
RespVis:
A Browser-Based, D3 Extension Library

for Creating Responsive SVG Charts

Peter Oberrauner





RespVis:
A Browser-Based, D3 Extension Library

for Creating Responsive SVG Charts

Peter Oberrauner B.Sc.

Master’s Thesis

to achieve the university degree of

Master of Science

Master’s Degree Programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Villach, 12 May 2022

© Copyright 2022 by Peter Oberrauner, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/




RespVis:
Eine Browser-Basierte, D3 Erweiterungsbibliothek
zur Erstellung von Responsiven SVG Diagrammen

Peter Oberrauner B.Sc.

Masterarbeit

für den akademischen Grad

Diplom-Ingenieur

Masterstudium: Software Engineering and Management

an der

Technischen Universität Graz

Begutachter

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Villach, 12 May 2022

Diese Arbeit ist in englischer Sprache verfasst.

© Copyright 2022 von Peter Oberrauner, sofern nicht anders gekennzeichnet.

Diese Arbeit steht unter der Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz.

https://creativecommons.org/licenses/by/4.0/




Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared
sources / resources, and that I have explicitly indicated all material which has been quoted either literally
or by content from the sources used. The document uploaded to TUGRAZonline is identical to the present
thesis.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebe-
nen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen
Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Dokument ist mit der
vorliegenden Arbeit identisch.

Date/Datum Signature/Unterschrift





Abstract

RespVis is an open-source, browser-based library for rendering responsive information visualizations
and charts as composite SVG documents, whose elements are styled and positioned via CSS. It is
implemented as a NodeJS package in TypeScript and is designed as an extension of D3, thus offering
the flexibility of D3’s convenient document manipulation API to its users. Visualization authors can use
CSS media queries in combination with Flexbox and Grid to position chart components (such as title,
axes, legend, and the chart itself) responsively. The main contribution of RespVis is its custom layouter,
which enables the various components of a chart to be positioned via any browser-supported CSS layout
mechanism.

RespVis consists of various packages containing modules to render lower-level visualization compo-
nents like axes, legends, and series of graphical primitives and higher-level premade visualizations for
common chart types like bar charts, line charts, and point charts (scatterplots). The modules provided by
RespVis can be used to create responsive visualizations by either composing them from the lower-level
components or by responsively changing the configurations of the premade, higher-level visualizations.





Kurzfassung

RespVis ist eine Open-Source, Browser-basierte Softwarebibliothek zur Erstellung von responsiven
Informationsvisualisierungen und Diagrammen als SVG Dokumente, deren Elemente über CSS gestylt
und positioniert werden. RespVis wurde als ein NodeJS-Paket in TypeScript implementiert und ist als eine
Erweiterung von D3 konzipiert, womit Nutzern die volle Flexibilität von D3’s komfortabler API zur Do-
kumentenmanipulation zur Verfügung gestellt wird. Visualisierungsautoren können CSS-Media-Queries
in Kombination mit Flexbox und Grid zur responsiven Positionierung von Diagrammkomponenten (wie
Titel, Achsen, Legende und des Diagramms selbst) nutzen. Der wesentlichste Beitrag von RespVis ist
der spezielle Layouter, der es ermöglicht, die verschiedenen Komponenten eines Diagramms über jeden
Browser-unterstützten CSS-Layout-Mechanismus zu positionieren.

RespVis besteht aus verschiedenen Paketen, welche Module zur Darstellung von grundlegenden Visua-
lisierungskomponenten wie Achsen, Legenden und Serien von grafischen Primitiven und vorgefertigten
vollständigen Visualisierungen für gängige Diagrammtypen wie Balkendiagramme, Liniendiagramme
und Punktdiagramme (Streudiagramme) beinhalten. Die von RespVis bereitgestellten Module können
verwendet werden, um responsive Visualisierungen zu erstellen, indem diese entweder aus grundlegen-
den Komponenten zusammengesetzt werden oder indem eine vorgefertigte vollständige Visualisierung
konfiguriert wird.





Contents

Contents iii

List of Figures vi

List of Tables vii

List of Listings ix

Acknowledgements xi

Credits xiii

1 Introduction 1

2 Web Technologies 3

2.1 HyperText Markup Language (HTML) . . . . . . . . . . . . . . . . . . . 3

2.2 Cascading Style Sheets (CSS) . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 CSS Box Model. . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 CSS Flexbox Layout . . . . . . . . . . . . . . . . . . . . . . 5

2.2.3 CSS Grid Layout . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 JavaScript (JS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 TypeScript (TS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Web Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Raster Images . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.2 Scalable Vector Graphics (SVG) . . . . . . . . . . . . . . . . . . 10

2.5.3 Canvas (2D) . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.4 Canvas (WebGL) . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Layout Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Browser Engines . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Yoga . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 FaberJS . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Responsive Web Design . . . . . . . . . . . . . . . . . . . . . . . . 14

i



3 Information Visualization 15
3.1 History of Information Visualization . . . . . . . . . . . . . . . . . . . 17
3.2 Information Visualization Libraries for the Web . . . . . . . . . . . . . . . 20

3.2.1 Data-Driven Documents (D3) . . . . . . . . . . . . . . . . . . . 20
3.2.2 Grammar-Based Visualization Libraries . . . . . . . . . . . . . . . 22
3.2.3 Template-Based Visualization Libraries . . . . . . . . . . . . . . . 26

4 Responsive Information Visualization 31
4.1 Responsive Visualization Patterns . . . . . . . . . . . . . . . . . . . . 32
4.2 Responsive Visualization Examples . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Bar Charts. . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Line Charts . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.3 Point Charts . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Parallel Coordinates . . . . . . . . . . . . . . . . . . . . . . 35

5 The RespVis Library 37
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Style and Layout via CSS . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Pure and Complete SVG Documents . . . . . . . . . . . . . . . . 38
5.1.3 Extend D3. . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Separate Data and Code . . . . . . . . . . . . . . . . . . . . . 38
5.1.5 Strong Static Type-Checking with TypeScript . . . . . . . . . . . . . 39
5.1.6 Layered Component Hierarchy . . . . . . . . . . . . . . . . . . 39

5.2 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 NodeJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Rollup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Gulp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 RespVis Packages and Modules 51
6.1 Core Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.1 Utility Modules . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.2 Layouter Module . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3 Axis Module . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.4 Chart Module . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.5 Chart Window Module . . . . . . . . . . . . . . . . . . . . . 61

6.2 Legend Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Tooltip Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Bar Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4.1 Single-Series Bar Modules . . . . . . . . . . . . . . . . . . . . 67
6.4.2 Grouped Bar Modules . . . . . . . . . . . . . . . . . . . . . 69
6.4.3 Stacked Bar Modules . . . . . . . . . . . . . . . . . . . . . . 71

ii



6.5 Line Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6 Point Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 RespVis Usage 77
7.1 Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Legends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Bar Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.4 Line Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5 Point Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Outlook and Future Work 91

9 Concluding Remarks 93

Bibliography 95

iii



iv



List of Figures

2.1 CSS Box Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Flexbox CSS justify-content Property. . . . . . . . . . . . . . . . . . . 6
2.3 Grid Layout Property Comparision . . . . . . . . . . . . . . . . . . . . . 7
2.4 Desktop Browser Market Share . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Raster Image Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 SVG Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Canvas With Responsive Circles . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Anscombe’s Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Line Chart by William Playfair from 1786 . . . . . . . . . . . . . . . . . . 18
3.3 Bar Chart by William Playfair from 1786 . . . . . . . . . . . . . . . . . . 18
3.4 Area Chart by William Playfair from 1786 . . . . . . . . . . . . . . . . . . 19
3.5 Polar Area Chart by Florence Nightingale from 1859 . . . . . . . . . . . . . . 19
3.6 High-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Responsive Bar Chart Example . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Responsive Line Chart Example . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Responsive Point Chart Example. . . . . . . . . . . . . . . . . . . . . . 35
4.4 Responsive Parallel Coordinates Chart Example . . . . . . . . . . . . . . . . 36

5.1 Component Layers of RespVis . . . . . . . . . . . . . . . . . . . . . . 39
5.2 RespVis Directory Structure . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Packages of RespVis . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Render Process When Using the Layouter . . . . . . . . . . . . . . . . . . 57
6.3 Replication of an SVG Document via Layouter . . . . . . . . . . . . . . . . 58
6.4 Axes Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.5 Cartesian Chart Example . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6 Chart Window Example . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7 Legend Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.8 Tooltip Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.9 Bar Chart Window Example . . . . . . . . . . . . . . . . . . . . . . . 69
6.10 Grouped Bar Chart Window Example . . . . . . . . . . . . . . . . . . . . 71

v



6.11 Stacked Bar Chart Window Example . . . . . . . . . . . . . . . . . . . . 73
6.12 Line Chart Window Example . . . . . . . . . . . . . . . . . . . . . . . 75
6.13 Point Chart Window Example. . . . . . . . . . . . . . . . . . . . . . . 76

7.1 News Article with Embedded RespVis Chart . . . . . . . . . . . . . . . . . 78
7.2 Responsive RespVis Grouped Bar Chart . . . . . . . . . . . . . . . . . . . 83
7.3 Responsive RespVis Line Chart . . . . . . . . . . . . . . . . . . . . . . 86
7.4 Responsive RespVis Point Chart . . . . . . . . . . . . . . . . . . . . . . 89

vi



List of Tables

2.1 CSS Selector Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 TypeScript Type System Design Properties . . . . . . . . . . . . . . . . . . 10

3.1 Anscombe’s Quartet in Tabular Form . . . . . . . . . . . . . . . . . . . . 16
3.2 Categories of Interaction Based on User Intent. . . . . . . . . . . . . . . . . 17
3.3 Compared Template-Based Information Visualization Libraries . . . . . . . . . . 27

4.1 Targets of Responsive Visualization Patterns . . . . . . . . . . . . . . . . . 32
4.2 Actions of Responsive Visualization Patterns . . . . . . . . . . . . . . . . . 33

vii



viii



List of Listings

2.1 SVG Document Containing a Circle . . . . . . . . . . . . . . . . . . . . 11
2.2 Canvas With Responsive Circles . . . . . . . . . . . . . . . . . . . . . . 12

3.1 D3 Method Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 D3 General Update Pattern . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Static Bar Chart in Vega . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Bar Chart with Tooltip in Vega . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Bar Chart with Tooltip in Vega-Lite . . . . . . . . . . . . . . . . . . . . 26
3.6 Bar Chart in Highcharts . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7 Bar Chart in D3FC. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.8 Responsive Rules in Highcharts . . . . . . . . . . . . . . . . . . . . . . 30

5.1 RespVis package.json File . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 IIFE Module Format . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Gulp Task to Bundle RespVis . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Tasks Defined in gulpfile.js . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Code of Legend Example . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Code of Bar Chart Window Example . . . . . . . . . . . . . . . . . . . . 68
6.3 Code of Grouped Bar Chart Window Example. . . . . . . . . . . . . . . . . 70
6.4 Code of Stacked Bar Chart Window Example . . . . . . . . . . . . . . . . . 72
6.5 Code of Line Chart Window Example . . . . . . . . . . . . . . . . . . . . 74
6.6 Code of Point Chart Window Example . . . . . . . . . . . . . . . . . . . 76

7.1 Structure of Examples . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2 Implementation of a Responsive RespVis Grouped Bar Chart . . . . . . . . . . . 82
7.3 Implementation of a Responsive RespVis Line Chart . . . . . . . . . . . . . . 85
7.4 Implementation of Responsive RespVis Point Charts . . . . . . . . . . . . . . 88

ix



x



Acknowledgements

I could never have written this thesis without the support of many people. A huge thank you goes to
my supervisor, Prof. Keith Andrews, who offered guidance and helped me revise this work to a level of
quality far beyond what I could have achieved without him. Thanks to the Austrian Study Grant Authority
for granting me the scholarship that funded a large amount of the work put into this thesis and bringing
up the leniency when I needed an extension of my deadline. I am also deeply indebted to my colleagues
and friends at Dynatrace for pushing me forward and giving me the extra hours I needed to finish this
work, even though I know it caused them inconvenience.

Lastly, words can not express how thankful I am for the support and understanding my friends and
family have shown me over my years of work on this. Their contribution might be the least visible to
readers of this thesis, but it was, without a doubt, the most valuable.

Peter Oberrauner
Villach, Austria, 12 May 2022

xi



xii



Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2019].

• Figure 2.4 has been taken from StatCounter [2021] and is used under the terms of the Creative
Commons Attribution-Share Alike 3.0 Unported License.

• Figure 3.1 is used with kind permission of Keith Andrews.

• Figure 3.2 has been taken from University of Pennsylvania [2022] and is used under the terms of the
Creative Commons CC BY 2.5 License.

• Figure 3.3 has been taken from University of Pennsylvania [2022] and is used under the terms of the
Creative Commons CC BY 2.5 License.

• Figure 3.4 has been taken from University of Pennsylvania [2022] and is used under the terms of the
Creative Commons CC BY 2.5 License.

• Figure 3.5 has been taken from Harvard Library [2022] and is used under the terms of the Creative
Commons Attribution 4.0 License.

• Figure 4.1 is used with kind permission of Keith Andrews.

• Figure 4.2 is used with kind permission of Keith Andrews.

• Figure 4.4 is used with kind permission of Keith Andrews.

xiii



xiv



Chapter 1

Introduction

The web is an indispensable part of modern society, and with the ever-growing amounts of available
data, visualizations which effectively communicate this data are an essential part of it. Motivated by the
increasing variety of devices used to access the web, responsive design has been established as one of the
core pillars of designing web content to ensure that it is easily accessible to consumers regardless of the
characteristics of their devices. Even though most web content is already designed responsively, charts
and visualizations are often only embedded in a static form, which does not adapt or only minimally adapts
to different device characteristics. The field of responsive visualization is still in its early stages, but some
research from various authors regarding scalable visualizations [Hinderman 2015; Körner 2016], design
patterns [Andrews 2016; Andrews 2018a; Andrews 2018b; Hoffswell et al. 2020; Kim et al. 2021a], and
tools [Hoffswell et al. 2020] has already been done and continues to emerge.

Many different software libraries to create visualizations for the web exist, but they all have their
shortcomings regarding usability, extensibility, and responsiveness. Regarding terminology, this thesis
distinguishes between two types of users of visualization libraries: visualization authors, who create
visualizations using a library, and visualization consumers, who view visualizations in their browsers.
One of the most popular libraries for creating visualizations is D3 [Bostock et al. 2011; Bostock 2021],
which provides a low-level API to transform HTML and SVG documents based on data. This document-
based approach is rather powerful, as it allows users to create whatever visualizations they wish, without
being hindered by the limitations of a custom renderer. However, building visualizations by manually
setting up their entire structure and behavior can be tedious and requires deep knowledge of JavaScript
programming, D3, and the underlying rendering standard SVG. Other visualization libraries like Vega
[IDL 2021] and its extensions such as Cicero [Kim et al. 2022], which extends Vega specifications with
responsive transformations, focus on a grammar-based approach to rendering visualizations. Visualization
grammars are very expressive and allow visualization authors to focus on a visualization’s high-level
specification, but they tend to be rather complex and are not always easy to understand. Furthermore,
since the actual rendering is abstracted away, visualization authors are limited to the capabilities offered
by a library’s high-level API, which can lead to restricted configurability. Yet other types of visualization
libraries use template-based configuration, meaning that visualization authors only need to provide data
in a predefined format and the library then renders predefined visualizations using this data. These
template-based visualization libraries are usually easy to use, but as with grammar-based libraries, it can
be hard to extend visualizations beyond the intended configurations.

This thesis presents RespVis, a new software library for creating presentational information visu-
alizations for the web with a strong emphasis on responsiveness. RespVis is an open-source library
[Oberrauner 2022a] written in TypeScript, which is designed as an extension of D3 and focuses on
rendering visualizations as composite SVG documents. RespVis uses CSS to style and position a visu-
alization’s content, its JavaScript API has intentionally been kept as minimal as possible. Visualization
authors can use CSS media queries in combination with Flexbox and Grid to position chart components

1



2 1 Introduction

(such as title, axes, legend, and the chart itself) responsively.

The main contribution of this work lies in a custom layouter which uses the browser’s own layout engine
to enable the positioning of SVG-based visualization components, which would otherwise be unaffected
by CSS layouting. Allowing visualization authors to configure the layout of visualization components
with CSS layouting mechanisms like Flexbox and Grid leads to better responsive capabilities than merely
allowing them to style components with CSS. Additionally, the use of CSS for styling and positioning
allows the application of other tools frequently used for responsive design like media queries, and it also
means that styles can easily be configured and overwritten via the CSS cascade. Since RespVis renders
and configures visualizations using standard web technologies like HTML, SVG, and CSS, visualization
authors can work with technologies all web developers are already familiar with and do not have to learn
a complex domain-specific language. Furthermore, the focus on standard web technologies means that
visualizations can easily be extended beyond foreseen use cases, and it is less likely that visualization
authors are limited by restrictions of the library’s API.

The first part of this thesis, in Chapters 2 to 4, offers a broad view of the technologies and related
work into which this work is embedded. Chapter 2 introduces the various web technologies upon which
RespVis is built, the different ways of embedding graphics into web pages, and the different layout engines
which were considered for laying out SVG chart elements. Chapter 3 gives an overview of the field of
information visualization and its history. Furthermore, some of the more popular software libraries
like D3, grammar-based libraries like Vega, and template-based libraries like Highcharts used to create
information visualizations for the web are examined and compared regarding their capabilities to make
visualizations responsive. Chapter 4 looks in more detail at the research around responsive visualizations.
Specifically, the topic of responsive patterns is introduced, and their application is demonstrated with
concrete examples from both academic and other sources.

The second part of this thesis, in Chapters 5 to 8, discusses the technical details of RespVis. Chapter 5
introduces the library, its design pillars, naming conventions, and project setup. Chapter 6 describes the
implementation of RespVis by examining the various packages and modules of the library. This chapter
also discusses the implementation and implications of the custom layouter which enables layout of the
elements of SVG-based visualizations using CSS layout mechanisms. Chapter 7 demonstrates the usage
of RespVis’ modules to create responsive visualizations and explains how different responsive patterns
can be implemented. Finally, Chapter 8 looks at potential future work to be done on the library.



