on one side or the other. In this example, any Role lists all its
connected Sessions. The following factors may influence this decision:

– The existing number of fields in a content type, which affects readability and clarity when
editing.

– The existing number of entity references already added to a content type. Grouping together
all references to other content types in one central content type simplifies references from one
to all others (instead of necessitating edits in all others linking to the one).

– The later need for listing related entities may also be considered. While this is technically
always possible (regardless of the placement), listing all related Sessions for one Role is
programmatically simpler when Role holds the entity references to Session than the other way
around.

The final implementation of the Session content type along with all its fields is shown in Figure 7.6.
Lastly, Figure 7.7 gives a visual representation of all content types implemented in Contentful, along with
their fields and entity references.

It is good practice to frequently try out the content model in the CMS with artificially created test
content as well as real data. However, due to the approach of building the exemplary conference web
site from scratch, no real, relevant content (like speaker biographies, session materials, or pictures of
the venue) was available for testing. Thus, some realistic-looking example information was created
to populate enough entries in Contentful to verify the model’s robustness under stress. All relevant
documentation concerning the content types and their attributes is included in this thesis, so no dedicated
content spec sheet was created. Throughout the process of implementing the content model in the CMS
and testing the outcome with content, no changes to the content model were necessary.

Implementing the Content Model in Contentful 29

Figure 7.4: The interface for editing a field of type Text in Contentful. The field can be set as required
or unique, among other things. [Screenshot taken by Yannik Rauter.]

30 7 Backend: Contentful (Headless CMS)

Figure 7.5: Creating a reference in Contentful. [Screenshot taken by Yannik Rauter.]

Figure 7.6: The interface for editing a content type and its fields in Contentful, by example of the
Session content type. [Screenshot taken by Yannik Rauter.]

Implementing the Content Model in Contentful 31

Figure 7.7: The content model for a conference web site, as implemented in and visualised by
Contentful. Connecting lines cannot be redrawn manually. [Graphic exported from the Contentful’s
Visual Modeller.]

32 7 Backend: Contentful (Headless CMS)

Figure 7.8: The interface for editing the fields of an entry in Contentful, by example of the Session
content type. [Screenshot taken by Yannik Rauter.]

7.4 Creating Content for a Conference Web Site
Once the content model has been set up, content for a particular application can be entered. This is often
done by non-technical staff. Figure 7.8 shows the Editor view for entering content into an instance of a
Session. The values of its fields may be entered and modified. Outgoing references, such as Room and Track
for a Session are also entered here. In addition, any incoming references to the entry are listed in the Links
section of the right sidebar. Every new entry is assigned a randomly generated unique Entry ID (not based
on any of its properties), which can be found by clicking the Info tab of the right sidebar.

7.5 Content API in Contentful
Contentful provides a variety of REST APIs [Contentful 2024a] for interacting with its content, which
are available at separate endpoints. Those relevant in the scope of this thesis are:

• Content Delivery API: The Content Delivery API is exclusively meant for reading content. Its

Limitations of Contentful 33

preferred use is to display data within a frontend application. Therefore, this is the interface mainly
used in the implementation example, as described in Chapter 8.

• Content Preview API: The Content Preview API serves a similar purpose, but also includes unpub-
lished entities (those with status Draft) in its response, making it suitable for development environ-
ments only.

• Content Management API: The Content Management API enables the manipulation of content by
creating new entries or updating existing ones.

• Images API: The Images API allows images to be retrieved, but also manipulated in various ways
such as cropping or altering the resolution.

Contentful also provides a GraphQL API, but that is not used in this project.

When requesting data, any content is delivered in JSON format, while assets are supplied as files.
Across all these options, authentication is handled by including an API key in the form of a private access
token with the HTTP request. This is possible using either the Authorization request header field, or
by including the access_token URI query parameter along with the desired endpoint (as is done later
in Section 8.4). API keys are configured within the Contentful web interface to permit access to all
environments of a space.

7.6 Limitations of Contentful
Changing the data type for a field of a content type necessitates an elaborate, multi-step process. This
is illustrated by the following example, using the Biography field (with a Field ID of biography) of the Person
content type. To change this field’s data type from Text to Rich text, the following steps are required:

1. The same Field ID cannot be used twice. Therefore, the biography field must first be renamed (including
its Field ID), for example to biographyOld, in order to enable reuse of the existing biography Field ID.

2. A new field of the desired Rich text data type is created, using the previous name (and Field ID)
biography, which is now available.

3. For each of the affected Person content type’s entities, the contents are copied from the biographyOld
field to the new biography field. This step may be assisted using the contentful-migration CLI
[Contentful 2024d] and JavaScript.

4. The biographyOld field is deleted, since it is no longer needed.

Furthermore, Contentful limits the number of total API calls and the asset bandwidth, depending on
the product tier being used [Contentful 2024g]. At time of writing, the free tier allows 100,000 API calls
and 50 GB of asset downloads per month.

34 7 Backend: Contentful (Headless CMS)

Chapter 8

Frontend: Hugo (SSG)

Content from a Content Management System (CMS) may be presented in various ways, only one of
which is a web site. For example, Voice UIs and interactive agents are becoming increasingly popular
[Atherton and Hane 2017, page 170]. For this project, the goal was to build a responsive web site for a
small conference, which draws its content from the CMS described in the previous chapter. After some
research, it was decided to build a static web site with a Static Site Generator (SSG). After exploring
some of the available SSGs, Hugo was chosen. Designing a modern web site user interface also requires
some knowledge of HTML, CSS, JavaScript, and responsive web design, as well as the mechanics of
setting up an SSG.

8.1 Choosing a Static Site Generator
There are a large number of SSGs to choose from [Netlify 2024b]. The choice is largely independent
of any previously selected CMS, since content will generally be accessed over an API. When fetching
content at run time, it is typically fetched using JavaScript. When fetching content at build time to
produce entirely static pages, it may either be fetched through a plug-in provided by the SSG, or a custom
solution may be devised (say in Python over the CMS’ API) to read content into separate files for parsing
by the SSG.

Jekyll [Jekyll 2024] was one of the first SSGs, initially released in 2008. It is a simple, blog-aware SSG
written in Ruby and utilising the Liquid templating engine [Luetke 2025]. Content may be read in either
.yaml, .json, .csv or .tsv format. To this date, it remains one of the most popular choices thanks to its
simplicity and performance, despite updates to its code and the addition of new features having become
less frequent in recent years [Bleuzen 2023].

Many modern SSGs are written in JavaScript (or TypeScript) and use the Node environment. Metals-
mith [Van Lierde 2025] and Eleventy [Leatherman 2025] are prominent examples. They are fully featured
and have a large variety of plug-ins and extensions. However, Node-based SSGs have the disadvantage
inherent with all Node projects that dependencies may change over time, and the SSG installation has to
be maintained and kept up to date.

Hugo [Hugo 2025g] is another modern SSG solution written in Go [Go 2025], focussing on speed and
flexibility. With build times of approximately one millisecond per included resource, Hugo generates even
the most comprehensive web sites extremely quickly. Furthermore, Hugo strives to be highly configurable
and is still actively being developed and frequently improved. It is available in two versions, standard and
extended (which includes additional support for the WebP format and transpiling SASS). Hugo has a wide
variety of publicly available, pre-built themes for the layout and styling of templates. Furthermore, Hugo
is also distributed as a binary executable, thereby eliminating the need to maintain built-in dependencies.
For these reasons, Hugo was selected to be used in the further implementation of this project.