Chapter 2

Web Technologies

RespVis is a web-based framework. As such, it builds on a stack of technologies which are native to
the web. The first sections in this chapter introduce the web’s core technologies: HTML for content,
CSS for presentation, and JavaScript (JS) for behavior. Next, TypeScript is introduced, and the different
technologies to embed graphics in web pages are discussed. Due to the importance of layouting in this
work, three different forms of layout engine are compared. Finally, the concept of responsive web design
is explained. Since there are many things to examine, none of the following sections goes into great
detail. The aim is to give a summary of the concepts, for more in-depth information, the works referenced
in the sections below should be consulted.

2.1 HyperText Markup Language (HTML)
HTML is a document markup language for documents which are to be displayed in web browsers. The
original proposal and implementation in 1989 came from Tim Berners-Lee, who was a contractor at
CERN at the time [Berners-Lee 1989]. Over the years, the standard was further developed by a range of
different entities like CERN and the Internet Engineering Task Force (IETF). Nowadays, HTML exists as
a continuously evolving living standard without specific version releases, which is maintained by the Web
Hypertext Application Technology Working Group (WHATWG) and the World Wide Web Consortium
(W3C) [Hickson et al. 2021].

The primary purpose of HTML is to define the content and structure of web pages. This is achieved
with the help of HTML elements, such as <section>, <h1>, <p>, and <img>, which are composed into a
hierarchical tree structure of modular content, and which is then interpreted by web browsers. A strong
pillar of HTML’s design is extensibility. There are multiple mechanisms in place to ensure its applicability
to a vast range of use cases, including:

• Specifying classes of elements using the class attribute. This effectively creates custom elements
based on the closest standard elements.

• Using data-* attributes to decorate elements with additional data, which can be used by scripts.
The HTML standard guarantees that these attributes are ignored by browsers.

• Embedding custom data using <script type=""> elements, which can be accessed by scripts.

2.2 Cascading Style Sheets (CSS)
Cascading Style Sheets (CSS) apply styling to HTML elements, effectively separating presentation from
content. In earlier versions of HTML [Raggett 1997], elements like <strong> and <em> muddied the
boundary between presentation and content. A CSS style sheet can either be embedded directly in

3



4 2 Web Technologies

Pattern Matches

* Any element.
E Elements of type E.
E F Any element of type F which is a descendant of elements of type E.
E > F Any element of type F which is a direct descendant of elements of type E.
E + F Any element of type F which is a directly preceded by a sibling element of type E.
E:P Elements of type E which also have the pseudo class P.
.C Elements which have the class C.
#I Elements which have the ID I.
[A] Elements which have an attribute A.
[A=V] Elements which have an attribute A with a value of V.
S1, S2 Elements which match either the selector S1 or the selector S2.

Table 2.1: A summary of the CSS Selectors Level 3 syntax. [Table created by the author of this thesis with
data from [Çelik et al. 2018].]

HTML documents using a <style> element or can be defined externally and linked to using a <link>
element. This characteristic of being able to externally describe the presentation of documents brings
great flexibility because multiple documents with different content can reuse the same presentation by
linking to the same CSS file. Conversely, alternative style sheets can be applied to the same HTML
content to achieve a different styling.

CSS was initially proposed by Lie [1994] and standardized into CSS1 by the W3C in 1996 [Lie and Bos
1996]. Throughout its history, the adoption of CSS by browser vendors was fraught with complications
and even though most major browsers soon supported almost the full CSS standard, their implementations
sometimes behaved differently. This meant that authors of web pages often had to resort to workarounds,
including providing different style sheets for different browsers. In recent years, CSS specifications have
become much more detailed [Bos et al. 2011] and browser implementations have become more stable
with fewer inconsistencies. It has therefore become much rarer that browser-specific workarounds need
to be applied, dramatically improving the developer experience. CSS 2.1 [Bos et al. 2011] was the last
CSS standard published as a single, monolithic specification. Since then, the specification has been
modularized into different documents [Atkins, Etemad, and Rivoal 2020], each describing a specific
module of the overall CSS specification.

A CSS style sheet contains a collection of rules. Each rule consists of a selector and a block of style
declarations. Selectors are defined in a custom syntax and are used to match HTML elements. All
elements which are matched by the selector of a rule will have the rule’s style declarations applied to
them. The selector syntax is fairly straightforward when selecting elements of a certain type, but also has
more sophisticated mechanisms for selecting elements based on their contexts or attributes. Table 2.1
summarizes the selector syntax of CSS Selectors Level 3 [Çelik et al. 2018].

Another important characteristic of CSS is the cascading of styles. The exact rules for calculating
the final style to be applied to an element are quite involved, and Etemad and Atkins [2021] should be
consulted for a detailed description. The most important aspect in the context of this work is that styles
can be overwritten. When multiple rules match an element and define different values for the same
property, the values of the rule with higher specificity will be applied. If multiple rules have the same
specificity, the one defined last in the document tree will overwrite all previous ones.

Sizes of CSS properties can be expressed in many different units. Absolute units like px (pixels), cm
(centimeters), and mm (millimeters) can be used to express fixed sizes and properties declared in such



Cascading Style Sheets (CSS) 5

Figure 2.1: The CSS box model defines the properties of boxes which wrap around HTML elements.
[Image drawn by the author of this thesis.]

units will result in these exact sizes in the resulting output. Relative units like em (relative to font size),
rem (relative to root font size), % (relative to parent), vw (relative to the viewport width), and vh (relative
to the viewport height) are relative to some other property. In general, relative units are better suited for
sizing properties on screens because screen sizes can vary greatly and absolute units are better suited for
sizing properties on output media whose sizes are more fixed, such as print. CSS properties which affect
the layout of elements are typically specified in rem units.

2.2.1 CSS Box Model

All elements in an HTML document are laid out as boxes. The CSS box model specifies how every
element is wrapped in a rectangular box. Every box is described by its content and optional surrounding
padding, border, and margin areas. The padding provides invisible spacing between the content and
the border. The border provides a visible frame around the content of a box. Margins are used to
specify invisible spacing outside of the border. A visual representation of these properties can be seen in
Figure 2.1.

In early versions of CSS, before the introduction of the Flexible Box (Flexbox) layout module [Deakin
et al. 2009], the box model was the only way to lay out elements. Style sheet authors had to meticulously
define margins of elements and their relative (or absolute) positions in the document tree. The responsive
capabilities of this kind of layouting were very limited, because different configurations for varying
screen sizes had to be specified manually using media queries. More complex features, like the filling of
available space, required manual implementation via scripting.

2.2.2 CSS Flexbox Layout

CSS Flexible Box layout (Flexbox) [Atkins et al. 2018] is a mechanism for one-dimensional layout of
elements in either rows or columns. This one-dimensionality is what separates it from grid-based layout,
which is inherently two-dimensional. Even though the first draft of the Flexbox layout module was
already published in 2009 [Deakin et al. 2009], implementations by browser vendors have been a slow
and bug-ridden process [Deveria 2021a], which held back adoption by users for several years after its
inception. More recently though, partly through the deprecation of Internet Explorer [Microsoft 2020],
all major browsers have mature implementations of current Flexbox standards [Atkins et al. 2018], and,
in most cases, fallback styling is no longer necessary.

Flexbox layouting is enabled for child elements by setting the CSS display property to flex on a
container element. The direction of the layout can then be specified using the CSS flex-direction



6 2 Web Technologies

Figure 2.2: The CSS justify-content property is used to distribute items along the main axis of
a Flexbox container. [Image created by the author of this thesis.]

property which can be set to either row or column. The items inside a Flexbox container can have either a
fixed or a relative size. When items should be sized relative to the size of their containers, the proportions
of how the available space should be divided can be controlled using ratios. These ratios can be set on
item elements via the CSS flex property.

Another important feature of Flexbox layout is the controllable spacing of items, which can be specified
separately for both the main axis and the cross axis of the layout. Spacing along the main axis can be
configured with the CSS justify-content property, which can take a number of different values and is
illustrated in Figure 2.2. Alignment of items on the cross axis is achieved either by the CSS align-items
property on the container element or the CSS align-self property on the items themselves.

This section only grazed the surface of what is possible with the Flexbox layout module. There are
many more useful CSS properties like flex-grow, flex-shrink, and flex-wrap. For a more detailed
look at this topic, it is recommended to review the specification [Atkins et al. 2018] and read the excellent
tutorial by Chris Coyier [Coyier 2021].

2.2.3 CSS Grid Layout

The CSS Grid Layout Module [Atkins, Etemad, Atanassov, and Brufau 2020] defines the layout of
elements in a two-dimensional grid. The initial proposal of the CSS Grid layout module was published
in 2011 [Mogilevsky et al. 2011] and has been further refined over the years. At the time of writing,
even though it still exists as merely a candidate recommendation for standardization [Atkins, Etemad,
Atanassov, and Brufau 2020], many browsers have already adopted it. Similar to the adoption of Flexbox,
the history of browser adoption of CSS Grid was initially strewn with inconsistencies and bugs. However,
in 2017 the major browsers Chrome, Firefox, Safari, and Edge removed the need for vendor prefixes and
implementations are now considered stable [Deveria 2021b].

Grid layout of elements is enabled by setting the CSS display property to grid on their container.
The grid in which items shall be laid out is then defined using the CSS grid-template-rows and grid-
template-columns properties. In addition, the CSS grid-template property can be used as a shorthand
to simultaneously specify both the rows and columns of a grid. Item elements need to specify the cell
of the grid into which they shall be positioned. This is done with the CSS grid-row and grid-column
properties, which take the corresponding row and column indices as values. Items can also be configured
to span multiple cells by specifying index ranges as the values of those properties.

Every cell in a grid can also be assigned a specific name via the CSS grid-template-areas property on
the grid container element. The items within the grid can then position themselves in specifically named
grid cells using the CSS grid-area property instead of directly setting the row and column indices. The



JavaScript (JS) 7

Figure 2.3: The *-items properties are used to lay out items within their grid cells, whereas the
*-content properties are used to lay out the grid cells themselves. [Image created by the author of this
thesis.]

benefit of positioning items this way is that the structure of the grid can be freely changed without having
to respecify the cells in which items belong. As long as the new layout still specifies the same names of
cells somewhere in the grid, the items will be automatically placed at their new positions.

There are also properties which control the layout of items within grid cells and the layout of grid cells
themselves. Similar to Flexbox, this can be configured with the CSS align-items and justify-items
properties for laying out within grid cells, and the CSS align-content and justify-content properties
for laying out the grid cells themselves. The latter *-content properties only make sense when the cells
do not cover the full area of the grid. For a visual comparison between the *-items and *-content
properties, see Figure 2.3.

There is some apparent overlap between the CSS Grid and Flexbox layout modules. At first sight, it
seems like Grid layout supersedes Flexbox layout, because everything which can be done using Flexbox
layout can also be done with Grid layout. While that is true, the inherent difference in dimensionality and
the resulting syntactic characteristics lead to better suitability of one technology over the other, depending
on the context of use. As a general rule [Rendle 2017], top-level layouts which require two-dimensional
positioning of elements are usually best implemented using a Grid layout, whereas low-level layouts
which merely need laying out on a one-dimensional axis are better implemented using a Flexbox layout.

For more details, the CSS Grid specification [Atkins, Etemad, Atanassov, and Brufau 2020] and other
sources like Meyer [2016] and House [2021] are recommended.

2.3 JavaScript (JS)
JavaScript was originally developed as a client-side scripting language run by an interpreter (engine)
inside the web browser. Nowadays, there are also standalone JavaScript engines and environments like
NodeJS [OpenJS 2021]. JavaScript is a multi-paradigm language which supports event-driven, as well



8 2 Web Technologies

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0%

14%

28%

42%

56%

70%

Chrome IE Firefox Safari Opera Other (dotted)

StatCounter Global Stats

Desktop Browser Market Share Worldwide from 2009 - 2021

Figure 2.4: Since their release, Firefox and Chrome have contested the monopoly of the Internet
Explorer and continuously gained more market share. Recently, Chrome seems to be gaining an
increasingly strong position within the market. [Image taken from StatCounter [2021] and used under the
terms of the Creative Commons Attribution-Share Alike 3.0 Unported License.]

as functional and imperative programming. Driven by the popularity of the web, JavaScript is currently
the most used programming language worldwide [Liu 2021].

JavaScript was initially created by Netscape in 1995 [Netscape 1995]. Before that, websites were
only able to display static content, which drastically limited the usefulness of the web. Microsoft
seemingly saw JavaScript as a potentially revolutionary development, because they reverse-engineered
Netscape’s implementation and published their own version of the language for Internet Explorer in
1996 [Microsoft 1996]. The two implementations were noticeably different from one another and the
uncontested monopoly of Internet Explorer [Routley 2020] held back standardization efforts undertaken
by Netscape [ECMA 1997]. When Firefox was released in 2004 [Mozilla 2004] and Chrome in 2008
[Google 2008], they quickly gained a considerable share of the market [StatCounter 2021], as shown
in Figure 2.4. Galvanized by this new market reality, all major browser vendors collaborated on the
standardization of JavaScript as ECMAScript 5 in 2009 [ECMA 2009]. Since then, JavaScript has been
continuously developed and its later versions ECMAScript 2015 to 2021 [ECMA 2015; ECMA 2016;
ECMA 2017; ECMA 2018; ECMA 2019; ECMA 2020; ECMA 2021] are widely supported.

RespVis is a browser-based library, designed to run within the JavaScript engine of a browser. It
builds heavily on widely supported Web APIs, which are JavaScript modules specifically meant for
development of web pages. These Web APIs are standardized by the W3C and each browser has to
individually implement them in their JavaScript engine.

The most popular Web API, which every web developer is familiar with, is the Document Object Model
(DOM). The DOM is the programming interface and data representation of a web page or document.
Internally, a document is modeled as a tree of objects, where each object corresponds to a specific HTML
or SVG element in the document hierarchy and its associated data and functions. In addition to the
querying of elements, the DOM also defines functionality to mutate them and their attributes, as well as
functionality for handling and dispatching events. It also exposes the mechanism of MutationObservers,
which are used to observe changes of attributes and children in the document tree. The initial specification
of the DOM was published in 1997 [Wood et al. 1997]. It is currently maintained as a living standard by
the WHATWG [Kesteren et al. 2021].



TypeScript (TS) 9

Another important Web API in the context of this work is the ResizeObserver API. It provides the
ability to observe an element’s size and respond to changes, which increases the responsive capabilities
of websites. Previously, scripts could only respond to changes in the overall viewport size via the resize
event on the window object, but this meant that changes of an individual element’s size through attribute
changes could not be detected. This limitation is fixed with the ResizeObserver API, which is already
fully supported by all modern browsers, even though it has so far only been published as an editor’s draft
[Totic and Whitworth 2020].

2.4 TypeScript (TS)
TypeScript (TS) is a strongly-typed programming language which is designed as an extension of
JavaScript. Syntactically, it is a superset of JavaScript which enables the annotation of properties,
variables, parameters, and return values with types. It requires a transpiler (compiler) to convert the
TypeScript code into valid JavaScript code for a specific ECMAScript version.

Initially, TypeScript was released by Microsoft in 2012 [Hoban 2012] to extend JavaScript with features
which were already present in more mature languages, and whose absence in JavaScript caused difficulties
when working on larger codebases. At the time of TypeScript’s initial development, it provided features
which would later be offered by ECMAScript 6, including a module system to be able to split source code
into reusable chunks and a class system to aid object-oriented development. TypeScript code using these
features could then be transpiled into standard-conformant JavaScript code, which could be interpreted
by JavaScript engines of the time. At the time of writing, ECMAScript 6 is widely supported by all
modern browsers and therefore the main benefit of TypeScript over JavaScript lies in its provision of a
static type system.

The extension of JavaScript with a static type system brings many benefits, including the improved
tooling which comes with type-annotated code. Tools such as linters [OpenJS 2022b] are able to point
out errors early in development and assist developers with automated fixes, improved code completion,
and code navigation. Additionally, studies like Gao et al. [2017] looked at software bugs in publicly
available codebases and found that 15% of them could have been prevented with static type checking.

The TypeScript type system was designed to support JavaScript constructs as completely as possible,
via structural types and unified object types. Another goal was to make the type annotation of JavaScript
code as effortless as possible to improve adoption by existing projects. This was done by consciously
allowing the type system to be statically unsound via gradual typing and also by employing type inference
to reduce the number of necessary annotations. The major properties of TypeScript’s type system design
are summarized in Table 2.2.



10 2 Web Technologies

Design Property Description

Full erasure Types are completely removed by the compiler, there is no type checking at
runtime.

Type inference Many types can be inferred from usage, minimizing the number of types which
have to be explicitly stated.

Gradual typing Type checking can be selectively prevented using the dynamic type any.
Structural types Types are defined via their structure as opposed to via their names. This better

fits JavaScript, where objects are usually custom-built and used based on their
shapes.

Unified object types A type can simultaneously describe objects, functions, and arrays. These con-
structs are common in JavaScript and thus TypeScript needs to support their
typing.

Table 2.2: A summary of the major design properties on which TypeScript’s type system is built.
[Table created by the author of this thesis with data from Bierman et al. [2014].]

2.5 Web Graphics
Graphics are used as a medium for visual expression to enhance the representation of information on the
web. There are many fields of application like the integration of maps, photographs, or charts in a web
page. Multiple complementary technologies exist for web graphics, each with particular strengths and
weaknesses depending on the use case. These technologies include pixel-based raster images, Scalable
Vector Graphics (SVG), and 2d and 3d graphics through the <canvas> element.

2.5.1 Raster Images

A raster image represents a graphic as a rectangular, two-dimensional grid of pixels with a fixed size
(resolution) in each dimension. Whenever a raster image is scaled up or down to a different size, visual
artifacts become very apparent, as can be seen in Figure 2.5. Raster images are either created by image
capturing devices or special editing software and saved as binary files in varying formats. The most
widely used formats for raster images are JPEG [JPEG 1994] and PNG (Portable Network Graphics)
[Boutell 2003]. JPEG has lossy compression, which achieves low file sizes whilst retaining reasonable
image quality, and is typically used for photographs. PNG has lossless compression, which compresses
well whilst preserving every original pixel as is, and also supports transparency. Both formats support
progressive rendering as an image is loaded.

Raster images are embedded into documents in binary format. This means that the contents of the
graphic are not accessible in a non-visual representation. To make the information accessible to visually
impaired people, an additional textual description of the graphic’s content must be provided via the alt
and longdesc attributes.

2.5.2 Scalable Vector Graphics (SVG)

Vector graphics describe an image in terms of objects and shapes, such as lines, circles, polygons, and
text. They can be scaled freely without loss of quality. Scalable Vector Graphics (SVG) is an XML-based
format for vector graphics. It was initially published by the W3C in 1999 [Ferraiolo 1999], SVG 1.1
[Dahlström et al. 2011] is the latest version that is widely supported by browsers, and support for SVG
2 [Bellamy-Royds et al. 2018] is currently on its way. Graphics in an SVG file can be specified in a
normalised coordinate space (inside a viewBox), enabling them to be freely scaled. Since SVG files are
XML, they can be created with any text editor, but numerous tools and editors such as Inkscape [Inkscape



Web Graphics 11

(a) Intended size. (b) Two and a half times intended size.

Figure 2.5: A raster image of a circle. Pixelation artifacts become very apparent when a raster image
is scaled to a different size. [Image created by the author of this thesis.]

1 <svg viewBox="0, 0, 64, 64" xmlns="http://www.w3.org/2000/svg">
2 <circle cx="32" cy="32" r="30" fill="#7c66ff" />
3 </svg>

Listing 2.1: A simple SVG document containing a <circle> element. The visual representation of
this document in different sizes is shown in Figure 2.6.

2022] and Illustrator [Adobe 2022] exist to create or export SVG. A simple example of an SVG document
containing a single circle can be seen in Listing 2.1, with its visualization shown in Figure 2.6.

The encoding in XML leads to SVG being the best format to represent graphics in terms of accessibility.
Graphics are directly saved in a hierarchical and textual form which describes their shapes and how they
are composed. In addition to the shapes being inherently accessible, the various elements of an SVG
document can be annotated with further information to aid comprehension when consumed in a non-visual
way.

SVG files are XML documents whose meta format is described in a special SVG namespace. Web
browsers support mixing of HTML and SVG elements in a web page, and the SVG elements can be
accessed by scripts via the DOM Web API just like HTML elements.

The most widely supported way of styling SVG elements is via attributes, which is supported by
every software dealing with SVG files. However, the specification aims for maximum compatibility with
HTML, and therefore it is also possible to use CSS to style and animate SVG elements when they are
rendered in a browser. Using CSS to separate presentation from content has many benefits, which were
already described in Section 2.2. Unfortunately, it is not possible to style every SVG attribute with CSS,
only so-called presentation attributes like fill and stroke-width are available through CSS. These
presentation attributes are listed in the SVG specification [Dahlström et al. 2011] and are extended by
additional attributes like x, y, width and height in SVG 2 [Bellamy-Royds et al. 2018].

2.5.3 Canvas (2D)

The <canvas> element was introduced in HTML5 [Hickson and Hyatt 2008] and is used to define a
two-dimensional, rectangular region in a document which can be drawn into by scripts. Even though
rendering of dynamic graphics as <canvas> elements is often faster than representing them as SVG



12 2 Web Technologies

(a) Intended size. (b) Two and a half times intended size.

Figure 2.6: SVG documents can be scaled freely without pixelation artifacts. Here, the SVG
document from Listing 2.1 is shown. [Image created by the author of this thesis.]

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
3 <body>
4 <canvas width="100" height="100"></canvas>
5 <canvas width="250" height="250"></canvas>
6 <script>
7 const canvases = Array.from(document.getElementsByTagName(’canvas ’));
8 canvases.forEach((canvas) => {
9 const width = canvas.clientWidth;

10 const height = canvas.clientHeight;
11 const context = canvas.getContext(’2d’);
12 context.fillStyle = ’#7c66ff’;
13 context.beginPath();
14 context.arc(width / 2, height / 2, width / 2, 0, Math.PI * 2);
15 context.fill();
16 context.closePath();
17 });
18 </script>
19 </body>
20 </html>

Listing 2.2: A basic HTML document containing two canvases of different sizes which render circles
relative to the canvas size. The visual representation of this document is shown in Figure 2.7.

documents, their use is explicitly discouraged by the WHATWG [Hickson et al. 2021] when another
suitable representation is possible. The reasons for this are that <canvas> elements are not compatible
with other web technologies like CSS or the DOM Web API and because the resulting rendering provides
only very limited possibilities for accessibility. The graphics are drawn via a low-level API provided
by the rendering context of a particular canvas. The two most significant rendering contexts are 2d and
webgl.

The 2d rendering context enables platform-independent 2d rendering via a software renderer, whose
API is standardized directly in the canvas specification [WHATWG 2021]. An example of an HTML
document containing two differently sized canvases into which responsive circles are drawn using a 2d
rendering context can be seen in Listing 2.2 with the corresponding visual output in Figure 2.7.



Layout Engines 13

(a) 100-pixel canvas. (b) 250-pixel canvas.

Figure 2.7: Responsive rendering of graphics inside <canvas> elements has to be implemented
manually by calculating everything relative to its dimensions. This figure shows the visual output
of the canvas example in Listing 2.2. [Image created by the author of this thesis.]

2.5.4 Canvas (WebGL)

The webgl rendering context enables 3d drawing through the WebGL version 1 API [Jackson and Gilbert
2014]. The webgl2 rendering context enables 3d drawing through the WebGL version 2 API [Jackson and
Gilbert 2017]. WebGL-based rendering is hardware-accelerated and often much faster than rendering
via a 2d canvas or SVG. It is also possible to render 2d graphics using a WebGL render context, but the
necessary setup and rendering API is rather complex.

2.6 Layout Engines
A layout engine is used to calculate the boundary coordinates of visual components based on input
components annotated with layout constraints. The layout constraints describe the size and position of
components and their relationships between each other in a syntax understood by the layout engine. For
browser-based layout engines, the input components are normally declared as HTML elements, which are
constrained using CSS. More low-level layout engines require custom formats, which usually involve a
hierarchy of objects constrained using specific properties. The most relevant layout engines in the context
of this work are summarized in the following sections.

2.6.1 Browser Engines

The purpose of a browser engine is to transform a document and any additional resources, like CSS, into
a visual representation. A browser engine is a core component of every web browser, and is responsible
for laying out elements and rendering them. The terminology of browser engines is ill-defined, with
them sometimes also being referred to as layout or render engines. Theoretically, the layout and render
processes could be separated into different components, but in practice they are tightly-coupled into a
combined component, which will be referred to as a browser engine in this work. Some notable browser
engines are WebKit [Apple 2021], Blink [Chromium 2021], and Gecko [Sikorski and Peters 1999].

In a browser engine, the layout of elements is constrained with CSS, which yields great flexibility as
already described in Section 2.2. A range of mechanisms is available to precisely control the layout of
elements, like the Flexible Box and Grid layout modules, which can also be used in combination.

The layout module of a browser engine can only be invoked directly by browsers to position HTML
elements in actively rendered documents. To use it for calculating layouts of non-HTML constructs,
they must be replicated in active documents, so they can be parsed, laid out and rendered by the browser
engine. These replicated constructs do not necessarily have to be visible, and they could also be removed



14 2 Web Technologies

from the document after the layout has been acquired, meaning they do not need to be noticeable at all. A
strong limitation of using browser engines to calculate layouts is that it requires a browser runtime to work
and, even though there are solutions like Electron [OpenJS 2022a] available, which enable development
of desktop applications using web technologies, this limitation forces applications into a very specific
stack of technologies.

2.6.2 Yoga

Yoga [Facebook 2021d] is a layout engine which enables the computation of layouts constrained using
the grammar defined in the CSS Flexible Box layout module (see Section 2.2.2). It has been maintained
by Facebook as an open-source project since 2016 [Sjölander 2016], with the goal of providing a small
and high-performance library which can be used across all platforms. Yoga is implemented in C/C++,
which works on a myriad of devices, with bindings available for other platforms like JavaScript, Android,
and iOS. It has been widely adopted and is used to perform layouting in major frameworks such as React
Native [Facebook 2021c], Litho [Facebook 2021b], and ComponentKit [Facebook 2021a].

2.6.3 FaberJS

FaberJS [FusionCharts 2021] is a layout engine very similar to the Yoga layout engine in that it enables
the computation of layouts for constructs other than HTML documents, using a layout grammar originally
created for CSS. In contrast to Yoga, which is used to create one-dimensional layouts using the Flexbox
layout grammar, FaberJS implements a two-dimensional layout algorithm built on the grammar of the
CSS Grid layout module (see Section 2.2.3). This inherently two-dimensional approach to layouting is
more suited to information visualization than a one-dimensional approach. FaberJS is an open-source
JavaScript project developed since 2019 by Idera. Even though the layouts it computes are constrained
with the Grid Layout grammar, it only supports a subset the functionality defined in the original CSS
module. Some examples of missing functionaly include missing support for margins, gaps, and the *-
content and grid-auto-* properties. Working around the limitations caused by these missing features
is non-trivial, and it seems unlikely that support for them will be added by the FaberJS maintainers in the
near future because, at the time of writing, the project has not been updated in nearly two years.

2.7 Responsive Web Design
Influenced by the increasing use of mobile devices and their vastly varying screen sizes, responsive web
design has established itself as the predominant way of designing web pages. The core idea of responsive
web design is that instead of designing pages for different types of devices, website authors create a single
design for a page, which adapts to the characteristics of the consuming device. The term “Responsive
Web Design” was initially defined by Marcotte [2010] and later compiled into a book [Marcotte 2011;
Marcotte 2014], in which the author differentiates between flexible and responsive web designs. A flexible
web design, which merely fluidly scales blocks of content to make them fit into the width of a browser
window, is not enough to provide a good experience for users. Such designs will work well enough for
similarly sized viewports to the one they were created for, but they will lead to noticeable artifacts on
lower resolutions.

These problems can be avoided by positioning the individual components of a page in a manner which
provides them with enough space to render correctly. This can be achieved by using CSS media queries
to adapt the overall layout of a page to the dimensions of the consuming device. Another crucial part
of responsive web design is to support the different modes of interaction inherent to the various types
of devices used to access the web. Desktop users might access a website using a mouse, mobile device
users typically interact via a touchscreen, and yet others might consume a page in a purely textual form
with a screen reader and interact via a keyboard. It is one of the mantras of responsive web design to
provide smooth and complete access to information to all users, regardless of the device they are using.



Chapter 3

Information Visualization

Information visualization seeks to use interactive graphics to assist in the analysis and presentation
of abstract information. Information visualization builds on capabilities of human visual perception,
including the rapid scanning, recognition, and recall of visual information, as well as the automatic
detection of visual patterns [Ware 2020]. In contrast to textual representations of data, the processing
of well-designed visualizations requires less cognitive effort, because it leverages features of the human
visual processing system. One of these features is preattentive processing, whereby certain visual
attributes such as colors, shapes, and sizes can be processed very quickly and without conscious effort
[Treisman 1985].

In addition to visuals being easier to assimilate by humans, a purely textual and statistical view of
data can also lead to erroneous assumptions. This is demonstrated in Anscombe’s famous example of
four completely different datasets (variables in 𝑥 and 𝑦) having identical summary statistics (mean and
standard deviation), called Anscombe’s Quartet [Anscombe 1973], shown in Table 3.1. An observer
trying to understand these datasets from their summary statistics alone might mistakenly deem them to be
identical. Their inequality only becomes obvious after carefully examining and comparing the individual
entries in the datasets themselves. However, the differences in the four datasets are immediately obvious
when plotted graphically, as can be seen in Figure 3.1. Even though Anscombe’s Quartet is likely the
most famous example demonstrating this characteristic, it is certainly not the only example, as has been
shown by Chatterjee and Firat [2007].

This thesis adheres to the characterization of the field of visualization as having three main subfields,
as defined by Andrews [2022]:

1. Information Visualization (InfoVis): Deals with abstract data, which has no inherent geometry or
visual form and for which a suitable type of visualization has to be chosen.

2. Geographic Visualization (GeoVis): Deals with map-based data which has inherent 2d or 3d spatial
geometry.

3. Scientific Visualization (SciVis): Deals with real-world objects having inherent 2d or 3d geometry,
which is used as the basis for visualization.

The often-used term “Data Visualization” (DataVis) is defined as the combination (union) of information
visualization and geographic visualization.

The main purpose of a visualization usually lies in either analysis or presentation of data. Visualizations
that are geared toward analysis enable experts to explore unfamiliar data, whereas presentation-focused
visualizations aim at communicating results and insights of data to a wider audience. RespVis falls under
the latter category and aims at creating presentational information visualizations by allowing visualization
authors to fine-tune various aspects of the resulting graphical representation rather than offering a wide
range of exploratory tools.

15



16 3 Information Visualization

v1 v2 v3 v4

𝑥1 𝑦1 𝑥2 𝑦2 𝑥3 𝑦3 𝑥4 𝑦4

10.00 8.04 10.00 9.14 10.00 7.46 8.00 6.58
8.00 6.95 8.00 8.14 8.00 6.77 8.00 5.76

13.00 7.58 13.00 8.74 13.00 12.74 8.00 7.71
9.00 8.81 9.00 8.77 9.00 7.11 8.00 8.84

11.00 8.33 11.00 9.26 11.00 7.81 8.00 8.47
14.00 9.96 14.00 8.10 14.00 8.84 8.00 7.04
6.00 7.24 6.00 6.13 6.00 6.08 8.00 5.25
4.00 4.26 4.00 3.10 4.00 5.39 19.00 12.50

12.00 10.84 12.00 9.13 12.00 8.15 8.00 5.56
7.00 4.82 7.00 7.26 7.00 6.42 8.00 7.91
5.00 5.68 5.00 4.74 5.00 5.73 8.00 6.89

mean 9.00 7.50 9.00 7.50 9.00 7.50 9.00 7.50
sd 3.3166 2.0316 3.3166 2.0317 3.3166 2.0304 3.3166 2.0306

Table 3.1: The four datasets (variables) in Anscombe’s Quartet look identical if only standard
summary statistics like mean and standard deviation are considered. The difference between the
datasets is only apparent after careful examination of the numbers.

Figure 3.1: When plotted graphically, it is immediately apparent that the four datasets in Anscombe’s
Quartet are very different. [Image extracted from Andrews [2022]. Used with kind permission by Keith Andrews.]



History of Information Visualization 17

Category Description Examples

Select Mark something as interesting. Highlighted selections, placemarks, assigning
classes.

Explore Show me something else. Different subset of data, panning, direct-walk.
Reconfigure Show me a different arrangement. Sorting, rearranging columns, plotting different

dimensions, using an alternative projection.
Encode Show me a different representation. Changing visual encoding (color, size, shape),

or even chart type.
Abstract / Elaborate Show me more or less detail. Details-on-demand, drill-down and roll-up,

tooltips, zooming in and out.
Filter Show me something conditionally. Dynamic queries, range sliders, toggle buttons,

query by example.
Connect Show me related items. Brushing across views, highlighting connected

items on mouseover.

Table 3.2: Categories of interaction with visualizations based on what a user wants to achieve (user
intent). [From Yi et al. [2007]]

Visualizations presented in an interactive medium do not merely consist of visual representations. It
is equally important to provide means for interacting with these representations to analyze more complex
datasets. Without interactions, a visualization is just a static image and has only very limited use when
dealing with large and multidimensional datasets. Even though the majority of attention in the field of
information visualization has been directed towards the presentational aspect of visualizations, research
has also been done on their interactive aspects. Numerous taxonomies have been formulated with the goal
of defining the design space of interactions to support analytic reasoning, but they vary greatly depending
on the concepts they are focusing on. Some taxonomies have been defined on the concept of low-level
interaction techniques [Shneiderman 1996; Wilkinson 2005], providing a very system-centric view on
interaction. Other taxonomies focus on user tasks [Amar et al. 2005], which are not necessarily strongly
related to interacting with visualizations. Yi et al. [2007] aims to provide a view in between the purely
system-centric and purely user-centric extremes by defining a taxonomy based on what a user wants to
achieve, also known as user intent. The categories of this taxonomy are shown in Table 3.2. They provide
a good framework for the discussion of interactivity in the context of information visualization.

3.1 History of Information Visualization
The history of information visualization goes back a long time. One of its earliest examples dates back
to the 10th Century, when an unknown astronomer added a chart showing the movements of prominent
planets to the appendix of Macrobius [0400]. Other noteworthy early visualizations include the first
occurrence of the principle Ed Tufte later called “small multiples” [Tufte 1983] in Scheiner [1630]’s
chart demonstrating observed changes in sunspots, and what Tufte [1997, page 15] deems to be the first
visualization of statistical data in Florent [1644]’s chart displaying twelve estimates of the longitudinal
distance between Toledo and Rome by various astronomers.

William Playfair (1759–1823) is considered by many to be one of the forefathers of modern information
visualization. His published works contain the first occurrences of many graphical forms still widely used
today. In one of his earlier works [Playfair 1786], he introduced the concepts of line charts (Figure 3.2),
bar charts (Figure 3.3), and area charts (Figure 3.4) to communicate economic factors of England during
the eighteenth century. In a related later work [Playfair 1801], he used the first ever published pie and
circle charts to show and compare the resources of states and kingdoms in Europe. The charts he created
are very similar to modern ones, containing familiar concepts such as labeled axes, grids, titles, and



18 3 Information Visualization

Figure 3.2: Line chart of the expenditure of the British Navy during the 18th Century. It was
published in 1786 and is considered to be one of the first occurrences of a line chart containing
components found in modern visualizations. [Original appearance in Playfair [1786]. Image extracted from
University of Pennsylvania [2022] and used under the terms of Creative Commons CC BY 2.5.]

Figure 3.3: Bar chart of England’s exports and imports to and from Scotland in 1781. Published in
1786, it is considered to be one of the first occurrences of a bar chart containing most components
found in modern visualizations. [Original appearance in Playfair [1786]. Image extracted from University of
Pennsylvania [2022] and used under the terms of Creative Commons CC BY 2.5.]

color-coding.