35

36 8 Frontend: Hugo (SSG)

8.2 Setting up Hugo
To start using Hugo, it is first necessary to follow the installation procedure for the applicable operating
system. Next, a Hugo project must be initialised in a directory on the local file system using the command
line. This creates the required directory structure [Hugo 2025b], as well as a hugo.toml file for the site’s
configuration. The most important directories in the scope of this thesis include:

• content/: Contains markup files, from which Hugo generates pages.

• layout/: Contains templates, which become pages when filled with content.

• static/: Contains files which are copied to the public/ directory during the build process.

• public/: Contains the final static site ready for deployment, after being generated by the build
process.

The site is now built by triggering the build process (utilising the command line again), which transforms
content into static pages using templates. Hugo accepts a number of content formats as its input, with
Markdown being among them. It creates a static output file (in this case, a web page as an .html file) for
every .md file present in the content/ directory, based on templates from the layouts/ directory (and its
subdirectories). The resulting files, along with additional, static resources like stylesheets or icons from
the static/ directory are stored in the public/ directory, which may then be deployed on a web server.

8.3 Configuring Hugo
Configurations for Hugo are specified in either YAML, TOML, or JSON in a corresponding configuration
file (hugo.toml, hugo.yaml, or hugo.json). Such a configuration file is required in every Hugo project. A
wide range of optional parameters are used to configure various aspects of the site [Hugo 2025a]. Some
are shown in the example in Listing 8.1, including:

• cleanDestinationDir: Removes all files from the output directory (public, by default) except those
copied from the static directory.

• disableKinds: Disables rendering of certain unused kinds of pages, to reduce unnecessary overhead
during the build process.

• relativeURLs: Transforms all URLs to be relative to the current page, enabling deployment regardless
of the root path.

• removePathAccents: Removes non-spacing marks (like accents) from composite characters in the
names of content files.

• sectionPagesMenu: Automatically defines a new parent menu entry for each top-level section of the
site (i.e. for each content type).

These site parameters may be accessed from within a template as well. The params entry (and its
children) actually serve just that purpose. For example, the list of values of a speakerRoles parameter
determine which Roles are included in the Speakers navigation element.

Fetching Content for Hugo 37

1 cleanDestinationDir: true
2 disableKinds: [’taxonomy’, ’term’, ’RSS’, ’sitemap ’]
3 languageCode: ’en-gb’
4 relativeURLs: true
5 removePathAccents: true
6 sectionPagesMenu: ’main’
7 title: ’Hugo Contentful Static - UX Day Graz 2024’
8
9 params:

10 contactEmail: contact@example.com
11 shortTitle: ’UX Day Graz 2024’
12 speakerRoles:
13 - ’Keynote Speaker’
14 - ’Speaker’

Listing 8.1: The hugo.yaml file for the example conference web site, UX Day Graz 2024.

8.4 Fetching Content for Hugo
Hugo itself lacks any form of native integration for sourcing content from Contentful and storing it in
individual, static content files to be used at build time. However, some third-party plug-ins, such as
contentful-hugo [Sosso 2025] and contentful-ssg [JvM 2025a] are available for this. Both of these
are written in TypeScript/JavaScript, and fetch content using Contentful’s APIs. The content is then
stored in separate files, according to Hugo’s directory structure. A wide variety of options allow for
proprietary configurations, tailored to a project’s individual demands. Initially, contentful-hugo was
used, but was then replaced by contentful-ssg for its improved customisability of file names.

By default, contentful-ssg only fetches textual content into files. However, content in this case
is not exclusively text, but comes in various forms, including images and documents. When an entry
references such an asset, the URL at which that asset is available from Contentful’s API is placed as
a value in the attribute by contentful-ssg. Therefore, the asset will be loaded from the CMS at run
time, creating unwanted dynamic accesses, while simultaneously creating the potential for issues with the
hosting service’s Content Security Policy (CSP). It is better practice to provide these assets via the same
web server which hosts the static site’s markup, which requires the assets to be sourced from the CMS
at build time. For this purpose, contentful-ssg itself requires a plug-in, cssg-plugin-assets [JvM
2025b]. The incompatibility of cssg-plugin-assets and its dependencies with the Windows operating
system caused problems during the build process, leading to this plug-in (along with the requirement
for static assets) being abandoned. Thus, assets in the current implementation remain being directly and
dynamically accessed from the Contentful Content Delivery API at run time.

Similar to Hugo, contentful-ssg also comes with many options for configuration, all specified in its
contentful-ssg.config.js file [JvM 2025c]. These also include transform hooks, called for every entry
loaded from Contentful. These can be used to manipulate or massage the front matter entries within
generated content files, for example to include a title and publication date, or to specify the ordering of
items in a navigation menu (for example, days in the Programme).

Another example is the ability to infer file names from (a combination of) specific attributes per content
type. Since the URL for a piece of content in Hugo depends on its file name, this enables predictable
URLs. Instead of the default entry identifier (a unique, randomised, alphanumeric string automatically
generated by Contentful for every entry), any attribute (like the title of a Session) may be used. The
potential for duplicate file names (when different sessions have similar titles) must be considered, to avoid

38 8 Frontend: Hugo (SSG)

unintentionally overwriting files and causing other issues. Note that changing an attribute’s value also
breaks bookmarks and permanent links, since the URL changes as well.

Transform hooks can only operate on the content file currently being generated. They cannot operate
across content files. For more flexibility, the task runner Gulp [Gulp 2024] was used in a post-processing
step to further massage and manipulate content files, for example to list certain Persons as Speakers rather
than Team members, depending on their Role.

For the conference web site in this project, all content fetched from the CMS was actually stored in
YAML variables in the front matter of .md files, one file for each instance of each content type. Hence,
the .md files themselves contain only YAML front matter; they do not contain any actual Markdown as
such. An example of a content file can be seen in Listing 8.2.

8.5 Templates in Hugo
Templates are used to control the rendering of content and assets into static HTML pages. In Hugo,
templates are .html files extended with Go code. Templates have different purposes distinguished by
their file names and specific locations within the directory structure. During the build process, a template
is populated with data from the content files, producing static HTML output files. An intricate, nested
structure of template types combine to form a complete web site [Hugo 2025f].

Base templates serve as a wrapper for other templates, providing a frame (including meta tags,
stylesheets, scripts, and perhaps site navigation) within which any page content may be placed. Single
templates are used for the pages of individual instances of one content type. Therefore, every core content
type requires its own single template. They reside as single.html in the subdirectory of their respective
content type. A section template on the other hand only lists the various instances of a content type,
without exposing their details. They are saved in the subdirectory of their respective content type as well,
and are named list.html. Any of these three template types may be supplemented with one or more
partial templates, which represent reusable components, and are located in the partials subdirectory.

When determining the correct template for a certain page, the build process follows a predefined
template lookup order, highly dependent on the content type [Hugo 2025e]. Those templates placed
directly in the subdirectory of a certain content type have the highest specificity and are only used for
the pages of that one content type. Default templates may be added as a fallback, in case no other (more
specific) template exists. However, these are rather limited in functionality, since they must be compatible
with any content type. Furthermore, generic base templates can be created to serve as a wrapper, into
which the more specific templates are placed. These may include additional navigation elements like
breadcrumbs, used by all single and section templates in general.

While templates mainly access and render the actual content, they may also utilise parameters from
so-called front matter included in the content files, which is metadata prepended to the actual content
[Hugo 2025c], usually in YAML format. This includes content-related attributes (such as a title, or a
date of creation or last update). Additional front matter parameters might concern page setup (publishing
date, menu parent, navigation weight, special template type) and also relationships with other content.
Listing 8.3 shows an example of a single template file to generate a HTML page for an instance of a
Person. It contains HTML elements with embedded instructions for including content from YAML
variables.