It would be amiss not to mention Florence Nightingale (1820–1910) [Cohen 1984; Nightingale 1859]
when talking about the history of information visualization. She was a British statistician, social reformer,
and the founder of modern nursing and might be the first person who used visualizations to persuade
others of a need for change. During her service as a superintendent of nurses in the Crimean War, she
realized that a large number of deaths in hospitals resulted from preventable diseases which originated
in poor sanitary conditions. One of her contributions to the field of information visualization was the
creation of a new type of diagram, called a rose diagram or polar area chart, shown in Figure 3.5. She
used these charts to communicate data she collected on the mortality of soldiers during the war and to
attract the attention of politicians and the public.

Modern visualizations benefit from the interactive nature of the devices used to consume them. They
can be more complex than static visualizations, because various interaction techniques enable visualization
consumers to navigate large amounts of data and make sense of it. High-D by Macrofocus [Macrofocus
2021] is a representative example of a modern interactive visual analytics tool, and is shown in Figure 3.6.



History of Information Visualization 19

Figure 3.4: Area chart of annual revenues of England and France between 1550 and 1800. Published
in 1786, it is considered to be one of the first occurrences of an area chart containing most
components found in modern visualizations. [Original appearance in Playfair [1786]. Image extracted from
University of Pennsylvania [2022] and used under the terms of Creative Commons CC BY 2.5.]

Figure 3.5: One of the polar area charts created by Florence Nightingale in 1859 to convince people
of the need for better sanitary conditions in hospitals. It visualizes the causes of mortality of
soldiers during the Crimean War and demonstrates that a large number of patients died from
preventable diseases linked to unsanitary environments. [Original appearance in Nightingale [1859].
Image extracted from Harvard Library [2022] and used under the terms of Creative Commons Attribution 4.0.]

Figure 3.6: High-D by Macrofocus is a visual analytics tool specialized in analyzing multidimen-
sional data. [Screenshot of High-D [Macrofocus 2021] taken by the author of this work.]



20 3 Information Visualization

It is out of the scope of this work to provide a full account of the long and eventful history of information
visualization. This section only provides a brief and very selective view of the topic. More comprehensive
works for further reading include Friendly [2008], Meirelles [2013], Rendgen [2019], and Friendly and
Wainer [2021].

3.2 Information Visualization Libraries for the Web
There are many web-based libraries which simplify the rendering of interactive visualizations. The
approaches used to create and update a visualization differ widely between libraries. D3 is a low-level
library which enables data-driven transformations of documents. Vega and other grammar-based libraries
provide a declarative grammar to express the visual and interactive characteristics of a visualization.
Template-based visualization libraries provide higher-level template-based interfaces which visualization
authors can simply fill with data, making them very easy to use but inherently limited in scope.

3.2.1 Data-Driven Documents (D3)

D3 [Bostock et al. 2011] is a free, open-source document manipulation library built in JavaScript by Mike
Bostock and actively maintained by him and a community on GitHub [Bostock 2021]. Mike Bostock
is also the creator of Observable [Observable 2021] and was one of the authors of the now deprecated
Protovis visualization library [Bostock and Heer 2009]. Wattenberger [2019] is a great introduction to
D3.

D3 enables data-driven document transformations allowing developers to describe documents as func-
tions of data. As an example, developers can define transformations which take a dataset and transform
it into a basic HTML table or into a more sophisticated visualization as an SVG chart. This focus
on explicitly defining transformations is well-suited to dynamic visualizations, because developers have
complete control over the creation, modification, and removal of elements. It also sets D3 apart from other
visualization libraries, where developers define the desired state of a representation using a declarative
domain-specific language.

In contrast to other visualization libraries, D3 contains no proprietary visual primitives and relies on
well established web standards like HTML, SVG, and CSS to implement its visual representations. This
yields great flexibility, because developers work directly with web standards implemented in browsers and
do not need to wait for D3 to support new features as standards evolve. If developers chose to switch to a
different library, the knowledge of web standards gained during their work with D3 might be applicable
to their future work. The reliance on web standards also makes it possible to use the native debugging
tools available in web browsers.

Other important aspects of D3’s design include immediate evaluation of functions, the principle of
parsimony, and support for method chaining. Immediate evaluate of functions means that operations,
such as modifying attributes, are applied instantaneously at the time of calling the respective functions.
This reduces internal complexity by handing control flow decisions over to invoking code. It also avoids
errors related to missing state changes when state is modified multiple times between rendering, which
commonly occur in libraries which use delayed evaluation of functions.

The principle of parsimony, also referred to as Occam’s razor, is a problem-solving principle which
stems from the field of philosophy [Sober 1979]. It is frequently paraphrased as “entities should not
be multiplied beyond necessity”, and when applied to API design it means that superfluous functions
in an API should be avoided. As an example, the background color of a circle element can already be
set with the generic Selection.attr method to set the background-color attribute of all elements in
a Selection. Adding an additional backgroundColor method would violate the principle of parsimony,
because it would introduce a special method to achieve something that was already achievable.



Information Visualization Libraries for the Web 21

1 d3.select(’body’)
2 .call(s => s.append(’h1’).text(’Method Chaining in D3’))
3 .call(s => s.append(’p’).text(’This is a demonstration of method chaining ’));

Listing 3.1: A simple example of method chaining in D3. A <h1> element and a <p> element are
created inside an existing <body> element.

Method chaining is a popular syntax which allows functions to be chained after one another. The
use of method chaining avoids having to store intermediate method results in variables which would
not otherwise be needed. It is implemented in D3 by returning the D3 Selection on which a modifying
method is called as a result of that method. Methods which insert new elements into the DOM, such as
Selection.append and Selection.insert, return a D3 Selection of the newly added elements to enable
the creation of nested structures. This method chaining syntax is further aided by the Selection.call
method, which invokes a callback receiving the current Selection as a parameter and returns the original
Selection to chain further methods on it after the callback has been executed. The Selection.call
method enables the creation of complex method chaining structures and is widely used by developers. A
simple example of method chaining in D3 with the Selection.call method can be seen in Listing 3.1.

Selections are the atomic building blocks of D3 and are used to access almost any functionality. They are
created using the d3.select or d3.selectAll methods. These methods are built on the querySelector
and querySelectorAll methods of the DOM Selectors API, which allow the selection of elements via
CSS selectors (see Section 2.2). The d3.select and d3.selectAllmethods create a Selection containing
either a single element matching the provided selector, or multiple elements matching it, respectively.
A Selection acts as a wrapper container around selected elements to perform frequently performed
DOM operations on them. Among others, the element operations provided by a Selection include the
setting and getting of: attributes using the Selection.attr method, styles using the Selection.style
method, properties using the Selection.property method, text or HTML content using the Selection
.text or Selection.html methods, and event listeners using the Selection.on method. Selections
also provide wrapper methods to insert additional elements using the Selection.append or Selection.
insert methods, as well as to remove them using the Selection.remove method. Accessing the DOM
via this wrapper is less tedious than accessing it directly, because the native DOM API is very verbose,
and also because the method chaining API provided by D3 does not require the storage of unnecessary
intermediate variables.

An additional feature of D3 is the ability to bind data to elements using the Selection.data and
Selection.datum methods. The Selection.datum method binds a single provided data record to all
elements in the Selection, whereas the Selection.data method receives an array of data records and
binds each individual data record to exactly one element. The Selection.data method performs a join
operation between data and elements to ensure that exactly one element per data record exists. This
data join results in three separate Selections: the enter Selection, containing newly created elements,
the update Selection, containing elements merely receiving new data, and the exit Selection, containing
elements being removed. Each of these Selections can be individually transformed using the Selection.
join method, which can receive three callbacks for the enter, update, and exit Selections of the data join,
respectively. This ability to individually control changes to entering, updating, and exiting elements is
referred to in D3 as the general update pattern. A simple demonstration of how it is used can be seen
in Listing 3.2. All the previously mentioned DOM wrapper methods can receive either constant values
or dynamic values defined as functions. These functions receive the bound element data, the element’s
index in the group of nodes represented by the Selection, and the group of nodes themselves as input



22 3 Information Visualization

1 function renderCircles(container , positions) {
2 container.selectAll(’circle ’).data(positions).join(
3 (enter) => enter.append(’circle ’)
4 .attr(’r’, ’50’)
5 .attr(’fill’, ’lightgray ’)
6 .attr(’stroke’, ’darkgray ’)
7 .attr(’cx’, d => d.x)
8 .attr(’cy’, d => d.y),
9 (update) => update.attr(’cx’, d => d.x).attr(’cy’, d => d.y),

10 (exit) => exit.remove()
11 );
12 }

Listing 3.2: A simple demonstration of D3’s general update pattern being used to specify different
transformations for entering, updating, and exiting elements. The full utility of this pattern is
only apparent in more complex scenarios involving transitions.

and then calculate a dynamic value based on these parameters, which is forwarded to the corresponding
DOM method.

D3 also offers a convenient, optional API to perform JavaScript-based animations via D3 Transitions,
which wrap a Selection and allow the animation of various element characteristics. Transitions are created
using the Selection.transition method which creates a Transition wrapping the Selection on which
it has been called. The duration of a Transition is defined using the Transition.duration method and
its easing can be configured using the Transition.ease method. It is also possibile to interrupt and
chain transitions. Transitions provide an almost identical API to Selections. The major change is that
the wrapping methods interpolate towards their target values using the given easing function over the
given duration instead of setting the target value directly. Using Transitions is completely optional and
developers can choose instead to use other animation technologies, like CSS transitions and animations.

At its core, D3 is simply a low-level library to perform data-driven document transformations. Even
though this generic core technology is applicable to a wide range of use cases, D3 was created with a
focus on creating visualizations. There are many additional packages which simplify the higher-level tasks
necessary for creating and rendering visualizations. All D3 packages follow the same inherent patterns,
like method chaining and configurable functions. Therefore, despite this higher-level functionality being
split over multiple packages, a consistent experience is provided to developers. Listing all available
packages here would be out of the scope of this work, but some noteworthy ones include: d3-shape to
create visual primitives like lines and areas, d3-scale to encode abstract data dimensions, and d3-axis
to render scales as human-readable axes.

3.2.2 Grammar-Based Visualization Libraries

Vega [IDL 2021] is a library consisting of two parts: a grammar to describe interactive graphics and
a parser which translates specifications written in this grammar into static images or web-based views
built on SVG documents or the Canvas Web API. An interactive visualization in Vega is fully described
by a specification written in Vega’s grammar. This grammar is essentially a domain-specific language
designed for the declarative specification of interactive graphics. Its syntax is based on the easy-to-read
JavaScript Object Notation (JSON), which is among the most frequently used textual serialization formats.
Vega builds on previous research in the field of declarative visualization design [Wilkinson 2005]. In
contrast to previous work, it also contains powerful capabilities to declaratively describe interactions



Information Visualization Libraries for the Web 23

[Satyanarayan et al. 2015] in addition to describing visual appearance.

The visual aspects of a visualization are described in a grammar similar to the Grammar of Graphics
defined by Wilkinson [2005]. At its top level, a Vega specification contains properties to configure sizing
and padding of the container of a visualization. Every specification also contains a data section, which
either defines data or specifies where to load it from. The Vega grammar 2supports various forms of data
transformation which can successively be applied to a dataset to perform various transformations like
filtering, deriving additional fields, or deriving additional datasets. In a majority of cases, the defined
data will consist of abstract information which is then mapped to visual properties. This mapping is
configured and performed using scales. Vega already contains a variety of scales to help with mapping
abstract values to visual properties. They can broadly be categorized into quantitative scales which
map quantitative inputs to quantitative outputs, discrete scales which map discrete inputs to discrete
outputs, and discretizing scales which map quantitative inputs to discrete outputs. For spatially encoded
dimensions, scales can be visualized as axes, whereas non-spatial encodings such as encodings as colors,
sizes, or shapes can be visualized as legends.

At the core of every visualization lies the encoding of data as visual primitives, which is achieved in
Vega via marks. Marks use scales to encode data fields as properties of their shapes. Based on the general
update pattern of the underlying D3 library, the encoding of marks can be separately controlled for newly
created (entering) marks, existing and not exiting (updating) marks, and to-be-removed (exiting) marks.
In addition to these basic visualization components, the Vega grammar contains further capabilities to
describe interactions (via signals, triggers, and event streams), cartographic projections, sequential or
layered views (via mark groups), layouts, and color schemes. To demonstrate how the various aspects of
a Vega specification are defined, an example of a static bar chart can be seen in Listing 3.3.

In template-based visualization libraries, interactions are typically defined by configuring premade
interaction templates, which is easy but limiting, or by manually modifying the visualization in various
callbacks, which is flexible but tedious and not serializable. The ability to describe custom interactions
using a serializable, data-driven grammar is what sets Vega apart from other declarative visualization
libraries [Satyanarayan et al. 2015]. This approach offers the flexibility of callback-driven interactions,
while still remaining fully serializable and declarative. The grammar to define interactions is based on
the syntax of event-driven functional reactive programming [Wan et al. 2001], a high-level grammar
which resembles mathematical equations to describe reactive systems. In Vega, the primitives to express
interactions are called signals. Signals can be seen as dynamic variables which change their values based
on input events or other signals. These signals and the way their values change are defined declaratively,
and they can be used as dynamic variables in most places in a Vega specification to change various
characteristics of a visualization dynamically. Listing 3.4 shows an example of how the previously shown
static bar chart specification can be extended with signals to display a tooltip when hovering over bars.

Visualizations created with Vega closely follow their specifications and minimal assumptions are made
in the compilation process. This results in very verbose specifications, because all configurations for
all parts of the visualization need to be explicitly defined in them. It also means that specification
authors have full control over the resulting graphics, making Vega a good base on which to build further
libraries and tools. Many tools have already been built on top of Vega [Wongsuphasawat et al. 2015;
Satyanarayan and Heer 2014; Wongsuphasawat et al. 2016]. Most noteworthy is Vega-Lite [Satyanarayan
et al. 2016]. Vega-Lite is described as a “high-level grammar of interactive graphics”, which summarizes
its difference to Vega fairly well. Vega-Lite is a higher-level grammar than Vega, allowing authors to
write specifications for common visualizations in a much more concise form. Specifications written in
Vega-Lite are then compiled into Vega specifications. During compilation, the compiler automatically
derives default configurations for axes, legends, and scales by following a set of carefully designed rules.
This makes Vega-Lite more convenient for quick authoring of visualizations, since many of the details
which need to be explicitly stated in a Vega specification can be omitted. In those cases where the derived
default configurations are not suitable, Vega-Lite also offers the possibility to override them.



24 3 Information Visualization

1 {
2 "$schema": "https://vega.github.io/schema/vega/v5.json",
3 "width": 600,
4 "height": 300,
5 "data": [{
6 "name": "data",
7 "values": [
8 { "category": "A", "value": 16 },
9 { "category": "B", "value": 23 },

10 { "category": "C", "value": 32 }
11 ]
12 }],
13 "scales": [
14 {
15 "name": "x",
16 "type": "band",
17 "domain": { "data": "data", "field": "category" },
18 "range": "width",
19 "padding": 0.05
20 },
21 {
22 "name": "y",
23 "domain": { "data": "data", "field": "value" },
24 "range": "height"
25 }
26 ],
27 "axes": [
28 { "orient": "bottom", "scale": "x" },
29 { "orient": "left", "scale": "y" }
30 ],
31 "marks": [{
32 "type": "rect",
33 "from": { "data": "data" },
34 "encode": {
35 "enter": {
36 "x": { "scale": "x", "field": "category" },
37 "width": { "scale": "x", "band": 1 },
38 "y": { "scale": "y", "field": "value" },
39 "y2": { "scale": "y", "value": 0 }
40 },
41 "update": { "fill": { "value": "green" } }
42 }
43 }]
44 }

Listing 3.3: The Vega specification of a static bar chart. It demonstrates the use of data, scales, axes,
and marks to construct the bar chart.



Information Visualization Libraries for the Web 25

1 {
2 "...": "...",
3 "signals": [{
4 "name": "tooltip",
5 "value": {},
6 "on": [
7 { "events": "rect:mouseover", "update": "datum" },
8 { "events": "rect:mouseout", "update": "{}" }
9 ]

10 }],
11 "marks": [
12 { "...": "..." },
13 {
14 "type": "text",
15 "encode": {
16 "enter": {
17 "align": { "value": "center" },
18 "baseline": { "value": "bottom" }
19 },
20 "update": {
21 "x": { "scale": "x", "signal": "tooltip.category", "band": 0.5 },
22 "y": { "scale": "y", "signal": "tooltip.value", "offset": -5 },
23 "text": { "signal": "tooltip.value" },
24 "opacity": [{ "test": "datum === tooltip", "value": 0 }, { "value": 1 }]
25 }
26 }
27 }
28 ]
29 }

Listing 3.4: The necessary additions to the static bar chart specification in Listing 3.3 to display a
tooltip when hovering over bars. They demonstrate the basic functionality of signals in Vega.
When the mouse hovers over a rect mark, the tooltip signal will receive the value of the rect’s
bound data record. The tooltip signal will be reset to an empty object when the mouse leaves
the rectmark. It is then used in the newly added textmark section of the specification to define
the position, text, and visibility of the tooltip whenever an update occurs.

Since Vega-Lite specifications are simply compiled into Vega ones, it is a sensible choice to use
Vega-Lite as a primary tool to describe visualizations, and switch to Vega for more exotic cases which
are not easily achievable in Vega-Lite. Additionally, tools like Hoffswell et al. [2020] simplify designing
responsive versions of Vega-Lite visualizations by allowing visualization authors to preview and edit
multiple responsive versions at the same time in a convenient user interface. To illustrate the difference
between a Vega and a Vega-Lite specification, Listing 3.5 shows a Vega-Lite version of the Vega bar chart
specification from Listings 3.3 and 3.4 combined.

Another interesting development in the field of visualization grammars is Cicero [Kim et al. 2022], a
declarative visualization grammar for responsive visualizations. An extended Vega-Lite syntax is used to
describe an initial visualization. A separate Cicero specification contains rules about how to modify or
transform the visualization in certain situations. The Cicero compiler then creates a transformed version
of the visualization in the extended Vega-Lite syntax, which is rendered by an extended version of the
Vega-Lite compiler. Responsive transformations are declared in terms of a specifier selecting the elements
to be transformed, an action that should be performed on these elements, and an option further defining the
action. Cicero’s transformation grammar simplifies reusing responsive transformations across different



26 3 Information Visualization

1 {
2 "$schema": "https://vega.github.io/schema/vega-lite/v5.json",
3 "width": 600,
4 "height": 300,
5 "data": {
6 "values": [
7 { "category": "A", "value": 16 },
8 { "category": "B", "value": 23 },
9 { "category": "C", "value": 32 }

10 ]
11 },
12 "mark": "bar",
13 "encoding": {
14 "x": { "field": "category", "type": "ordinal" },
15 "y": { "field": "value", "type": "quantitative" },
16 "tooltip": [{ "field": "value" }]
17 }
18 }

Listing 3.5: A Vega-Lite specification of the Vega bar chart shown in Listings 3.3 and 3.4 combined.

visualizations and is an improvement to Vega-Lite’s workflow of having to create completely separate
specifications for each responsive version of a visualization.

3.2.3 Template-Based Visualization Libraries

Template-based visualization libraries work by providing high-level templates for possible types of
visualizations and allowing visualization authors to customize them. These types of visualization libraries
are easier to use than D3 or Vega because they offer a concise form of configuration which does not require
authors to have detailed knowledge of the underlying rendering technology or complex, non-standardized
domain specific languages. Even though these types of libraries are usually flexible enough to create a
huge range of visualizations, at some point authors may run into limitations. Some of these limitations
can only be worked around by writing custom source code, which requires a deep understanding of
the underlying library. This effectively eliminates the ease-of-use benefit of these types of libraries for
authors who run into these limitations.

For this thesis, a total of 20 template-based JavaScript visualization libraries were examined and
compared according to factors such as their rendering technology (SVG or Canvas), usage popularity (last
year’s npm package downloads), open-source popularity (stars on GitHub), license (free or commercial),
and recent development activity (commits on GitHub). Usage popularity was deemed one of the most
relevant metrics for the comparison, because it reflects actual user behavior and gives an indication on how
widespread a library is used in practice. The 20 libraries found in the initial collection phase were filtered
by their usage popularity and recent development activity to remove those which were not sufficiently
used or no longer maintained. This filtering step yielded the ten libraries shown in Table 3.3: (1) ChartJS
[Chart.js 2021], (2) Highcharts [Highsoft 2021], (3) ECharts [Li et al. 2018], (4) ApexCharts [Chhipa
and Lagunas 2021], (5) PlotlyJS [Plotly 2021], (6) C3JS [Tanaka 2020], (7) Chartist [Kunz 2021], (8)
amCharts [amCharts 2021], (9) billboardJS [NAVER 2021], and (10) D3FC [Scott Logic 2021]. These
ten libraries were selected for further consideration.

Eight of the ten libraries are completely free to use without restrictions, amCharts has a free license
for users who are comfortable with an attribution logo on their visualizations, and Highcharts offers a



Information Visualization Libraries for the Web 27

Name Renderer GitHub Stars Yearly NPM
Downloads Last Commit Free?

ChartJS Canvas(2d) 54.9k 71M < 1 month Yes
Highcharts SVG 10.3k 30.3M < 1 month Yes (for non-commercial)

ECharts SVG
Canvas(2d) 48.2k 15.2M < 1 month Yes

ApexCharts SVG 10.7k 10.1M < 1 month Yes
PlotlyJS SVG 14k 5.2M < 1 month Yes
C3JS SVG 9.1k 4.5M > 1 year Yes
Chartist SVG 12.7k 4.4M > 1 year Yes
amCharts SVG 1k 3.2M < 3 months Yes (with watermark)
billboardJS SVG 4.9k 0.4M < 1 month Yes

D3FC
SVG
Canvas(2d)
Canvas(WebGL)

1k 0.3M < 1 month Yes

Table 3.3: The ten template-based information visualization libraries that have been chosen for
comparison because of their popularity and recent development activity.

free license option for non-profit, educational and personal applications. Nine of the libraries implement
an SVG-based renderer, two of which (ECharts and D3FC) also offer the alternative of rendering to
<canvas> elements (D3FC also via WebGL) for high-performance scenarios, and only ChartJS solely
targets <canvas>-based rendering. Eight libraries are very actively maintained with most of them showing
development activity within the last month. C3JS and Chartist seem to be no longer actively maintained,
but were included nontheless in the deeper evaluation, due to their historic and thematic relevance and
because they are still widely used.

Template-based visualization libraries have a strong inclination towards designing their APIs according
to the principles of declarative programming. APIs following these principles allow authors to describe a
desired state they want the underlying system to be in. This is in strong contrast to the typical imperative
way of designing APIs in which authors are instead given a set of tools to query and modify a system’s
state. The difference can be summarized in simple terms as follows: With declarative APIs, developers
specify what state shall be achieved, whereas with imperative APIs, developers specify how a certain state
is achieved. Declarative APIs are typically built on top of lower-level imperative APIs and can therefore
be seen as a higher level of abstraction over them. They are popular among developers because they are
expressive, easy to use and effectively encapsulate complexity which would otherwise have to be handled
by developers. An often overlooked disadvantage of declarative APIs is that they frequently only provide
high-level access to a system and that more specific use cases might not be achievable if they can not be
expressed in the domain-specific language defined by the API. In many cases, it makes sense to provide
additional imperative APIs for developers who require a lower level of access to the system to implement
functionality not achievable via the declarative parts of the interface.

All of the evaluated libraries, except D3FC, expose declarative interfaces in the form of nested con-
figuration objects, which are used to specify the characteristics of individual visualizations. Apart from
Chartist, all those libraries feature generic high-level creation functions. These functions create charts
from declarative configuration objects, allowing the specification of different forms of visualization for
different data dimensions. This type of interface is demonstrated by the Highcharts code in Listing 3.6.
Generic chart creation functions seem to correlate with the ability to dynamically change the type of
visualization. Chartist, on the other hand, provides separate chart creation functions for each type of
chart, and it is not possible to alter the type of chart after it has been created. Another limitation which



28 3 Information Visualization

1 Highcharts.chart(’container ’, {
2 chart: { type: ’column’ },
3 title: { text: ’Highcharts API Demonstration ’ },
4 xAxis: { categories: [’A’, ’B’, ’C’, ’D’, ’E’], title: { text: ’Categories ’ } },
5 yAxis: { type: ’linear’, title: { text: ’Values’ } },
6 series: [{
7 name: ’data’,
8 data: [107, 31, 635, 203, 50],
9 color: ’green’,

10 borderColor: ’black’,
11 }],
12 });

Listing 3.6: A basic column (vertical bar) chart defined using Highcharts’ generic chart creation
API. A high-level, declarative configuration object is passed to the creation function.

may originate from partitioning the API by chart type is that mixed charts combining multiple forms of
visualization into one composite visualization cannot be expressed.

The only library in the deeper evaluation which does not provide a high-level declarative configuration
API is D3FC. The design philosophy of D3FC is based on the idea of “unboxing” D3. Even though
many visualization libraries are implemented on top of D3, it is usually hidden behind public APIs which
are easier to work with but do not provide the full flexibility of D3. D3FC exposes a component-based
interface which closely follows design patterns frequently encountered when working with D3. These
components form higher-level building blocks upon which advanced visualizations can be built. They
are also highly configurable and in those cases where the options for configuration are not sufficient, a
decorator pattern allows visualization authors to hook into the underlying D3 functionality and inject
custom code into the various stages of the general update pattern at the core of D3. Code demonstrating
the usage of D3FC can be seen in Listing 3.7.

amCharts is the only evaluated library, which exposes a hybrid API with the possibility of configuring
visualizations using both declarative configuration objects and manually composing higher-level visual-
izations from lower-level components, such as axes and series. Its component-based interface is still rather
declarative, with most options being configurable by modifying specific properties on the components.
However, modifying only the properties which require changing instead of processing a full configuration
object and figuring out the necessary changes from it, is less costly in terms of performance. In addition
to these performance benefits, the components provide additional functions to perform operations which
would not be available using a purely declarative API.

When comparing the evaluated libraries in terms of their responsive configurability, most libraries
offer similar capabilities albeit in slightly different ways. Six of the ten libraries (Highcharts, C3JS,
Chartist, amCharts, billboardJS, and D3FC) support the styling of elements in their created visualizations
with CSS, which requires rendering as SVG documents, since only document-based visualizations can
be affected by CSS. The styling of visualizations with CSS is powerful, because it leads to a separation
of concerns and visualization authors can make use of CSS-inherent mechanisms to configure responsive
styles. Unfortunately, CSS-based styling is inherently limited, because only CSS properties representing
presentational SVG attributes can be applied to SVG elements, as described in Section 2.5.2.

To responsively configure other visualization characteristics, such as their type, data, and layout, vi-
sualization authors have to rely on the configuration mechanisms offered by the libraries. Four libraries
(Highcharts, ApexCharts, Chartist, and amCharts) provide the possibility to specify rule-based responsive



Information Visualization Libraries for the Web 29

1 const data = [
2 { category: ’A’, value: 107 },
3 { category: ’B’, value: 31 },
4 { category: ’C’, value: 635 }
5 ];
6
7 const bar = fc
8 .autoBandwidth(fc.seriesSvgBar())
9 .crossValue((d) => d.category)

10 .mainValue((d) => d.value)
11 .align(’left’)
12 .decorate((selection) => {
13 selection.attr(’fill’, ’green’);
14 });
15
16 const chart = fc
17 .chartCartesian(d3.scaleBand(), d3.scaleLinear())
18 .chartLabel(’D3FC API Demonstration ’)
19 .xDomain(data.map((d) => d.category))
20 .yDomain([0, Math.max(...data.map((d) => d.value))])
21 .xPadding(0.1)
22 .xLabel(’Categories ’)
23 .yLabel(’Values ’)
24 .yOrient(’left’)
25 .yNice()
26 .svgPlotArea(bar);
27
28 d3.select(’#container ’).datum(data).call(chart);

Listing 3.7: A basic bar chart defined using D3FC’s component-based API.

configurations as part of their declarative interfaces, illustrated in the Highcharts example in Listing 3.8.
These declarative rules consist of a condition part which specifies when to apply the rule, and a config-
uration part which specifies the configuration options to be set when the rule is applied. Even though
this is a convenient form of responsive configuration, if the desired conditions can not be expressed via
the provided declarative properties, authors have to fall back to more generic mechanisms which are
also applicable to other libraries. The mechanisms for responsive configuration in the other libraries are
more generic, because they do not offer these configurations as part of their declarative interfaces. This
means that developers need to trigger responsive configurations themselves by manually reconfiguring
visualizations via their APIs in custom resize event listeners. Nearly all libraries provide a means to
dynamically resize visualizations and update their data, type, and options. The exceptions are C3JS,
which only supports dynamic changes of some options, and Chartist, which does not support changing a
visualization’s type at all.



30 3 Information Visualization

1 Highcharts.chart(’container ’, {
2 ...
3 responsive: {
4 rules: [{
5 condition: { maxWidth: 500 },
6 chartOptions: {
7 chart: { type: ’bar’ },
8 yAxis: { title: { text: null } },
9 xAxis: { title: { text: null } },

10 },
11 }],
12 },
13 });

Listing 3.8: The declaration of responsive rules in Highcharts. In this example, the x-axis and y-axis
titles are removed if the chart is narrower than 500 pixels.



Chapter 4

Responsive Information Visualization

A responsive visualization is a visualization which adapts itself to the available display space and
characteristics of the device used to access it. Analogous to responsive web design, the need for
responsive visualizations arises from the growing variety of devices used to consume content and the
physical differences between them. Visualizations and charts often form significant blocks of content
embedded inside web pages. For a web page to be responsive, any embedded content such as visualizations
and charts must also be responsive.

Visual elements require proper sizing and spacing to be of value. Merely scaling visualizations to fit
into their allocated space is insufficient to provide a seamless experience to visualization consumers, as has
already been discussed in Section 2.7. Even more elaborate automated visualization scaling techniques
[Y. Wu et al. 2013; A. Wu et al. 2021; Setlur and Chung 2021] only lead to minor improvements compared
to the more laborious approach of manually adapting a visualization’s design. Another factor which is
often ignored is the different methods of interaction inherent to specific types of devices, such as touch
and keyboard interaction. For example, to ensure that data points remain selectable on less precise input
devices such as touchscreens, a visualisation might adapt by reducing the data density and increasing the
size of individual elements. The goal of responsive visualizations is that they should adapt themselves to
the characteristics of the consuming device and context so as to remain as effective and usable as possible
[Kim et al. 2021a].

The topic of responsive visualization only gained prominence in recent years, as responsive web design
became mainstream. Hinderman [2015] used the term responsive visualization, but only descibed how
to implement scalable visualizations. Körner [2016] covered scalable visualizations, but also considered
interactive selection and touch events. The work by Andrews [Andrews 2016; Andrews 2018a; Andrews
2018b] was possibly the first academic work to address design patterns for responsive visualization.
More recently, [Hoffswell et al. 2020] surveyed the design space of responsive visualizations, created
a taxonomy of currently used techniques and recurring patterns, and presented a tool to help design
responsive visualisations side-by-side. In addition to surveying design patterns, Kim et al. [2021a] also
consider issues around different forms of “message loss” when reducing chart complexity, and define
optimization of the density-message trade-off as one of the main challenges when designing responsive
visualizations.

Horak et al. [2021] is a recent and quite complete summary of research in the field of responsive
visualization. It discusses the differences between responsive web design and responsive visualization
design and stresses that visualizations must not be seen as mere images embedded in a website, but
that they must adapt to device characteristics to deliver a satisfactory visualization consumer experience.
Further, Horak et al. [2021] go into details about various factors affecting a visualization’s responsive
design and give an overview of high-level design strategies (called design patterns in this work) for
responsive visualizations. Lastly, unique challenges and opportunities for responsive visualization design
are summarized to guide researchers to potentially interesting topics for future research in this area.

31



32 4 Responsive Information Visualization

Category Targets Description

Data Record, Field, Level Data apects such as records (rows), fields (columns), and
level (of aggregation or hierarchy).

Encoding Visual representation in large-screen view.
Interaction Feature, Trigger,

Feedback
Supported interactions in large-screen view.

Narrative Sequencing,
Annotations,
Emphases, Text

Narrative, story-telling elements in large-screen view.

References / Layout Labels, References,
Layout, Size

Additional elements such as labels and legends, and
placement of visual components in large-screen view.

Table 4.1: The targets of responsive visualization patterns identified by Kim et al. [2021a]. [Table
adapted from Kim et al. [2021a].]

4.1 Responsive Visualization Patterns
Patterns are templates for solving recurring problems. Hoffswell et al. [2020] created a comprehensive
taxonomy of responsive techniques, as well as a tool to help design responsive visualisations side-by-side.
They proposed describing responsive techniques according to five actions, which are applied to different
components. These actions are: (1) resize, (2) reposition, (3) add, (4) modify and (5) remove. A sixth
action refers to leaving a component unchanged, but this is deemed a non-technique and therefore left
out here. They also described a non-exhaustive set of eleven components, upon which these actions can
be performed: (1) axis, (2) axis labels, (3) axis ticks, (4) gridlines, (5) legend, (6) data, (7) marks, (8)
labels, (9) title, (10) view, and (11) interaction. It should be noted that some combinations of actions and
components do not make sense and therefore do not occur in practice. It is, for example, not possible
to resize interactions or reposition data. Hoffswell et al. [2020] performed their research following a
desktop-first approach of responsive design, because the interviews they conducted with visualization
authors revealed a strong inclination towards this approach. They found that when adapting desktop
visualizations for narrow screens, it was much more common to remove elements (37.7%) than to add
them (11.3%). Another interesting finding was that most visualizations (88.7%) implemented no change
at all for their interactions, while some (10%) even removed interactive capabilities completely. Only
very few visualizations (5.6%) improved the experience of mobile visualization consumers by adapting
interactions accordingly.

The most detailed research on patterns in responsive visualization design was performed by Kim et al.
[2021a]. Following Hoffswell et al. [2020], they characterised the responsive visualization strategies
according to (the same) two dimensions: targets, representing what entity is changed from large-screen to
small-screen view, and actions, representing how entities are changed. However, the targets and actions are
more finely grained, having a number of sub-categories. Targets are grouped into five distinct categories
(Data, Encoding, Interaction, Narrative, and References/Layout), with four of the five categories further
divided into sub-categories, as shown in Table 4.1. Actions are also grouped into five distinct categories
(Recompose, Rescale, Transpose, Reposition, and Compensate), with four of the five top-level categories
again having sub-categories, as shown in Table 4.2. The actions are defined as operations with distinct
input and output states to ensure they can be inverted, and thus can be applied to either desktop-first or
mobile-first design approaches Categorizing techniques using these dimensions, the authors identified
a total of 76 viable strategies, whereby some of them are not used in the visualizations they studied.
Their explorable online gallery [Kim et al. 2021b] contains examples demonstrating all the patterns they
discovered.



Responsive Visualization Examples 33

Category Actions Description

Recompose Remove, Add, Replace, Aggregate Actions affecting the existence of targets.
Rescale Actions affecting the size of targets.
Transpose Serialize, Parellelize,

Axis-Transpose
Actions affecting the orientation of targets.

Reposition Externalize, Internalize, Fix, Fluid,
Relocate

Actions affecting the position of targets.

Compensate Toggle, Number Actions compensating for loss of information.

Table 4.2: The actions of responsive visualization patterns identified by Kim et al. [2021a]. [Table
adapted from Kim et al. [2021a].]

4.2 Responsive Visualization Examples
The goal of this section is to provide the reader with some demonstrative examples of responsive
visualizations. Due to the complexities of using images from commercial websites, the figures in this
section were taken from external academic sources from which permissions are more straightforward to
procure. These responsive visualizations put most of their effort into demonstrating responsive patterns
rather than communicating messages in their data, and owing to this, some of them lack essential features,
such as chart and axis titles, usually present in practice. For more real-life examples of responsive
visualizations, Kim et al. [2021b] should be consulted.