Templates in Hugo 39

1 ---
2 defaultMetaFields:
3 sys:
4 id: 3D7dG2alyBMgUBKPupHOg7
5 contentType: person
6 createdAt: ’2023-06-12T21:04:47.621Z’
7 updatedAt: ’2024-07-17T09:56:52.305Z’
8 title: Yannik Rauter
9 menu:

10 main:
11 parent: speaker
12 surnames: Rauter
13 forenames: Yannik
14 street: Example Street 1
15 city: Klagenfurt
16 country: Austria
17 jobTitle: Software Developer & Project Assistant
18 affiliation: Graz University of Technology
19 biography: >-
20 Attentive , passionate , devoted - even in early years, my fascination with
21 technology made me want to dig deeper and find out what makes things work. As
22 a curious traveller , the journey of continuous learning has led me to focus my
23 energy on how to make software work intuitively for everyone, expressing my
24 preference for functional user interfaces by emphasising careful design
25 considerations and excessive testing.
26
27 Facilitating meetings, coordinating tasks, and optimising processes excites
28 me, while rapid advancements towards a common goal by excelling as a member of
29 a well-managed, cooperative , and supportive team feels even more fulfilling. I
30 have a strong appreciation towards structurally sound and well-organised
31 projects. Being actively involved in planning is important to me, and I am
32 always mindful about a colleague ’s efforts.
33
34 My creativity is portrayed in written communication , descriptions , summaries ,
35 guides, stories, and the like. Gaining experience in programming over the past
36 few years significantly fostered my aptitude for meticulous quality control;
37 attention to detail has become second nature to me. I view a high level of
38 perfection as key to customer satisfaction and therefore success. Doing things
39 by halves displeases me - never settle for second best.
40 picture:
41 mimeType: image/jpeg
42 url: >-
43 //images.ctfassets.net/8au3rnz56kwt/yannik_rauter_profile_picture.jpg
44 title: Yannik Rauter Profile Picture
45 description: ’’
46 width: 1100
47 height: 1100
48 fileSize: 780281
49 emailAddress: example@student.tugraz.at
50 phoneNumber: ’+436641234567’
51 socialHandle: yannik.rauter
52 websiteUrl: https://github.com/yannikrauter/
53 ---

Listing 8.2: The .md file generated for a person called Yannik Rauter, an instance of the Person content
type. It contains only front matter in YAML format.

40 8 Frontend: Hugo (SSG)

1 {{ define "main" }}
2 <link rel="stylesheet" property="stylesheet" href="{{ "css/person.css" | relURL }}">
3 <main>
4 <article>
5 <header>
6 <h1>{{ .Title }}</h1>
7 <div id="person-information -container">
8 <div id="person-details">
9 {{ with .Param "jobTitle" }}

10 <h2>{{ . }}</h2>
11 {{ else }}
12 <p>No job title provided</p>
13 {{ end }}
14 {{ with .Param "affiliation" }}
15 <h3>{{ . }}</h3>
16 {{ else }}
17 <p>No affiliation provided</p>
18 {{ end }}
19

20 {{ $rolesCounter := 0 }}
21 {{ range $roleE := where $.Site.RegularPages "Type" "role" }}
22 {{ if eq $.Params.defaultMetaFields.sys.id $roleE.Params.person.id }}
23 {{ $rolesCounter = add $rolesCounter 1 }}
24 {{ end }}
25 {{ end }}
26 {{ if eq 0 $rolesCounter }}
27 <h4>Role:</h4>
28 <p>This person has no role.</p>
29 {{ else if eq 1 $rolesCounter }}
30 <h4>Role:</h4>
31 {{ else }}
32 <h4>Roles:</h4>
33 {{ end }}
34 <p>
35 {{ range $index, $roleE := where $.Site.RegularPages "Type" "role" }}
36 {{ if eq $.Params.defaultMetaFields.sys.id $roleE.Params.person.id }}
37 {{ $rolesCounter = sub $rolesCounter 1 }}
38 {{ if eq 0 $rolesCounter }}
39 {{ .Params.title }}
40 {{ else }}
41 {{ .Params.title }},
42 {{ end }}
43 {{ end }}
44 {{ end }}
45 </p>
46 </div>
47 ...
48 </div>
49 </header>
50 ...
51 </article>
52 </main>
53 {{ end }}

Listing 8.3: The single template file for the Person content type is located in the layouts/person/s
ingle.html. It contains HTML elements with embedded instructions for including content from
YAML variables. The example has been shortened for brevity.

Modelling a Conference Web Site in Hugo 41

Figure 8.1: An example single web page for a Person entry on the UX Day Graz 2024 web site. A
navigation bar and breadcrumb bar are included at the top of the page. [Screenshot taken by Yannik
Rauter.]

8.6 Modelling a Conference Web Site in Hugo
Before creating the first template, the core content types must be selected. These include Day, Material,
Person, Role, Room, Session, Slot, Sponsor and Venue. While all of these require their own templates for
presentation (either single, list, or both), only some are included in the navigation. As can be seen in
Figure 8.1, the navigation elements consist of Programme, Speakers, Venues, Team, Sponsors and Registration.
Registration is an individual page not sourced from Contentful, similar to the Home and Impressum pages.

Speakers and Team are examples of section templates which do not simply list all entries of a content
type, but instead only compile those matching certain criteria. In this case, only Persons with the Roles
of Keynote Speaker or Speaker are included in the Speakers navigation element, while all other Persons are
listed under the Team navigation element.

42 8 Frontend: Hugo (SSG)

1 ---
2 defaultMetaFields:
3 sys:
4 id: 3bWliu1Syli9TiZ8Ciy0d8
5 contentType: room
6 createdAt: ’2023-06-22T16:09:49.978Z’
7 updatedAt: ’2024-05-21T07:07:36.411Z’
8 title: Inffeldgasse 16b - Basement - HS i13 (ICK1120H)
9 location: Inffeldgasse 16b - Basement - HS i13 (ICK1120H)

10 name: Hörsaal i13
11 description: Largest lecture hall at TU Graz Campus Inffeldgasse.
12 capacity: 301
13 wheelchairAccess: true
14 venue:
15 id: 7bqSwYTFonmgJGzkYW1GuT
16 contentType: venue
17 ---

Listing 8.4: The Markdown file of an entry for the Room content type.

Through transclusion (pulling in related content), Programme composes a list of Days, which in turn
shows a timetable of all the Sessions for that Day, along with their respective Slots. Linking to these
related entries enables easy navigation and encourages explorative traversal of the site. While doing so,
maintaining clarity on where the additional information is coming from is crucial to avoid confusing the
user’s sense of location. Thus, breadcrumbs always conveniently label the current page as well as indicate
its place in the site’s hierarchy.

Considering Figure 8.1 again, it becomes clear that not all fields available in the content model are also
exposed on the final page. For example, Listing 8.2 contains further properties (like address and contact
details) which should not be publicly exposed. Some information might also be withheld from the user
temporarily, and displayed at a later point in time when it becomes relevant.