The examples in this section are organized by chart type. It would be an immense endeavor to collect
examples for every pattern used for all types of charts, so only a subset demonstrating some of the most
frequently encountered patterns for frequently used types of charts is presented here. The popularity
of chart types was judged using the responsive visualization corpus collected in Kim et al. [2021b] and
the visualization corpora from the Quarz news website and academic papers collected by Poco and Heer
[2017]. Both of these sources lead to the conclusion that line charts, bar charts, and point charts are the
most frequenly occuring types of visualizations.

4.2.1 Bar Charts

Bar charts are usually used to visualize two-dimensional data, with one categorical dimension and one
quantitative dimension. Two variants of bar charts support the visualization of categorical datasets having
subdimensions: grouped bar charts [Ferdio 2021a] compare subdimensions with each other, and stacked
bar charts [Ferdio 2021b] compare part-to-whole relationships of the subdimensions. Even though
responsive design of visualizations is slowly becoming more common, most charts found in today’s web
articles are still created as static images [NYT 2018a; NYT 2020b; Bui 2019; NYT 2020a].

A good example of a responsive bar chart can be seen in Figure 4.1 [Andrews 2018b]. Bar charts are
freely scalable by adjusting the width of individual bars [Barnett et al. 2016; Francis 2017; Minczeski
et al. 2017], so they all can fit into their allocated space. When reducing the width of any type of
chart past a certain point, the tick labels of the horizontal axis may start to overlap. This is why the
reducing width pattern usually occurs together with the recompose axis ticks and simplify/elaborate axis
labels patterns [Minczeski et al. 2017; Francis 2017; WSJ 2017]. Another effective pattern for avoiding
overlapping tick labels is to rotate the labels by up to 90 degrees so they take up less horizontal space
[Andrews 2018b]. If there is too much data to fit into the available width, the chart can be transposed
and grown to as much height as is required necessary [Andrews 2018b]. Doing this is more advisable
than simply extending the width of the chart past the viewport, since vertical scrolling is easier than
horizontal scrolling. When reducing the width of charts containing annotations, a number of patterns can



34 4 Responsive Information Visualization

Keith Patrick Shelly Jannik Rizwan Tanvir Chris

19

(a) 70rem

K
ei
th

Pa
tr
ic
k

S
h
el
ly

Ja
n
n
ik

R
iz
w
an

Ta
n
vi
r

C
h
ri
s

19

(b) 50rem

Keith

Patrick

Shelly

Jannik

Rizwan

Tanvir

Chris

19

(c) 30rem

Figure 4.1: A responsive bar chart at different display widths. (a) At 70rem, axis tick labels are
aligned horizontally. (b) At 50rem, axis tick labels are aligned vertically. (c) At 30rem, the chart
is transposed. [Screenshots of Andrews [2018a] created by the author of this thesis. Used with kind permission by
Keith Andrews.]

be applied to avoid annotations overlapping. For example, annotations can be removed [Bui 2021; Aisch
et al. 2017], simplified, or relocated [WSJ 2017].

4.2.2 Line Charts

Line charts are used to show trends in two-dimensional datasets by plotting them as points connected
by lines (a polyline). They can be extended to compare trends in an additional categorical dimension
by drawing additional polylines for each category. Many line charts on the web are published in non-
responsive forms [NYT 2019b; NYT 2019a], although some authors take the extra effort to make their
charts responsive. The minimum which can be done to make a line chart responsive is to reduce their width
[Barton and Recht 2018] on narrower screens by shrinking the horizontal distance between neighboring
points. This usually occurs together with the recomposition and simplification of horizontal ticks. If the
chart contains annotations, it may also be necessary to recompose, relocate, and simplify them as well
[Fessenden and Park 2016; Katz and Sanger-Katz 2021; Francis 2017; Aisch et al. 2017].

A good demonstration of which responsive patterns can be applied to make a line chart responsive
is shown in the responsive line chart created by Andrews [2018b] which can be seen in Figure 4.2. In
addition to the recomposition of ticks, tick labels are rotated to reduce their required horizontal space.
For exceptionally limited space, it can make sense to remove the axes of a line chart entirely, turning it
into a sparkline. However, it should be noted that by doing this, the consumer of the visualization loses
information about the type and scale of the chart’s dimensions. This technique should therefore only be
applied in cases where no other pattern is applicable or if the trend in the data is the most important
message to convey. It is rare to encounter transposed versions of line charts, although transposition could
sometimes benefit heavily annotated line charts [Munroe 2021]. Applying a transpose pattern would
allow the chart to take up as much vertical space as necessary to neatly accomodate annotations without
requiring the consumer to scroll horizontally.

4.2.3 Point Charts

Point charts, also known as scatterplots, represent data as points in 2d Cartesian coordinate systems.
There are many examples of point charts published as static images [NYT 2018b; NYT 2018c], with
responsive versions starting to emerge. The first step to making point charts responsive is to reduce
their width to fit them into the space available. As for other types of charts, care must be taken to avoid
overlapping of labels and annotations by applying recomposition, relocation and simplification patterns
[Canipe and Yeip 2017; Shifflett 2016]. To counteract the increased density of points when reducing
the size of their container, various interaction features are usually implemented in point charts to aid
consumers in interpreting the represented data. The most useful interaction features in these charts are
elaborative zooming interactions and the explorative panning interactions. In addition to zooming and



Responsive Visualization Examples 35

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Year

20

40

60

80

100

120

140

N
u
m

b
er

 o
f 

m
ed

al
s

Total Olympic Medals for GB

(a) 65rem

1
9
0
0

1
9
2
0

1
9
4
0

1
9
6
0

1
9
8
0

2
0
0
0

Year

50

100

N
u
m

b
er

 o
f 
m

ed
al

s

Total Olympic Medals for GB

(b) 40rem

67

7

(c) 20rem

Figure 4.2: A responsive line chart at different display widths. (a) At 65rem, the x axis labels are
horizontal. (b) At 40rem, the x axis ticks have been thinned out and the labels fully rotated by 90°.
(c) At 20rem, both axes have been removed, and the chart has become a sparkline. [Screenshots of
Andrews [2018a] created by the author of this thesis. Used with kind permission by Keith Andrews.]

56 58 60 62 64 66 68 70 72 74 76 78
35

40

45

50

55

60

65

70

75

80

85

90

Point 0

Point 1
Point 2

Point 3

Point 4

Point 5

Point 6

Point 7

Point 8

(a) Low density

30 40 50 60 70 80 90 100 110
20

30

40

50

60

70

80

90

100

110

120

130

(b) Medium density

10 20 30 40 50 60 70 80 90 100 110 120
10

20

30

40

50

60

70

80

90

100

110

120

130

140

(c) High density

Figure 4.3: A responsive point chart based on data density (data points per pixel). (a) With a small
number of data points, all points and their corresponding labels are shown. (b) At a certain
density, labels are only shown for selected points. (c) At very high densities, the point chart is
replaced by a heatmap to more efficiently display the large amount of data. [Screenshots created by
the author of this thesis. Visualization created by Rabinowitz [2014]]

panning, Andrews [2018b] employs additional methods to ameliorate the overlapping of individual points,
including fisheye distortion, Cartesian distortion, and temporary displacements of points.

An interesting technique for responsive point charts based on the visualization’s density (data points
per pixel) rather than its width was introduced by Rabinowitz [2014]. The benefit of this approach is
that charts adapt to changing amounts of data and reconfigure their appearance accordingly. The patterns
applied in the responsive point chart shown in Figure 4.3 are the recomposition of annotations to only
show annotations for selected data records, and the switching of the encoding from a point chart to a
heatmap for high point densities. Other techniques, such as the recomposition of data records, would also
be applicable to responsive point charts, but no examples for such patterns could be found. If the data to
be encoded is inherently cyclic, a radial point chart, using polar coordinates, can be used to better reflect
the cyclic nature of the data [Barton and Recht 2018].

4.2.4 Parallel Coordinates

Even though parallel coordinates charts [Inselberg 2009] are rarely encountered in non-technical contexts,
they are quite popular when it comes to visualizing multidimensional data in visual analytics systems
[Macrofocus 2021]. In these kinds of charts, multiple dimensions are rendered as parallel axes, upon
which points are connected via paths (polylines). Each polyline represents a data record and its values at
the corresponding dimensions. The axes of a parallel coordinates chart are typically laid out horizontally,
meaning that the chart can be made narrower by reducing the distance between individual axes. Previously



36 4 Responsive Information Visualization

(a) 61rem (b) 50rem

(c) 40rem (d) 30rem (e) 30rem, consumer-
configured dimensions

Figure 4.4: A responsive parallel coordinates chart at different display widths. (a) At larger widths,
all dimensions are shown. (b) Dimensions are removed based on their priority, dimension labels
are rotated by 45 degrees, and a dimensions toggle is shown which enables the configuration
of dimensions. (c) Further dimensions are removed. (d) Further dimensions are removed,
and dimension labels are rotated by 90 degrees. (e) The dimension configuration panel has
been opened, and the visualization consumer has taken control over which dimensions to show.
[Screenshots of Andrews [2018a] created by the author of this thesis. Used with kind permission by Keith Andrews.]

mentioned axis-related responsive patterns, such as rotating labels and recomposing ticks, can also be
applied.

Another technique is to temporarily hide some dimensions, based on some criteria. When automatically
hiding dimensions, it is necessary to apply compensation patterns, giving the visualization consumer
additional controls to configure which dimensions are displayed and override the system’s hiding behavior.
An example of a responsive parallel coordinates chart incorporating some of these patterns can be seen in
Figure 4.4. If reducing the chart’s complexity is not appropriate, an alternative is to transpose the chart,
so its dimensions are laid out vertically and vertical scrolling can be used to explore the full chart.



Chapter 5

The RespVis Library

RespVis is an open-source D3 extension library for creating responsive SVG charts [Oberrauner 2022a;
Oberrauner 2022b]. It enables the use of CSS for the responsive styling and layout of visualizations.
RespVis renders visualizations as pure and complete SVG documents, meaning that the whole visualiza-
tion is contained in one SVG document and includes no elements of other XML namespaces. RespVis is
designed as an extension to D3, rather than a wrapper around it. Unlike most other visualization libraries
built on top of D3, RespVis does not hide D3 behind a custom API. Rather, visualization authors invoke
RespVis functionality by binding specially structured data to D3 Selections, which render visualization
components using render functions to transform the bound data into some form of visual representation.
Furthermore, RespVis espouses the strong separation between data and code and applies strong static
type-checking through the use of TypeScript.

5.1 Design
The design of the RespVis library is guided by six principles:

1. Style and Layout via CSS.

2. Pure and Complete SVG Documents.

3. Extend D3.

4. Separate Data and Code.

5. Strong Static Type-Checking with TypeScript.

6. Layered Component Hierarchy.

5.1.1 Style and Layout via CSS

Every part of a visualization that can be configured with CSS should be configured with CSS. The
visual appearance and layout of HTML elements can already be configured by CSS. Many presentation
attributes of SVG elements can also be styled with CSS. However, CSS-based layouting cannot be applied
to SVG elements, which seriously limits the responsive capabilities of using CSS for SVG charts. Without
powerful CSS layout technologies like Flexbox and Grid, all the individual components of an SVG chart
have to be positioned manually via JavaScript.

The RespVis Layouter enables the layouting of visualization components using powerful standard
CSS-based layout mechanisms such as Flexbox and Grid, by calculating the bounding boxes of SVG
elements from the CSS configuration of a shadow <div> hierarchy. The Layouter offers visualization

37



38 5 The RespVis Library

authors comparable configurability to what they are used to when laying out HTML elements. For
example, a legend can be configured to be placed to the right of a chart in a wider view, and beneath the
chart in a narrower view, using familiar CSS constructs.

5.1.2 Pure and Complete SVG Documents

Every RespVis visualization should be rendered as a pure and complete SVG document. An SVG
document is considered pure, if it contains only elements defined in the SVG namespace. This means that
it must not contain any <foreignObject> elements, which embed elements of an XML namespace other
than SVG, for example to embed HTML elements inside an SVG. RespVis does not support rendering to
HTML canvas elements, because graphics rendered there cannot be styled by CSS.

An SVG document representing a visualization is considered complete, if it contains the entire visual-
ization within it. Splitting visualization components across multiple SVG documents is considered bad
practice, because these components conceptually belong together and should be represented as a whole.
Having a full visualization enclosed in a complete SVG document allows the whole visualization to be
exported and stored as a standard-compliant SVG file, which can be further processed using a wide range
of tools.

5.1.3 Extend D3

RespVis is designed as a library which extends D3, rather than a wrapper around D3. Compared to other
visualization libraries which wrap a layer around D3, it does not provide an entirely new interface to
visualization authors, but uses D3 Selections as the core interface with which to interact. The typical
workflow of invoking RespVis functionality is to bind data objects of a specific structure to the elements
of a Selection and then to visualize this data by calling a render function to transform it into visual marks.
If D3 were hidden behind a custom API, its powerful capabilities would not be directly accessible to
users of the library, and would need to be exposed manually through special mechanisms. By designing
RespVis as an extension of D3, visualization authors can continue to leverage its expressive and concise
API and author their documents using data joins and the general update pattern.

5.1.4 Separate Data and Code

In RespVis, data and code are decoupled from each other. Everything in RespVis is built from functions
and objects without using any classes. Classes were avoided, since they are not common when working
with D3, and also because they lead to a tight coupling between data and functionality, which was deemed
undesirable. The decoupling of data and code results in various benefits compared to the prevalent object-
oriented way of building software. Among these benefits are easier reuse and testing of functions and a
software system which requires less cognitive effort to understand.

Functions are easier to reuse because they only require well-shaped input data to perform their task.
Mechanisms like inheritance or composition, which tend to increase the complexity of a system, are
unnecessary. Compared to class-based code, where an object needs to be instantiated before testing its
methods, it is easier to test functions in isolation when they are not coupled to their data. The reason for
this is that the instantiation of an object might be a complex operation dependent on other methods which
could affect the results of a test case.

Possibly the main benefit of decoupling data and code lies in the reduced complexity of the resulting
system. A software system which treats data and code as different entities might be composed of more
entities than a system which does not, but the individual entities have fewer dependencies between one
another. The reduced number of dependencies between entities results from separating entities into a data
entities group and a function entities group, with no relationships between them. The research related
to software complexity is hard to convey in simple terms, but one rule of thumb is well summarized



Design 39

Primitives

Axes Legends Series

Charts

Chart Windows

Low-Level 
Components

High-Level 
Components

Figure 5.1: The four layers of components in the RespVis library. Higher layers contain increasingly
higher-level components. [Image created by the author of this thesis.]

by Sharvit [2022a] as “A system made of disjoint simple parts is less complex than a system made of
a single complex part.” Of course, there are also drawbacks when designing a system adhering to this
concept, but they are not too severe and are therefore not listed here. For further reading on this topic,
the reader is directed to Moseley and Marks’ classic workshop paper [Moseley and Marks 2006] and
Sharvit’s forthcoming book [Sharvit 2022b].

5.1.5 Strong Static Type-Checking with TypeScript

The RespVis library is written in TypeScript, with everything being as strongly-typed as possible. For
the most part, interfaces are used to describe the structure of data objects, and function parameters
are annotated with types. Whenever working with D3 Selections, their contents are typed as strongly
as possible using the generic type variables available on Selections. Most of the time, it is sufficient
to specify only the type of elements contained in a Selection and the structure of the data bound on
them. If the element and data types of a Selection are declared, the various functions can assume
that parameters passed to them have specific types, and they do not have to worry about dynamic type
checking. Applying a strongly typed system has many advantages, such as better development tooling
and compile-time identification of type-related bugs. These advantages are described in Section 2.4.

5.1.6 Layered Component Hierarchy

Components in RespVis are structured in four layers with increasing levels of abstraction, as shown in
Figure 5.1. Components in higher layers make more assumptions about their content than components
in lower layers. The bottom-most layer with the lowest level of abstraction consists of visual Primitives,
represented by basic SVG elements like <rect>, <circle>, and <text>. These Primitives do not require
any data to be bound to them and are simply rendered by setting their attributes to the desired values.

The second layer comprises composite components such as Axes, Legends, and Series. These are
usually rendered as <svg> or <g> elements containing only primitive elements. The components in this
layer are the lowest-level components which are configured using structured data bound to their elements.
Series components are composite elements which render a collection of underlying elements using a data
join and the general update pattern.

The third layer consists of Chart components. Charts are composite components which can also include



40 5 The RespVis Library

other composite components. They are the visual entities which represent complete visualizations and
are usually composed of axes, series, and legends.

In many other visualization libraries, charts are the highest-level components visualization authors can
work with, but RespVis contains an additional layer above them, formed by Chart Window components.
Chart Windows are wrapper components around Charts. Unlike the previously discussed lower layers,
Chart Windows are not rendered as SVG elements but as HTML <div> elements. Their purpose is to
nest Charts into a Layouter component, render them in a three-phased rendering process, and provide an
optional toolbar for them. Toolbars are customizable and can hold different tools for different types of
chart.

5.2 Naming Conventions
The naming of entities in RespVis follows the same naming conventions used in D3 modules. The names
of entities usually start with the name of the group to which an entity belongs and are then further narrowed
down by successively adding more words until the exact entity is accurately described. This convention
is referred to as “top-down naming” in this thesis. An example of the top-down naming convention
can be seen in the D3 Scale [Bostock 2022b] and D3 Axis [Bostock 2022a] packages, in which entities
are called things like scaleLinear, scaleOrdinal, axisBottom, and axisLeft rather than linearScale,
ordinalScale, bottomAxis, and leftAxis. Since this is the exact opposite of how these entities would
be called in natural English, using such names can feel odd for the uninitiated. However, experience
shows working with APIs which follow such a naming convention is easier than with those which do
not, since users of such APIs can easily discover specialized entities by inputting the general entity type
and browsing through code completion suggestions provided by their development tools. Hence, entity
names in RespVis also follow this convention.

The RespVis public interface is made up of types and functions. Types are usually written as interfaces
and represent the shape of an object. Type names are written in PascalCase [TechTerms 2022b] and
adhere to the top-down naming convention. They always start with the group a type belongs to, and
further words are appended to distinguish ever more specialized types. The naming of types can best
be demonstrated by the different names given to interfaces describing data objects to configure different
kinds of Bar Charts. Data objects for the configuration of Basic Bar Charts are described by the ChartBar
interface, those of Grouped Bar Charts are described by the ChartBarGrouped interface, and those of
Stacked Bar Charts are described by the ChartBarStacked interface.

The API of RespVis is largely composed of functions. Function names are always written in camelCase
[TechTerms 2022a] and also follow the top-down naming convention. Function names always start with
the type of object on which they operate, followed by the operation they perform. A component in
RespVis always consists of a data object which describes it, an element to which the data object is bound,
and a render function which transforms the bound data into some form of visual representation. The
names of functions to create data objects for the configuration of components are always in the form
of componentNameData, such as chartBarData or chartBarGroupedData. Functions which transform
bound data into a visual representation are always named in the form of componentNameRender, such as
chartBarRender or chartBarGroupedRender.

5.3 Project Structure
RespVis is a NodeJS [OpenJS 2021] project hosted as an open-source project on GitHub [Oberrauner
2022a]. It is implemented in TypeScript and grouped into different packages by thematic affinity. The
TypeScript source files are compiled (transpiled) to JavaScript and bundled into one combined library
package, which visualization authors can then import into their projects. The Rollup module bundler
[Rollup 2022] is used to perform compilation and bundling. In addition to the bundled JavaScript library,



Project Structure 41

/

dist/

examples/

data/

vendor/

bar.html

...

index.html

respvis.css

respvis.[m]js

respvis.[m]js.map

respvis.min.[m]js

respvis.min.[m]js.gz

respvis.min.[m]js.map

node_modules

src/

lib/

bars/

core/

legend/

lines/

points/

tooltip/

examples/

data/

vendor/

bar.html

...

index.html

respvis.css

gulpfile.js

package.json

tsconfig.json

Figure 5.2: The most important files and directories of the RespVis project. [Figure created by the author
of this thesis.]

visualization authors are required to import an accompanying CSS file containing default styling for the
generated visualizations. The project also contains examples demonstrating usage of the library to create
various charts. These examples are HTML files which import the required files and contain JavaScript
to invoke RespVis functionality to create and update visualizations. The Gulp [Gulp 2022] task runner
is used to automate the build process of the library, including the preparation of the output directory, the
bundling of library code, and the copying of various files to the correct locations in the output directory.

The RespVis project contains configuration files for various tools, a src/ directory containing the
source code for the whole library and accompanying examples, a node_modules directory containing the
project’s cached NodeJS dependencies, and a dist/ directory containing built versions of the library and
examples ready for distribution. The configuration files are only discussed broadly here, later sections
go into more detail about the setup of the various tools. An overview of the most important files and
directories can be seen in Figure 5.2.



42 5 The RespVis Library

The root directory of the RespVis project contains the necessary project configuration files for NodeJS,
TypeScript, and Gulp. The NodeJS configuration file, package.json, describes the meta-data of the
NodeJS package. It is used to specify the project’s dependencies to other packages, and is required
for every NodeJS package, so that it can be uploaded to the npm package registry [npm 2022]. The
TypeScript configuration file, tsconfig.json, specifies the configuration the TypeScript compiler uses to
compile the library’s TypeScript source files into their JavaScript counterparts. The Gulp configuration
file, gulpfile.js, is used to describe atomic, recurring tasks and compositions of them. These tasks can
then be invoked via the Gulp command-line tool to automate otherwise tedious workflow processes.

The src/ directory at the root of the project contains all the implementation files of the library in the
src/lib/ directory and examples in the src/examples/ directory. The src/lib/ directory contains all
TypeScript source files of the library. They are partitioned into packages formed around the thematic
affinity of the various components. The Core package contains the core functionality of the library and is
a prerequisite for all the other packages. It includes the Layouter, Chart base functionality, Chart Window
base functionality, and various utility functions. The Legend package contains modules to render legends
consisting of a title and configurable labeled symbols. The Tooltip package contains functions to show
and hide tooltips, modify their contents, and position them. It also contains helper functions for Series to
prevent the replication of tooltip-related code in their data creation and rendering functions. The Bars,
Lines, and Points packages contain the necessary modules to render Series, Charts, and Chart Windows
for bar, grouped bar, stacked bar, line, and point visualizations. At the moment, all these packages are
built into a combined one, but there are plans to also distribute them separately to allow users of the
library to import only the packages they need.

The src/examples/ directory holds the source files of the developed examples. These examples
are distributed alongside the library files, and are copied over to the dist/examples/ directory when
building the project. Every example consists of an HTML file which imports all the requirements such as
respvis.js and respvis.css as well as external dependencies such as D3. It then invokes the necessary
RespVis functionality within a <script> tag embedded in the body of the HTML document. In addition
to individual example files, the examples directory also contains a vendor directory, which contains
third-party dependencies, and a data directory containing data imported by individual examples.

In addition to configuration files and the src/ directory, the root directory also contains two directories
which are automatically generated during the build process. These are the node_modules/ and dist/
directories. The node_modules/ directory exists in every NodeJS package. It is created when installing
the dependencies of a package and contains a cached copy of every direct and indirect dependency. The
dist/ directory is generated by the Gulp build tasks and contains all the files necessary to distribute a
built version of the RespVis library.

The code of the RespVis library is distributed as JavaScript bundles in both the older IIFE (Immediately
Invoked Function Expressions) format and the more modern ES modules format. These formats are
explained in more detail in Section 5.5. Bundles containing the .js extension in their file name contain
IIFE source code, whereas bundles containing the .mjs extension contain ES module source code.
Furthermore, these bundles are also distributed in minimized versions. The dist/respvis.[m]js file
contains the unmodified JavaScript bundle that can be used by library consumers who require readable
code, dist/respvis.min.[m]js contains the minified JavaScript bundle, and dist/respvis.min.[m]js
.gz contains the minified JavaScript bundle that has additionally been compressed in the GZIP format
[Deutsch 1996]. Alongside these code bundles, Rollup creates source maps for the dist/respvis.[m]js
and dist/respvis.min.[m]js bundles: dist/respvis.[m]js.map and dist/respvis.min.[m]js.map,
respectively. These source maps are interpreted by developer tools in browsers to map from certain
instructions in the bundled JavaScript code to the exact instruction in the original TypeScript code and
are immensely helpful for debugging.

Since RespVis aims to perform all possible styling in CSS, the distribution also contains a dist/
respvis.css file with the default styles for visualizations created with RespVis. Currently, this file is



NodeJS 43

written manually as a whole in the src/ directory and merely copied to the dist/ directory during the
build process. In the future, this process could be improved by employing a CSS preprocessing tool
such as SASS [Google 2022a], so that the styles can be split into multiple files during development.
Besides the bundled library source code and stylesheet, the dist/ directory also contains usage examples
of RespVis in the dist/examples/ directory, copied over from the src/examples/ directory.

5.4 NodeJS
NodeJS is a standalone JavaScript runtime [OpenJS 2021], built on top of the V8 JavaScript engine
[Google 2022b], which is an open-source and multi-platform runtime for the execution of JavaScript
code. NodeJS allows JavaScript code to be run outside of web browsers. NodeJS is heavily used for
server-side development to unify the technology stack of web developers and allow them to use JavaScript
for both client-side and server-side development. However, with the appropriate project setup, NodeJS
can be used for any kind of development, and it can be set up as a powerful framework to develop client-
side applications as done in this project. One of the most important tools in the NodeJS environment
is the npm package manager [npm 2022], which exists to simplify the sharing of packages and their
dependency management. The npm package registry hosts a huge number of packages that can easily be
imported and used to create new ones.

RespVis is developed as an npm package. Every npm package is configured via a package.json file.
This file contains all the necessary meta-data for a package to make it identifiable and provide information
about what the package contains. The package.json file also lists all the dependencies of a package, so
they can automatically be updated and downloaded during an installation process. A package can rely
upon both normal dependencies and development dependencies. Normal dependencies of a package are
required for it to work at run time and need to be installed alongside it. Development dependencies are only
required during development and are only installed when installing a local package. The package.json
file is located in the root directory of the RespVis package and can be seen in Listing 5.1.



44 5 The RespVis Library

1 {
2 "name": "respvis",
3 "version": "0.2.0",
4 "description": "A library to build responsive SVG-based visualizations.",
5 "main": "index.js",
6 "scripts": {
7 "build": "npx gulp build",
8 "start": "npx gulp"
9 },

10 "repository": {
11 "type": "git",
12 "url": "git+https://github.com/AlmostBearded/respvis.git"
13 },
14 "keywords": [
15 "..."
16 ],
17 "author": "Peter Oberrauner",
18 "license": "MIT",
19 "bugs": {
20 "url": "https://github.com/AlmostBearded/respvis/issues"
21 },
22 "homepage": "https://github.com/AlmostBearded/respvis#readme",
23 "devDependencies": {
24 "rollup": "^2.45.2",
25 "rollup-plugin-gzip": "^2.5.0",
26 "rollup-plugin-terser": "^7.0.2",
27 "@rollup/plugin-commonjs": "^18.0.0",
28 "@rollup/plugin-node-resolve": "^11.2.1",
29 "@rollup/plugin-typescript": "^8.2.1",
30 "@types/...": "...",
31 "browser-sync": "^2.26.14",
32 "del": "^6.0.0",
33 "gulp": "^4.0.2",
34 "gulp-cli": "^2.3.0",
35 "gulp-rename": "^2.0.0",
36 "tslib": "^2.2.0",
37 "typescript": "^4.2.4"
38 },
39 "dependencies": {
40 "d3": "^7.2.1",
41 "debounce": "^1.2.1",
42 "to-px": "^1.1.0",
43 "uuid": "^8.3.2"
44 }
45 }

Listing 5.1: The package.json file of the RespVis library. This file contains all the meta-data
describing the package and its dependencies. Keywords and type dependencies have been omitted
for readability.



Rollup 45

1 // do-something.js
2 export function doSomething() {
3 console.log(’something incredible was done!’);
4 }
5
6
7 // module.js
8 var someModule = (function () {
9 function doSomething() {

10 console.log(’something incredible was done!’);
11 }
12 return { doSomething };
13 })();
14
15
16 // application.js
17 someModule.doSomething();

Listing 5.2: IIFE (Immediately Invoked Function Expression) modules wrap the module code inside
a function, which is executed immediately after declaring it and returns the public interface of the
module. do-something.js contains the original code that should be wrapped as an IIFE module,
module.js contains the code of the IIFE module, and application.js demonstrates usage of the
module.

5.5 Rollup
The Rollup module bundler [Rollup 2022] is used to bundle the source code of the RespVis library
into bundles of different kinds. Bundling combines code written as multiple smaller modules into one
combined package to make it easier to distribute. Developers do not have to worry about the details of
how their code will be packaged, as Rollup takes care of all the necessary transformations. In addition
to bundling source code, Rollup also performs tree shaking on the bundled code, eliminating unused
code from the resulting bundle by statically analyzing dependencies between modules. Rollup supports
the creation of bundles in several common module formats, such as CommonJS, Asynchronous Module
Definition (AMD), Universal Module Definition (UMD), Immediately Invoked Function Expressions
(IIFE), and ES. RespVis is distributed as both IIFE and ES modules.

IIFE modules have been used for a long time. They were used to support modular software designs in
JavaScript before more elaborate module formats were defined. IIFE modules are anonymous functions
which are executed directly after declaring them. These functions contain the full logic of the module and
return an object representing its publicly accessible interface. This object is usually stored in a variable to
allow interaction with the module after its creation. IIFE modules are plain JavaScript and do not require
any modern features to be supported by browsers. They are simply loaded into web documents like any
other JavaScript resource via a <script> element. The example in Listing 5.2 illustrates the IIFE module
format.

ES modules are a more recent addition to JavaScript, introduced in ECMAScript 6 [ECMA 2015].
They are a native module system built around the import and export statements, which are widely
supported by modern browsers. Since the individual modules of the RespVis library are built as ES
modules anyway, Rollup mostly only has to merge them to create a valid, combined ES module. ES
modules are natively supported in browsers, so they can be loaded directly in a HTML document using
a <script> element. However, it is necessary to mark them as modules by setting the type attribute to
module on the loading <script> element, so that browsers can interpret them accordingly.



46 5 The RespVis Library

The core package of Rollup is only able to create mostly unmodified bundles from JavaScript source
files. Various plugins add frequently required additional functionality. There are two kinds of Rollup
plugins: bundle plugins, which affect the bundling process, and output plugins, which transform the
already bundled code.

The Rollup bundle plugins used for the bundling of RespVis are @rollup/plugin-node-resolve,
@rollup/plugin-commonjs, and @rollup/plugin-typescript. The @rollup/plugin-node-resolve
plugin is used to resolve imports from other NodeJS packages that reside in the node_modules directory.
Since many NodeJS packages are still implemented as CommonJS modules, which are not natively
supported by Rollup, the @rollup/plugin-commonjs plugin is used to interpret them. Lastly, the @rollup/
plugin-typescript plugin is used to compile TypeScript source files to JavaScript before bundling them.
The configuration for the TypeScript compiler is taken from the tsconfig.json file at the root directory
of the project.

The Rollup output plugins used during the bundling process are rollup-plugin-terser and rollup
-plugin-gzip. These plugins do not affect every created bundle, but are used to selectively transform
the contents of specific bundles. The rollup-plugin-terser plugin is used to create minified versions
of the RespVis bundles denoted by the term .min in their file names. Logically, they are the same as
the equivalent unminified bundles, but are compressed as much as possible to reduce their file size while
still containing valid, but unreadable, JavaScript code. The rollup-plugin-gzip plugin is used to create
compressed gzipped versions of the RespVis bundles denoted by the term .gz in their file extensions
[Deutsch 1996].

Note that D3 is not included in any of the generated RespVis bundles. RespVis is designed to be
an extension of D3 and, most of the time, an application wishing to use RespVis will already be using
D3. If D3 were to be included in the RespVis bundle, it would unnecessarily be loaded a second time.
To prevent D3 from being included in the created bundles, all dependencies on D3-related packages are
marked as external.

The actual bundling is performed via the JavaScript API of Rollup in the private bundleJS Gulp task.
This task is executed in various automation processes set up with Gulp, which are explained in more
detail in Section 5.6. The code of the bundleJS task can be seen in Listing 5.3. The RespVis library is
bundled via the Rollup.rollup function which returns the created bundle. This bundle is then written
to one or more target destinations via the Bundle.write method, which allows the specification of the
target bundle format and any plugins used to transform the code before writing it.



Rollup 47

1 async function bundleJS() {
2 const bundle = await rollup.rollup({
3 input: ’src/lib/index.ts’,
4 external: [
5 ’d3-selection ’,
6 ’d3-array’,
7 ’d3-axis’,
8 ’d3-brush’,
9 ’d3-scale’,

10 ’d3-transition ’,
11 ’d3-zoom’,
12 ],
13 plugins: [
14 rollupNodeResolve({ browser: true }),
15 rollupCommonJs(),
16 rollupTypescript()
17 ],
18 });
19
20 const minPlugins = [rollupTerser()];
21 const gzPlugins = [rollupTerser(), rollupGzip()];
22 const writeConfigurations = [
23 { ext: ’js’, format: ’iife’, plugins: [] },
24 { ext: ’min.js’, format: ’iife’, plugins: minPlugins },
25 { ext: ’min.js’, format: ’iife’, plugins: gzPlugins }, // .gz added by plugin
26 { ext: ’mjs’, format: ’es’, plugins: [] },
27 { ext: ’min.mjs’, format: ’es’, plugins: minPlugins },
28 { ext: ’min.mjs’, format: ’es’, plugins: gzPlugins }, // .gz added by plugin
29 ];
30
31 return Promise.all(
32 writeConfigurations.map((c) =>
33 bundle.write({
34 file: ‘dist/respvis.${c.ext}‘,
35 format: c.format,
36 name: ’respVis’,
37 globals: {
38 ’d3-selection ’: ’d3’,
39 ’d3-array’: ’d3’,
40 ’d3-axis’: ’d3’,
41 ’d3-brush’: ’d3’,
42 ’d3-scale’: ’d3’,
43 ’d3-transition ’: ’d3’,
44 ’d3-zoom’: ’d3’,
45 },
46 plugins: c.plugins,
47 sourcemap: true,
48 })
49 )
50 );
51 }

Listing 5.3: The private Gulp task which bundles the code of the RespVis libary. The bundle is
created once and then written to multiple targets.



48 5 The RespVis Library

1 Tasks for gulpfile.js
2 |-- clean
3 |-- cleanAll
4 | |-- <series>
5 | |-- cleanDist
6 | |-- cleanNodeModules
7 |-- build
8 | |-- <series>
9 | |-- cleanDist

10 | |-- <parallel>
11 | |-- bundleJS
12 | |-- bundleCSS
13 | |-- copyExamples
14 |-- serve
15 |-- default

Listing 5.4: A hierarchical representation of the tasks defined in the gulpfile.js file, as output by
the gulp --tasks command.

5.6 Gulp
Gulp is a task runner which automates workflow processes via a set of named tasks [Gulp 2022]. It
is used to automate processes like building the library and serving examples on a development server.
Tasks are useful for automating operations which need to be carried out repeatedly. They can perform an
atomic operation or be composed of other tasks. Composite tasks can execute tasks contained in them
in serial or in parallel. The tasks are implemented as JavaScript functions in the Gulp configuration
file, gulpfile.js, which can be found in the root directory of the project. Gulp’s approach of favoring
code over declarative configuration files means that the person setting up process automation needs to be
familiar with JavaScript. In return, the possibilities for configuration are endless.

Tasks in the gulpfile.js file are separated into private and public tasks. Private tasks are simply
asynchronous functions which perform a certain action that does not necessarily have to be executed
by external entities. The private tasks in the RespVis project are bundleJS, bundleCSS, copyExamples,
cleanDist, cleanNodeModules, and reloadBrowser. Public tasks are also asynchronous functions, but
they are exported and are therefore available to be executed via the Gulp command-line interface. Most
public tasks in the RespVis project are compositions of other tasks. The public tasks in RespVis are
clean, cleanAll, build, and serve. The default task, serve, is executed when no other task is specified
on the command line. A hierarchical representation of all the tasks in the gulpfile.js file is shown in
Listing 5.4.