Accessing information of connected entries via references is illustrated by two examples, using the
Venue and Room content types. In the first case, the reference to the related Venue entry Inffeld is stored
directly in the source Room entry i13. The front matter of the Markdown file for i13 thus includes the
entry identifier (a unique, randomised, alphanumeric string automatically generated by Contentful for
every entry) of Inffeld, as shown in line 15 of Listing 8.4. Using this ID, the corresponding entry
Inffeld can be found, by iterating all entries of the related content type Venue. This is done in Hugo
by using a combination of the range loop function over all pages, along with a filter through the where
function, limiting the search to entries of the Venue content type. Finally, a simple if statement triggers
only for the matching entry. This is shown in Listing 8.5.

In comparison, consider the inverted case of listing all related Room entries based on a source Venue
entry Inffeld. Since entity references are always placed on just one side of the relationship, the source
Venue entry Inffeld has no list of references to its rooms (as can be seen in Listing 8.6). Instead, each of
the related rooms holds the reference to its venue Inffeld. The code logic remains similar. For the ID
of the source Venue entry Inffeld, all related rooms having that source ID must be found. This requires
iterating through the list of all Room entries, as shown in Listing 8.7. For improved readability, a variable
name of \$roomElement has been assigned to the current loop element.

Nesting these structures, for example when seeking the Slots for the individual Sessions of all Days

Modelling a Conference Web Site in Hugo 43

1 {{ range where $.Site.RegularPages "Type" "venue" }}
2 {{ if eq .Params.defaultMetaFields.sys.id $.Params.venue.id }}
3 <h2>Venue: {{ .Title }}</h2>
4 {{ end }}
5 {{ end }}

Listing 8.5: An example of a loop in Hugo, used to target a specific instance of a content type.

1 ---
2 defaultMetaFields:
3 sys:
4 id: 7bqSwYTFonmgJGzkYW1GuT
5 contentType: venue
6 createdAt: ’2023-06-22T16:05:59.998Z’
7 updatedAt: ’2024-05-21T07:14:08.981Z’
8 title: Graz University of Technology - Campus Inffeldgasse
9 menu:

10 main:
11 parent: venue
12 street: Inffeldgasse
13 city: Graz
14 country: Austria
15 description: >-
16 The Inffeldgasse Campus is the largest of the three TU Graz campus sites.
17 Currently covering an area of around 124,000 square meters.
18
19 The event takes place within the lecture halls located at this campus of Graz
20 University of Technology.
21 totalCapacity: 509
22 directions: >-
23 [Building number 16b](https://goo.gl/maps/mF91UKA6cFhm2V2cA) is located
24 behind building number 10, so walk around that structure to find it.
25 Head inside, down the stairs to your right, where you’ll find all the
26 relevant lecture halls.
27 event:
28 id: 2l2l9szONnUfytINRNo5vg
29 contentType: event
30 ---

Listing 8.6: The Markdown file of an entry for the Venue content type.

44 8 Frontend: Hugo (SSG)

1 {{ range $roomElement := where $.Site.RegularPages "Type" "room" }}
2 {{ if eq $.Params.defaultMetaFields.sys.id $roomElement.Params.venue.id }}
3
4 {{ $roomElement.Params.title }}
5
6 {{ end }}
7 {{ end }}

Listing 8.7: An example of a loop in Hugo, used to list all entries of a content type matching a
particular criterion.

to compile a complete conference Programme, quickly becomes convoluted and confusing, stretching the
boundaries of Hugo. To alleviate this problem, partial templates help keep individual code files short,
while increasing code reusability. Example applications of partials include breadcrumbs, headers, and
footers. This enables the single and list templates of the Day content type to both contain only a few lines
of code, by importing large amounts of content from the day-tracks-list with just a single line of code:

{{ partial "day-tracks-list" . }}

Functionality like this truly highlights the strengths of SSGs.

8.7 Conference Programme Using CSS Subgrid
To display the Programme of the conference, an overview of all Sessions was assembled. Content from a
wide range of content types is collected, including Tracks, Sponsors, Slots and Persons. The Programme
may be viewed for each individual Day alone, or for a list of all Days on one page. To realise this, the
entire Programme of a Day is defined by only one partial. This partial is then used either just once (in the
single template of Day), or once per Day (in the list template of Day) to view the whole Programme. The
Programme of first Day of the conference is shown in Figure 8.2.

Topics and Sponsors of Tracks are included at the top, immediately below the title of the respective
Track. Using CSS Subgrid [MDN 2024a], the Sessions are aligned according to their times across
different Trackss in intervals of 5 minutes. Within each Session, its Slots are listed, along with their
speakers (certain Persons with corresponding Roles). Content extending the boundaries of its block (the
border around a Track, Session, or Slot entity) is shortened using ellipsis (except for Session titles, which
may wrap lines multiple times if possible). In case of a Session with a duration of less than 30 minutes,
a more compact layout is employed. Slots always have a fixed height, regardless of their title’s length
and their number of speakers. All this requires extensive use of variables, loops and conditional branches
in Hugo code, mixed in with HTML tags to structure the page, as well as CSS classes for alignment and
styling. This results in complex looking code, which requires knowledge of all these technologies to be
understood. A snippet of the partial used to create the Programme is shown in Listing 8.8.

Conference Programme Using CSS Subgrid 45

Figure 8.2: The Programme page for a conference, implemented using CSS Subgrid. [Screenshot taken by
Yannik Rauter.]

46 8 Frontend: Hugo (SSG)

1 <div class="subgrid-item-session" style="grid-row: {{ $lowB }} / {{ $upB }};">
2 <h4>{{ $sessionE.Params.title }}</h4>
3 <p>{{ (time.AsTime $sessionE.Params.startTime).Format "15:04" }} -
4 {{ (time.AsTime $sessionE.Params.endTime).Format "15:04" }}</p>
5 {{ with $sessionE.Param "topic" }}
6 <p class="nowrap" title="{{ . }}">Topic: {{ . }}</p>
7 {{ end }}
8 <div class="slot-container">
9 {{ $slotsCounter := 0 }}

10 {{ $linkedCT := "slot" }}
11 {{ range $slotElementFromAll :=
12 sort (where $.Site.RegularPages "Type" $linkedCT) "Params.startTime" }}
13 {{ if eq $sessionE.Params.defaultMetaFields.sys.id
14 $slotElementFromAll.Params.session.id }}
15 {{ $personsPerSlotCounter := 0 }}
16 {{ $linkedCT := "person" }}
17 {{ range $personElement := where $.Site.RegularPages "Type" $linkedCT }}
18 {{ $linkedCT := "role" }}
19 {{ range $roleElement := where $.Site.RegularPages "Type" $linkedCT }}
20 {{ if eq $personElement.Params.defaultMetaFields.sys.id
21 $roleElement.Params.person.id }}
22 {{ range $slotElementFromRole := $roleElement.Params.slot }}
23 {{ if eq $slotElementFromAll.Params.defaultMetaFields.sys.id
24 $slotElementFromRole.id }}
25 {{ if eq $personsPerSlotCounter 0 }}
26 {{ $slotsCounter = add $slotsCounter 1 }}
27 <p class="slot-container -item nowrap" id="slot-element -{{

$slotsCounter}}-session -{{$sessionsCounter}}">
28 {{ (time.AsTime $slotElementFromAll.Params.startTime).Format "

15:04" }}-{{ (time.AsTime $slotElementFromAll.Params.endTime
).Format "15:04" }}:

29 <a href="{{ $slotElementFromAll.RelPermalink }}" title="{{
$slotElementFromAll.Params.title }}">{{ $slotElementFromAll.
Params.title }}

30

31 by <a href="{{ $personElement.RelPermalink }}"
32 title="{{$personElement.Params.forenames}} {{$personElement.