Bundling the RespVis library’s source code is implemented in the private bundleJS task. It uses the
JavaScript API of Rollup to compile the TypeScript source files into JavaScript and bundle them into
IIFE and ES modules of varying levels of minification. This task has already been described in detail in
Section 5.5, so it won’t be discussed further here. It is executed during the public build and serve tasks.

The bundleCSS task is used to copy the src/respvis.css file to the dist/ directory. Since one of the
design pillars of RespVis is to style everything possible with CSS, this file contains all the default styles
for visualizations created with RespVis. Currently, this file is one large single file in the src/ directory
and is merely copied over to the dist/ directory, but there are plans to build this file from different
modules using a CSS preprocessor in the future, which will require an additional bundling step. This
task is executed as part of the public build and serve tasks.



Gulp 49

The private copyExamples task copies all the files from the src/examples/ directory to the dist/
directory. This task is required because the examples are developed inside the src/ directory, but need
to be made available in the distributable library packages. Another reason for the copying is that the
BrowserSync development server is initialized with the dist/ directory as its root, and every potentially
viewable file must reside somewhere in that directory. The copyExamples task is executed during the
public build and serve tasks.

The private cleanDist and cleanNodeModules tasks are used to delete the dist/ and node_modules/
directories, respectively. The cleanDist task is additionally exported as the public clean task. This
task is necessary because without cleaning the dist/ directory before every rebuild, redundant files
from previous builds that might have disappeared in the meantime would cause littering and confusion.
Therefore, this task is executed as the first step of the build task. The public cleanAll task is composed
of the private cleanDist and cleanNodeModules tasks. It is manually executed by a developer to delete
the currently cached dependencies of the project, to then reinstall them from scratch.

The public build task is responsible for building all parts of the project. It is a composite task which
executes the clean, bundleJS, bundleCSS, and copyExamples tasks. The clean task is invoked before
all of the other tasks, which are then executed in parallel. After this task finishes, the dir/ directory will
contain all distributable JavaScript and CSS files of the library, as well as the distributable examples/
directory.

To simplify the development of RespVis, a Browsersync [Browsersync 2022] development server is
used to host the built distributables. Browsersync is a useful tool for synchronized browser testing during
development. It has many features like simulated network throttling, interaction synchronization, and
file synchronization, which enable simultaneous testing in multiple environments. For RespVis, it is
only used for its ability to synchronize and hot-reload files on the fly. The public serve task, which is
also exported as the default task, initializes a Browsersync development server which serves files from
the dist/ directory. Automatic reloading of the development server is implemented manually via the
Gulp.watch function. This function enables a task to be executed whenever a change to a watched file
(matched by the supplied glob pattern) is detected. The serve task implements three different cases which
cause the development server to reload. Firstly, every time one of the TypeScript files in the src/lib/
directory changes, the bundleJS task is executed, and the browser is reloaded. Secondly, every time the
src/respvis.css file changes, the bundleCSS task is executed, and the browser is reloaded. Thirdly,
whenever a file in the src/examples/ directory is changed, the copyExamples task is executed, and the
browser is reloaded.



50 5 The RespVis Library



Chapter 6

RespVis Packages and Modules

The source code of RespVis is structured into packages containing modules written in the ES module
format. Currently, all packages are combined into a single, monolithic package during the build process,
but this will be changed in the future so that visualization authors can import only the packages they need.
The reason for this is that most authors will likely require only a subset of all the features included in the
library, and it would unnecessarily increase the size of their bundles to import them all. A good example
of this is D3, which also separates its extensive collection of functionality into different packages, which
can be successively added to a project as the need arises.

At the time of writing, the RespVis library comprises six packages: the Core package, Legend package,
Tooltip package, Bar package, and Point package, each containing various modules grouped by thematic
similarity. The Core package holds the core functionality of the library which all other packages depend
on. This packages includes the Layouter and Axis modules, Chart and Chart Window base modules, and
various utility functions and types. The Legend package contains a Legend module to visualize non-
spatial data via labeled symbols. The Tooltip package holds functions to control the display, placement,
and content of tooltips, as well as utility functions to simplify their configuration and initialization in
Series modules. The Bar package distinguishes between single-series, grouped, and stacked bars and
includes various low-level and high-level modules to render each of those types. Similarly, the Line
and Point packages contain low-level and high-level modules to visualize line charts and point charts
(scatterplots), respectively. The different packages and the dependencies between them are shown in
Figure 6.1.

51



52 6 RespVis Packages and Modules

Core Package

Layouter Module

Chart Module

Axis Module

Utility Modules

Chart Window 
Module

Line Package

Line Modules

Bar Package

Bar Modules Grouped Bar 
Modules

Stacked Bar 
Modules

Tooltip Package

Tooltip Module

Legend Package

Legend Module

Point Package

Point Modules

Figure 6.1: The six packages of the RespVis library and their most important modules. The
directional arrows indicate dependencies between packages. [Image created by the author of this thesis
using diagrams.net.]

6.1 Core Package
The Core package is located in the src/lib/core/ directory of the project and contains the necessary
core modules of the library. It forms the base upon which all other packages depend, and includes various
utility functions, the Layouter module, Axis module, Chart base module, and Chart Window base module.
RespVis heavily relies on utility functions to reuse recurring operations, and the Core package contains
utilities which simplify the handling of arrays, elements, D3 Selections, texts, positions, sizes, rectangles,
circles, and paths. The Layouter module enables the layout of SVG elements with CSS. The Axis module
has been included in the Core package because axes are important visualization components which occur
in nearly all visualizations. Lastly, the Core package offers Chart and Chart Window base modules for
the creation of more specialized Chart and Chart Window modules.

6.1.1 Utility Modules
The utilities provided by RespVis are split into multiple modules placed in the utilities/ directory of
the Core package. These modules include types and functions to perform array, element, D3 Selection,
and text operations, as well as modules to simplify geometric operations with positions, sizes, rectangles,
circles, and paths. Utility functions are grouped into modules by the type of entity on which they operate,
which is is also reflected in the utility function names. The names of utility functions follow the top-down
naming convention described in Section 5.2, which means that the names all begin with the type of entity
with which the function is associated.

Array utilities can be found in the Array Utility module in the utilities/array.ts file. The Array
class in the JavaScript base implementation already offers a wide variety of convenient methods to

https://diagrams.net/


Core Package 53

work with arrays. These methods form a solid foundation to handle a broad range of situations, but
not everything is covered, and some things require manual implementations, which is why the RespVis
library offers additional functions to simplify commonly encountered tasks. The arrayEquals function
is used to verify the equality of two arrays and also works with arbitrary levels of nesting. Array type
guard functions are used to determine at runtime whether or not a variable is an array. The function
arrayIs evaluates to true if the passed parameter is any kind of array, and arrayIs2D evaluates to true
if the passed parameter is a two-dimensional array. The arrayIs function is merely an alias for the
Array.isArray method and has been added to provide a consistent counterpart to the arrayIs2D type
guard function. The last function in the Array Utility module is the arrayPartition function, which
receives an array and a partition size as parameters and returns a partitioned version of the input array
with each chunk containing the number of items specified by the partition size parameter.

The Element Utility module located at utilities/elements.ts in the Core package contains functions
and constants related to elements in a document. The elementRelativeBounds function is used to
calculate the bounding box of an element relative to the bounding box of its parent in viewport coordinates.
Internally, it uses the getBoundingClientRect function, which returns the actual bounding box of an
element in viewport coordinates and, as opposed to other ways of accessing this information, this function
also takes transformations into account. Every element has a set of CSS styles applied to them, and the
Window.getComputedStyle method is used to query the active styles of elements. The style declaration
object returned by this method contains all possible CSS properties and their values, regardless of whether
or not they are set to default values. Sometimes this behavior may be desired, but in this library, the
computed style is mainly used for the preparation of a downloadable SVG document to transform styling
information set in CSS to attributes on the individual elements. If every possible CSS property on every
element would be mapped to an attribute, the resulting SVG document would be unnecessarily bloated
and hard-to-read, because only those properties that are not set to their default values actually have an
effect. For this reason, the elementComputedStyleWithoutDefaults function has been implemented to
calculate the computed style of an element and remove all default-valued properties from the returned
style declaration object. This is implemented by adding a <style-dummy> element as a sibling of the
element of interest, computing the styles of both elements, and calculating the difference between them.
To accelerate these calculations, the elementComputedStyleWithoutDefaults function accepts an array
of property names as its second parameter and will only consider the properties listed in this array. The
constant elementSVGPresentationAttrs array contains the names of all SVG presentation attributes
listed in the SVG 1.1 specification [Dahlström et al. 2011]. As soon as support for SVG 2 [Bellamy-
Royds et al. 2018] by most major browsers has reached maturity, this array will be extended to include
any newly added presentation attributes. Since only these SVG attributes can be styled via CSS, only
CSS properties representing presentation attributes have to be considered when preparing downloadable
SVG documents.

D3 Selection utilities are implemented in the Selection Utility module in the utilities/selection.ts
file. They include typing improvements for the D3 Selection, Transition, and SelectionOrTransition
interfaces, and include type guards to distinguish between them. The D3 Selection, Transition, and
SelectionOrTransition interfaces allow the specification of four type variables: the type of elements
contained in the Selection or Transition, the type of data bound to those elements, the type of the parents
of those elements, and the type of data bound to those parents. In most cases, the type variables related
to parent elements do not influence the logic of code using these interfaces and could be omitted to keep
it more concise. For this reason, these interfaces have been re-exported with default types set on all of
the type variables, which means that whenever type variables need to be manually specified, only those
that need to be set to specific types need to be explicitly stated. Further typing improvements have been
made to the attr and dispatch methods of the Selection interface. The D3 type declarations of the
Selection.attr method do not include null as a possible return value, which is wrong because this
method will result in a null value when reading an attribute that does not exist. To fix this inconsistency
and catch potential bugs related to it during compilation, the type declaration of the Selection.attr



54 6 RespVis Packages and Modules

method has been overwritten in the Selection Utility module to include null as a possible return value.
A less important but convenient improvement has been made to the type declaration of the Selection
.dispatch method, which allows the dispatching of custom events with certain parameters that control
different aspects of how this event is dispatched and the data bound to it. In practice, not all parameters
need to be specified at every invocation because the implementation of the Selection.dispatchmethod
will provide default values for all of them, but this is not reflected in the type declaration of the function,
which requires every parameter to be set every time the function is called. To fix this, the Selection Utility
module provides a type declaration overwrite for the Selection.dispatch function that wraps the type of
the parameters parameter into the native Partial utility type. Apart from these typing improvements, this
module also provides the isSelection and isTransition type guard functions that are used to distiguish
between D3 Selections and Transitions.

Utilities for dealing with <text> elements can be found in the Text Utility module in the utilities
/text.ts file, which contains basic functionality to set specific data-* attributes to specific values on
<text> elements. The Text Utility module holds functions that set data-* attributes controlling the
horizontal and vertical alignment of <text> elements, as well as their orientation. Horizontal and verti-
cal alignment is configured using the textAlignHorizontal and textAlignVertical functions, which
respectively set the data-align-h and data-align-v attribute on <text> elements to the value passed
into either function as a string enum parameter of type HorizontalAlignment or VerticalAlignment.
The HorizontalAlignment enum represents the string values "left", "center" and "right", while the
VerticalAlignment enum represents the values "top", "center" and "bottom". The distinct data-
align-h and data-align-v attribute values are then used in selectors of various CSS rules to declare
different values for the CSS text-anchor and dominant-baseline properties. Text orientation is set
using the textOrientation function, which sets the data-orientation attribute on <text> elements
to the value specified via the Orientation string enum parameter. The Orientation enum represents
the values "horizontal" and "vertical". These data-orientation attribute values are then used in
CSS to set the CSS text-anchor, dominant-baseline, and transform properties of <text> elements, in
order to rotate them accordingly and position them correctly inside their bounding box calculated by the
Layouter.

The Core package also contains utilities to simplify geometric operations. One of these utility modules
is the Position Utility module located in the utilities/position.ts file, which contains the Position
interface and various functions to perform operations related to it. The Position interface consists of the
x and y number properties. Rounding these properties is necessary to be able to correctly compare the
equality of two Position objects and to not render unnecessarily long strings when transforming them
into string representations. This rounding is performed with the positionRound function, which allows
the specification of the number of decimals the properties should be rounded to. Equality comparision
between two Position objects can be done with the positionEquals function, which evaluates to true
if all properties of both Position objects are equal and false if not. The positionToString function
can be used to transform a Position object into its "x, y" string representation, and its counterpart,
the positionFromString function, can be used to transform a correctly-formatted string into a Position
object. A large part of RespVis consists of modifying the attributes of elements. The positionToAttrs
function can be used to set the x and y attributes of elements to the values of the x and y members
of a Position object, and similarly, the positionToTransformAttr function can be used to set the
transform attribute of elements to a translation representing a Position object. The Position Utility
module also contains the positionFromAttrs function, which can be used to create a Position object
from an element’s x and y attributes.

The Size Utility module located in the utilities/size.ts file in the Core package is very similar
to the Position Utility module. It contains the Size interface, which consists of the width and height
number properties, the sizeRound function to round the properties of a Size object to a certain number of
decimals, and the sizeEquals function to compare two Size objects for equality. Similar to the equivalent
functions in the Position Utility module, the sizeToString and sizeFromString functions can be used to



Core Package 55

convert between Size objects and their string representations, and the sizeToAttrs and sizeFromAttrs
functions can be used to convert between Size objects and width and height attributes of elements.

Utilities for dealing with rectangles can be found in the Rectangle Utility module, which is located
in the utilities/rect.ts file of the Core package. This module contains the Rect interface, which is
the union of the Position and Size interfaces and therefore describes an object with the x, y, width,
and height number properties. Similar to the Position and Size Utility Modules, this module contains
the rectRound function to round Rect objects, the rectEquals function to compare two of them for
equality, the rectToString and rectFromString functions to convert between Rect objects and their
string representations, and the rectToAttrs and rectFromAttrs functions to convert between objects
and x, y, width, and height attributes of elements. Since the Rect interface is a combination of the
Position and Size interfaces, most of the functions in this module internally use the functions provided
by the Position and Size Utility modules. The rectMinimized function creates a minimized version
of the passed Rect object, which is infinitely small and positioned at the original Rect object’s center.
Minimized rectangles are used in transitions that grow or shrink <rect> elements from or to their centers.
When declaring a stroke for SVG elements, it is drawn exactly on the outline of an element’s shape,
which means that a stroke will extend outside the original bounds of an element by half the stroke width.
This can lead to unwanted artifacts like the stroke of bars in a bar chart overlapping over the chart’s
axes. To counteract this, the rectFitStroke function is offered by the Rectangle Utility module to adjust
the properties of Rect objects to account for a specific stroke width around them. Lastly, the Rectangle
Utility module provides functions to calculate specific positions inside rectangles. The most generic
of these functions is the rectPosition function, which enables the calculation of a position inside a
rectangle via a two-dimensional parameter that expresses a position as the percentual width and height
distance from a rectangle’s top-left corner. All other position-calculating rectangle utility functions are
simply shorthand functions that internally call the rectPosition function. The rectCenter function
returns a Position object representing the center position of a Rect object. The rectLeft, rectRight,
rectTop, and rectBottom functions return Position objects that represent the middle position of the
corresponding edge of a Rect object. Similarly, The rectTopLeft, rectTopRight, rectBottomRight,
rectBottomLeft functions can be used to calculate the corner positions of a rectangle.

The Circle Utility module can be found in the utilities/circle.ts file in the Core package. It
contains the Circle interface, which describes a circle via a center Position property and a radius
number property. This module also contains equivalent functions to those found in previously-mentioned
utility modules: circleRound, circleEquals, circleToString, circleFromString, circleToAttrs,
circleFromAttrs, circleMinimized, and circleFitStroke. Furthermore, the circlePosition func-
tion can be used to calculate positions inside a circle using an angle that defines an offset direction and an
offset distance from a circle’s center as a percentage of the circle’s radius. The Circle Utility module also
contains functions to create circles from rectangles, which are the circleInsideRect function to calcu-
late the largest circle that can fit inside of a rectangle and the circleOutsideRect function to calculate
the smallest circle that encloses a rectangle.

The Path Utility module is located in the utilities/path.ts file in the Core package and provides
functions to simplify the creation of path definitions that can be set as d attributes on <path> elements.
The pathRect function uses a Rect object to create a rectangle path definition that can be set on <path>
elements instead of using <rect> elements. Similarly, the pathCircle function uses a Circle element to
create a circle path definition that can be set on <path> elements instead of using a <circle> elements.
The reasons for using <path> elements rather than more descriptive shape elements is that their shapes
can be changed dynamically and it is possible to smoothly transition between shapes by interpolating
their path definition strings.



56 6 RespVis Packages and Modules

6.1.2 Layouter Module

The Layouter module is the most significant contribution of this work. A Layouter wraps around an SVG
document and allows configuration of the layout of elements in this document with CSS mechanisms like
Grid and Flexbox. Instead of implementing a custom layout algorithm, the Layouter utilises the layout
engines already built into browsers, which were summarized in Section 2.6.1. Earlier proof of concept
implementations used the FaberJS [FusionCharts 2021] and Yoga [Facebook 2021d] layout engines to
compute layouts, but these implementations limited layouting to either Grid-based or Flexbox-based
constraints. The use of built-in browser functionality in the current implementation leads to visualization
authors being able to use all the layouting capabilities natively offered by browsers, as well as reduced
bundle sizes.

CSS has always been the foundation of responsive web design for HTML-based websites, because of
its ability to adapt an element’s presentation and the possibility of defining different presentations for
different contexts via media queries. A large part of the responsive power of CSS comes from its ability to
change the positioning and layout of elements. As already mentioned in previous chapters, CSS can style
certain aspects of SVG documents, but it is not possible to use CSS layouting mechanisms to position SVG
elements. Although other visualization libraries such as Chartist [Kunz 2021] and