Params.surnames}}">{{$personElement.Params.forenames}} {{
$personElement.Params.surnames}},</p>

33 {{ else }}
34 <a href="{{$personElement.RelPermalink}}" title="{{

$personElement.Params.forenames}} {{$personElement.Params.
surnames}}">{{$personElement.Params.forenames}} {{
$personElement.Params.surnames}},

35 {{ end }}
36 {{ $personsPerSlotCounter = add $personsPerSlotCounter 1 }}
37 {{ end }}
38 {{ end }}
39 {{ end }}
40 {{ end }}
41 {{ end }}
42 </p>
43 ...
44 {{ end }}
45 {{ end }}
46 </div>
47 </div>

Listing 8.8: A code snippet of the conference Programme code in Hugo using CSS Subgrid.

Limitations of Hugo 47

8.8 Limitations of Hugo
Despite its benefits, Hugo also has some shortcomings. To begin with, it does not support Contentful as a
source of content by itself. This necessitates the use of third-party plug-ins like contentful-ssg, which
are limited in support and functionality. An unwanted restriction imposed by contentful-ssg is the use
of Markdown instead of the preferred choice of HTML. Out of the four available output formats from
contentful-ssg, Hugo only accepts one (Markdown) as an input format, eliminating all other options.
Apart from this, while Hugo is still actively being developed and regularly updated with new features,
the same cannot always be said about such plug-ins.

Certain requirements of stakeholders turned out to be impossible to implement, limited by Hugo’s
capabilities at the time. One such example is in the navigation elements, where any Person entry can
either be listed below Speakers or Team, but never both. It is not possible to specify two different main
menu parents in Hugo. Moreover, the main menu elements are limited to a list of strings, which is
compiled from those pieces of content specifying a main menu parent in their front matter. This list is
iterated in a base template to derive the navigation elements. However, since this list of strings lacks any
reference to the related page of each entry, the front matter parameters of those pages are inaccessible.
Thus, problems arise when attempting, say, to sort the navigation entries alphabetically by surname, since
the value of that parameter cannot be read.

Minor irritations are caused by Hugo’s peculiar habit of leaving blank lines in the output HTML code
for every line of Go code in the input template. This often results in large blocks of empty space, a feature
which can only be disabled globally by minifying the output. While this solution is fine for a production
environment, it remains inconvenient during development. One workaround is to use template action
delimiters with hyphens [Hugo 2025d], a fix to be aware of sooner rather than later, since it entails large
amounts of refactoring.

Finally, the URLs for Hugo’s pages depend not only on the file name of the piece of content, but also
on the name of the directory it resides in. When using contentful-ssg, this directory name is derived
from the corresponding content type’s name. While an alias may be used to provide an alternative URL
(other than the file name) for any resource, the content type path is not configurable. For this reason,
every Person entry will always be published at /person/entryFileName/, regardless of being listed in
the navigation below Speakers or Team, leading to illogical URLs. Changing this /person path requires
renaming the person/ directory, which breaks the functionality for resolving entry references using IDs
and loops (as described in Section 8.6). Once more, this shows Hugo’s lack of customisability in some
cases, despite its extreme flexibility in many other areas.

48 8 Frontend: Hugo (SSG)

Chapter 9

Outlook and Future Work

As is often the case in software engineering, there are numerous ways to go about achieving a desired
outcome. In this case, that outcome is enabling access to well-structured content via an easy to use,
visually appealing web site for end users. The methods presented in this thesis (using Contentful as a
CMS, and Hugo as an SSG) are just one example of a possible implementation. Some of the limitations
imposed by Contentful and Hugo described in the previous chapters might be circumvented by employing
different products instead. Further alternatives, which might be explored when considering a similar
application, include:

• A static approach using another CMS, like Strapi [Strapi 2024].

• A static approach using another SSG, especially one with native support by Contentful, like Jekyll
[Jekyll 2024] or Metalsmith [Van Lierde 2025].

• A dynamic approach, loading content from the CMS only upon the client’s request of the page, with
or without using an SSG.

The latter is quite different in nature to the solution described in this thesis. While accessing content
dynamically results in fewer limitations for displaying single pages, compiling a list of navigation elements
might prove difficult. Furthermore, the performance of the content API becomes a relevant factor
(especially concerning assets). Depending on the CMS being used, calls to the API might be priced (see
Contentful [2024g]). The process of publishing content changes must be realigned across the involved
authors, considering the immediate implications of such actions on live web sites.

Using a Static Site Generator alongside dynamic requests to the Content Management System enables
a sort of hybrid solution. While templates are no longer instantiated for every entity, the single active
instance is instead populated directly with data from the API. Furthermore, this still maintains the
advantages of reusable partials (which entails a reduced overhead in regard to recurring structures across
pages) and simple, site-wide design changes.

Even though any proprietary solution like the one presented in this thesis will always come with
its own individual challenges, an SSG other than Hugo has the potential to alleviate at least some of
the recently highlighted issues. Modern problems require modern solutions, and software development
always involves a certain level of tinkering. Finding a combination of the right technologies to aid this
process makes all the difference between a good product and a great one.

49

50 9 Outlook and Future Work

Chapter 10

Concluding Remarks

This thesis described the process of Designing Connected Content with an example implementation in
the form of a conference web site, using the Contentful Headless CMS as a data store and the Hugo SSG
to present said content through a web static site. The code can be found at Rauter [2025].

One achievement is highlighting the advantages of this approach to creating a static web site for
enabling access to structured content. While the steps to create a domain model and a content model
involve significant effort, the preparations and research yield high returns when it comes to entering
and later displaying content. The reasoning behind certain design decisions is explained in some detail,
providing guidance for similar projects in the future.

Moreover, the practical implementation of the UX Day Graz 2024 conference web site serves as a solid
foundation for any small- to medium-sized event of this category in the future. Many stepping stones
along the way were only uncovered thanks to this realisation in code, showing that planning and theory
alone are cannot sufficiently consider all outcomes.

51

52 10 Concluding Remarks

Appendix A

Full Page Figures

For improved readability, Figures A.1 and Figure A.2 show the final domain model and final content
model for a small conference web site, respectively, as full-page figures.

53

54 A Full Page Figures

ha
sM

at
er
ia
l

ha
sS

lo
t

co
ns
is
ts
O
f

S
es

si
on

Ev
en

t

Pe
rs

on
Tr

ac
k

ho
st
ed

B
y

pa
rt
ic
ip
at
es
In

ho
st
ed

B
y

R
ol

e

lo
ca
te
dA

t

Ve
nu

e

sp
on

so
re
dB

y

sp
on

so
re
dB

y

S
po

ns
or

re
qu

ir
es

ha
sR

ol
e

sp
on

so
re
dB

y

ho
st
ed

A
t

ho
st
ed

In
R
oo

m

po
pu

la
te
dW

it
h

D
ay

M
at

er
ia

l

S
lo

t

D
o

m
a
in

 M
o

d
e
l
v1

.0

Le

g
e
n

d

O

ne

Z
er

o
or

 o
ne

M

an
y

O

ne
 o

r
m

an
y

Z
er

o
or

 m
an

y

Figure A.1: The final version (v1.0) of a domain model for a small conference. [Diagram drawn by
Yannik Rauter.]

55

ha
sM

at
er
ia
l

ha
sS

lo
t

co
ns
is
ts
O
f

ho
st
ed

B
y

pa
rt
ic
ip
at
es
In

ho
st
ed

B
y

lo
ca
te
dA

t

sp
on

so
re
dB

y

re
qu

ir
es

ha
sR

ol
e

sp
on

so
re
dB

y

ho
st
ed

A
t

ho
st
ed

In

po
pu

la
te
dW

it
h

C
o

n
te

n
t

M
o

d
e
l
v1

.0

Ev
en

t

Ti
tl
e*

S
ta

rt
 D

at
e*

En
d

D
at

e*
C
it
y*

C
ou

nt
ry

*
To

pi
c(

s)
D

es
cr

ip
ti
on

C
ap

ac
it
y

W
eb

 S
it
e

U
R
L

Ve
nu

e

Ti
tl
e*

S
tr

ee
t*

C
it
y*

C
ou

nt
ry

*
D

es
cr

ip
ti
on

To
ta

l C
ap

ac
it
y

Pi
ct

ur
e(

s)
G

oo
gl

e
M

ap
s

Li
nk

D
ir
ec

ti
on

s
W

eb
 S

it
e

U
R
L

R
oo

m

Lo
ca

ti
on

*
N

am
e

D
es

cr
ip

ti
on

C
ap

ac
it
y

W
he

el
ch

ai
r

A
cc

es
s

S
es

si
on

Ti
tl
e*

Fo
rm

at
*

S
ta

rt
 T

im
e*

En
d

Ti
m

e*
To

pi
c

D
es

cr
ip

ti
on

S
tr

ea
m

 U
R
L

M
at

er
ia

l

Ti
tl
e*

Fo
rm

at
*

D
es

cr
ip

ti
on

A
bs

tr
ac

t
Fi

le
ty

pe
Th

um
bn

ai
l

Li
nk

D
O

I

S
lo

t

Ti
tl
e*

S
ta

rt
 T

im
e*

En
d

Ti
m

e*
D

es
cr

ip
ti
on

D
ay

D
at

e*

Tr
ac

k

Ti
tl
e*

To
pi

c
D

es
cr

ip
ti
on

sp
on

so
re
dB

y

S
po

ns
or

N
am

e*
S
po

ns
or

sh
ip

 L
ev

el
*

Lo
go

W
eb

 S
it
e

U
R
L

Pe
rs

on

S
ur

na
m

e(
s)

*
Fo

re
na

m
e(

s)
S
tr

ee
t*

C
it
y*

C
ou

nt
ry

*
Jo

b
Ti

tl
e

A
ff

ili
at

io
n

B
io

gr
ap

hy
Pi

ct
ur

e
Em

ai
l A

dd
re

ss
Ph

on
e

N
um

be
r

S
oc

ia
l H

an
dl

e
W

eb
 S

it
e

U
R
L

R
ol

e

Ti
tl
e*

Le

g
e
n

d

O

ne

Z
er

o
or

 o
ne

M

an
y

O

ne
 o

r
m

an
y

Z
er

o
or

 m
an

y

Figure A.2: The final version (v1.0) of a content model for a small conference. [Diagram drawn by Yannik
Rauter.]

56 A Full Page Figures

Bibliography

Andrews, Keith [2021]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria, 10 Nov 2021. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on pages ix, 21).

Andrews, Keith [2024]. Information Architecture and Web Usability: Course Notes. 22 Oct 2024. https:
//courses.isds.tugraz.at/iaweb/iaweb.pdf (cited on pages 3, 7).

Atherton, Mike and Carrie Hane [2017]. Designing Connected Content. New Riders, 15 Dec 2017. ISBN
0134763386 (cited on pages 1, 3–5, 7, 9–10, 22, 35).

Barker, Deane [2012]. What is a “Page-Based” CMS? 27 Aug 2012. https://deanebarker.net/tech/blo
g/what-is-page-based-cms/ (cited on page 10).

Barker, Deane [2016]. Web Content Management: Systems, Features, and Best Practices. O’Reilly, 26 Apr
2016. ISBN 1491908122 (cited on pages 1, 9–10).

Bleuzen, Johan [2023]. Jekyll turns 15 but for what Future? 22 Dec 2023. https://johanbleuzen.fr/blo
g/jekyll-turns-fifteen-but-for-what-future (cited on page 35).

Boiko, Bob [2004]. Content Management Bible. 2nd Edition. Wiley, 26 Nov 2004. ISBN 0764573713 (cited
on page 13).

Casey, Meghan [2023]. The Content Strategy Toolkit: Methods, Guidelines, and Templates for Getting
Content Right. 2nd Edition. New Riders, 01 Jun 2023. 336 pages. ISBN 0138059276 (cited on page 1).

Cockpit [2025]. Cockpit Headless Content Platform. Agentejo, 09 Jan 2025. https://getcockpit.com/
(cited on page 10).

Contentful [2024a]. API Basics | Contentful. 12 Dec 2024. https://contentful.com/developers/docs/co
ncepts/apis/ (cited on page 32).

Contentful [2024b]. Basics | FAQ | Contentful. 16 Dec 2024. https://contentful.com/faq/basics/#how-
to-add-titles-to-entries (cited on page 27).

Contentful [2024c]. Content that Takes you Everywhere | Contentful. 05 Dec 2024. https://contentful
.com/ (cited on pages 10, 25).

Contentful [2024d]. contentful-migration - Content Model Migration Tool. 06 Nov 2024. https://git
hub.com/contentful/contentful-migration?tab=readme-ov-file#transformentriesconfig (cited on
page 33).

Contentful [2024e]. Multiple Environments | Contentful. 13 Dec 2024. https://contentful.com/develop
ers/docs/concepts/multiple-environments/ (cited on page 25).

Contentful [2024f]. Spaces and Organizations | Contentful Help Center. 13 Dec 2024. https://contentf
ul.com/help/getting-started/spaces-and-organizations/ (cited on page 25).

57

https://ftp.isds.tugraz.at/pub/keith/thesis/
https://courses.isds.tugraz.at/iaweb/iaweb.pdf
https://courses.isds.tugraz.at/iaweb/iaweb.pdf
http://amazon.co.uk/dp/0134763386/
https://deanebarker.net/tech/blog/what-is-page-based-cms/
https://deanebarker.net/tech/blog/what-is-page-based-cms/
http://amazon.co.uk/dp/1491908122/
https://johanbleuzen.fr/blog/jekyll-turns-fifteen-but-for-what-future
https://johanbleuzen.fr/blog/jekyll-turns-fifteen-but-for-what-future
http://amazon.co.uk/dp/0764573713/
http://amazon.co.uk/dp/0138059276/
https://getcockpit.com/
https://contentful.com/developers/docs/concepts/apis/
https://contentful.com/developers/docs/concepts/apis/
https://contentful.com/faq/basics/#how-to-add-titles-to-entries
https://contentful.com/faq/basics/#how-to-add-titles-to-entries
https://contentful.com/
https://contentful.com/
https://github.com/contentful/contentful-migration?tab=readme-ov-file#transformentriesconfig
https://github.com/contentful/contentful-migration?tab=readme-ov-file#transformentriesconfig
https://contentful.com/developers/docs/concepts/multiple-environments/
https://contentful.com/developers/docs/concepts/multiple-environments/
https://contentful.com/help/getting-started/spaces-and-organizations/
https://contentful.com/help/getting-started/spaces-and-organizations/

58 Bibliography

Contentful [2024g]. Usage Limits | Contentful Help Center. 16 Dec 2024. https://contentful.com/help
/admin/usage/usage-limit/ (cited on pages 33, 49).

Das, Abir [2025]. How to Create a Custom Frontend with a Headless CMS. PixelFree Studio, 10 Jan
2025. https://blog.pixelfreestudio.com/how-to-create-a-custom-frontend-with-a-headless-cms/
(cited on page 7).

Dhillon, Vikram [2016]. Static Site Generators. In: Creating Blogs with Jekyll. Edited by Vikram Dhillon.
Apress, 11 Jun 2016. Chapter 3, pages 21–33. ISBN 148421465X. doi:10.1007/978-1-4842-1464-0_3 (cited
on page 13).

Drupal [2024]. Drupal. 17 Dec 2024. https://drupal.org/ (cited on page 10).

DuCharme, Bob [2013]. Learning SPARQL: Querying and Updating with SPARQL 1.1. 2nd Edition.
O’Reilly, 13 Aug 2013. ISBN 1449371434 (cited on page 3).

Go [2025]. The Go Programming Language. 20 Jan 2025. https://go.dev/ (cited on page 35).

Gulp [2024]. Gulp. 03 Dec 2024. https://gulpjs.com/ (cited on page 38).

Howey, Eric [2023]. What is a Decoupled CMS? Sanity, 19 Jun 2023. https://sanity.io/headless-cms
/decoupled-cms (cited on page 9).

Hugo [2025a]. Configure Hugo | Hugo. 11 Jan 2025. https://gohugo.io/getting-started/configuration/
(cited on page 36).

Hugo [2025b]. Directory Structure | Hugo. 10 Jan 2025. https://gohugo.io/getting-started/directory
-structure/ (cited on page 36).

Hugo [2025c]. Front Matter | Hugo. 11 Jan 2025. https://gohugo.io/content-management/front-matter/
(cited on page 38).

Hugo [2025d]. Introduction to Templating | Hugo. 12 Jan 2025. https://gohugo.io/templates/introduct
ion/#whitespace (cited on page 47).

Hugo [2025e]. Template Lookup Order | Hugo. 11 Jan 2025. https://gohugo.io/templates/lookup-order/
(cited on page 38).

Hugo [2025f]. Template Types | Hugo. 10 Jan 2025. https://gohugo.io/templates/types/ (cited on
page 38).

Hugo [2025g]. The World’s Fastest Framework for Building Websites | Hugo. 09 Jan 2025. https://gohu
go.io/ (cited on pages 13, 35).

IONOS [2023]. What does WYSIWYG mean? 01 Mar 2023. https://ionos.com/digitalguide/websites/w
ebsite-creation/what-does-wysiwyg-mean/ (cited on page 9).

Jekyll [2024]. Jekyll; Simple, Blog-Aware, Static Sites. 14 Dec 2024. https://jekyllrb.com/ (cited on
pages 13, 35, 49).

JvM [2025a]. contentful-ssg - Contentful Export for Static Site Generators. Jung von Matt, 10 Jan 2025.
https://github.com/jungvonmatt/contentful-ssg (cited on page 37).

JvM [2025b]. cssg-plugin-assets. Jung von Matt, 10 Jan 2025. https://github.com/jungvonmatt/content
ful-ssg/tree/main/packages/cssg-plugin-assets (cited on page 37).

JvM [2025c]. Readme - contentful-ssg. Jung von Matt, 11 Jan 2025. https://github.com/jungvonmatt/co
ntentful-ssg/tree/main/packages/contentful-ssg#readme (cited on page 37).

Kissane, Erin [2011]. The Elements of Content Strategy. A Book Apart, 08 Mar 2011. ISBN 0984442553.
https://elements-of-content-strategy.abookapart.com/ (cited on page 1).

https://contentful.com/help/admin/usage/usage-limit/
https://contentful.com/help/admin/usage/usage-limit/
https://blog.pixelfreestudio.com/how-to-create-a-custom-frontend-with-a-headless-cms/
http://amazon.co.uk/dp/148421465X/
https://doi.org/10.1007/978-1-4842-1464-0_3
https://drupal.org/
http://amazon.co.uk/dp/1449371434/
https://go.dev/
https://gulpjs.com/
https://sanity.io/headless-cms/decoupled-cms
https://sanity.io/headless-cms/decoupled-cms
https://gohugo.io/getting-started/configuration/
https://gohugo.io/getting-started/directory-structure/
https://gohugo.io/getting-started/directory-structure/
https://gohugo.io/content-management/front-matter/
https://gohugo.io/templates/introduction/#whitespace
https://gohugo.io/templates/introduction/#whitespace
https://gohugo.io/templates/lookup-order/
https://gohugo.io/templates/types/
https://gohugo.io/
https://gohugo.io/
https://ionos.com/digitalguide/websites/website-creation/what-does-wysiwyg-mean/
https://ionos.com/digitalguide/websites/website-creation/what-does-wysiwyg-mean/
https://jekyllrb.com/
https://github.com/jungvonmatt/contentful-ssg
https://github.com/jungvonmatt/contentful-ssg/tree/main/packages/cssg-plugin-assets
https://github.com/jungvonmatt/contentful-ssg/tree/main/packages/cssg-plugin-assets
https://github.com/jungvonmatt/contentful-ssg/tree/main/packages/contentful-ssg#readme
https://github.com/jungvonmatt/contentful-ssg/tree/main/packages/contentful-ssg#readme
http://amazon.co.uk/dp/0984442553/
https://elements-of-content-strategy.abookapart.com/

59

Leatherman, Zach [2025]. Eleventy - A Simpler Site Generator. 09 Jan 2025. https://github.com/11ty/e
leventy/ (cited on pages 13, 35).

Long, James [2025]. Nunjucks - A Powerful Templating Engine with Inheritance, Asynchronous Control,
and More. 09 Jan 2025. https://github.com/mozilla/nunjucks (cited on page 13).

Luetke, Tobias [2025]. Liquid Template Engine - Liquid Markup Language. Safe, Customer Facing
Template Language for Flexible Web Apps. 09 Jan 2025. https://github.com/Shopify/liquid (cited on
pages 13, 35).

MDN [2024a]. Subgrid - CSS: Cascading Style Sheets | MDN. MDN Web Docs, 12 Nov 2024. https://d
eveloper.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout/Subgrid (cited on page 44).

MDN [2024b]. What is the Difference between Web Page, Website, Web Server, and Search Engine?
MDN Web Docs, 21 Nov 2024. https://developer.mozilla.org/en-US/docs/Learn/Common_questions
/Web_mechanics/Pages_sites_servers_and_search_engines (cited on page 13).

Millett, Scott and Nick Tune [2015]. Patterns, Principles, and Practices of Domain-Driven Design. Wrox,
04 May 2015. ISBN 1491908122 (cited on pages 1, 3).

Naik, Umesha and D. Shivalingaiah [2009]. Open Source Software for Content Management System.
Proc. 7th International Convention on Automation of Libraries in Education and Research (CALIBER
2009) (Ahmedabad, Gujarat, India). INFLIBNET Centre, 25 Feb 2009. https://web.archive.org/web
/20091217142415/https://www.inflibnet.ac.in/caliber2009/CaliberPDF/29.pdf (cited on pages 1, 9).

Netlify [2024a]. Headless CMS - Top Content Management Systems | Jamstack. 12 Dec 2024. https://j
amstack.org/headless-cms/ (cited on page 25).

Netlify [2024b]. Static Site Generators - Top Open Source SSGs | Jamstack. 17 Dec 2024. https://jamst
ack.org/generators/ (cited on page 35).

Oliver, Silver [2024]. Using Domain-Driven Design and Conceptual Modelling to Support Knowledge
Graph Development. Data Language, 27 Jun 2024. https://datalanguage.com/blog/using-domain-dri
ven-design-to-development-knowedge-graphs (cited on page 3).

Optimizely [2024]. Episerver. 17 Dec 2024. https://optimizely.com/episerver/ (cited on page 10).

Petersen, Hillar [2016]. From Static and Dynamic Websites to Static Site Generators. Bachelor’s Thesis.
University of Tartu, Estonia, 12 Aug 2016. 32 pages. https://core.ac.uk/download/pdf/83597655.pdf
(cited on pages 1, 13–14).

Porcello, Eve and Alex Banks [2018]. Learning Graphql: Declarative Data Fetching for Modern Web
Apps. O’Reilly, 02 Oct 2018. ISBN 1492030716 (cited on page 3).

Pug [2025]. Pug - Robust, Elegant, Feature Rich Template Engine for Node.js. 09 Jan 2025. https://git
hub.com/pugjs/pug (cited on page 13).

Rauter, Yannik [2025]. DCC Contentful Hugo. 24 Jan 2025. https://github.com/yannikrauter/dcc-cont
entful-hugo (cited on pages 2, 51).

Rosenfeld, Louis, Peter Morville, and Jorge Arango [2015]. Information Architecture: For the Web and
Beyond. 4th Edition. O’Reilly, 11 Oct 2015. 488 pages. ISBN 1491911689 (cited on page 1).

Sanity [2025]. The Composable Content Cloud | Sanity.io. 09 Jan 2025. https://sanity.io/ (cited on
page 10).

Singh, Aniket, Anita Chaudhary, and Kirti Chaudhary [2023]. Content Management System. Global
Journal of Enterprise Information System 15.1 (31 Mar 2023), pages 87–92. ISSN 0975-153X. https://g
jeis.com/index.php/GJEIS/article/view/713/653 (cited on pages 9–10, 25).

https://github.com/11ty/eleventy/
https://github.com/11ty/eleventy/
https://github.com/mozilla/nunjucks
https://github.com/Shopify/liquid
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout/Subgrid
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout/Subgrid
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/Pages_sites_servers_and_search_engines
https://developer.mozilla.org/en-US/docs/Learn/Common_questions/Web_mechanics/Pages_sites_servers_and_search_engines
http://amazon.co.uk/dp/1491908122/
https://web.archive.org/web/20091217142415/https://www.inflibnet.ac.in/caliber2009/CaliberPDF/29.pdf
https://web.archive.org/web/20091217142415/https://www.inflibnet.ac.in/caliber2009/CaliberPDF/29.pdf
https://jamstack.org/headless-cms/
https://jamstack.org/headless-cms/
https://jamstack.org/generators/
https://jamstack.org/generators/
https://datalanguage.com/blog/using-domain-driven-design-to-development-knowedge-graphs
https://datalanguage.com/blog/using-domain-driven-design-to-development-knowedge-graphs
https://optimizely.com/episerver/
https://core.ac.uk/download/pdf/83597655.pdf
http://amazon.co.uk/dp/1492030716/
https://github.com/pugjs/pug
https://github.com/pugjs/pug
https://github.com/yannikrauter/dcc-contentful-hugo
https://github.com/yannikrauter/dcc-contentful-hugo
http://amazon.co.uk/dp/1491911689/
https://sanity.io/
http://worldcatlibraries.org/wcpa/issn/0975-153X
https://gjeis.com/index.php/GJEIS/article/view/713/653
https://gjeis.com/index.php/GJEIS/article/view/713/653

60 Bibliography

Sosso, Joshua [2025]. contentful-hugo. 10 Jan 2025. https://github.com/modiimedia/contentful-hugo
(cited on page 37).

Spencer, Donna [2014]. A Practical Guide to Information Architecture. 2nd Edition. ebook. UX Mastery,
2014. ISBN 0992538025. https://uxmastery.com/practical-ia/ (cited on page 1).

Storyblok [2025]. Storyblok - Headless CMS with Visual Editor. 09 Jan 2025. https://storyblok.com
(cited on page 10).

Strapi [2024]. Strapi - Open Source Node.js Headless CMS. 05 Dec 2024. https://strapi.io/ (cited on
pages 10, 25, 49).

Van Lierde, Kevin [2025]. Metalsmith - An Extremely Simple, Pluggable Static Site Generator for NodeJS.
09 Jan 2025. https://metalsmith.io/ (cited on pages 13, 35, 49).

Vepsäläinen, Juho and Petri Vuorimaa [2022]. Bridging Static Site Generation with the Dynamic Web.
Proc. 22nd International Conference on Web Engineering (ICWE 2022) (Bari, Apulia, Italy). Springer,
01 Jul 2022, pages 437–442. ISBN 3031099168. doi:10.1007/978-3-031-09917-5_32 (cited on page 15).

Yankulov, Milen [2024]. What Are Linked Data and Linked Open Data? Ontotext, 15 Dec 2024. https:
//ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/ (cited on page 3).

Yermolenko, Andrei and Yuriy Golchevskiy [2021]. Developing Web Content Management Systems - from
the Past to the Future. Proc. 1st International Conference on Economics, Management and Technologies
(ICEMT 2021) (Yalta, Crimea, Ukraine). SHS Web of Conferences, 11 Jun 2021. doi:10.1051/shsconf/2
02111005007 (cited on page 9).

https://github.com/modiimedia/contentful-hugo
http://amazon.co.uk/dp/0992538025/
https://uxmastery.com/practical-ia/
https://storyblok.com
https://strapi.io/
https://metalsmith.io/
http://amazon.co.uk/dp/3031099168/
https://doi.org/10.1007/978-3-031-09917-5_32
https://ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
https://ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
https://doi.org/10.1051/shsconf/202111005007
https://doi.org/10.1051/shsconf/202111005007

	Contents
	List of Figures
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Designing Connected Content
	2.1 Process Overview
	2.2 User Research
	2.3 Domain Modelling
	2.4 Content Modelling
	2.5 Implementing the Content Store
	2.6 Creating Content
	2.7 Presenting Content
	2.8 Discussion

	3 Content Management Systems
	3.1 Decoupled vs. Headless CMS
	3.2 The Content API
	3.3 Entity-Based vs. Page-Based CMS
	3.4 Hosted vs. Self-Hosted CMS
	3.5 Discussion

	4 Static Site Generators
	4.1 Static Sites vs. Dynamic Sites
	4.2 The Process of Generating Static Pages
	4.3 Discussion

	5 Conference Domain Model
	5.1 Design Choices
	5.2 Noteworthy Considerations
	5.3 Resulting Model

	6 Conference Content Model
	6.1 Design Choices
	6.2 Noteworthy Considerations
	6.3 The Person – Role – Session Relationship
	6.4 Resulting Model

	7 Backend: Contentful (Headless CMS)
	7.1 Choosing a Content Management System
	7.2 Setting Up Contentful
	7.3 Implementing the Content Model in Contentful
	7.4 Creating Content for a Conference Web Site
	7.5 Content API in Contentful
	7.6 Limitations of Contentful

	8 Frontend: Hugo (SSG)
	8.1 Choosing a Static Site Generator
	8.2 Setting up Hugo
	8.3 Configuring Hugo
	8.4 Fetching Content for Hugo
	8.5 Templates in Hugo
	8.6 Modelling a Conference Web Site in Hugo
	8.7 Conference Programme Using CSS Subgrid
	8.8 Limitations of Hugo

	9 Outlook and Future Work
	10 Concluding Remarks
	A Full Page Figures
	Bibliography

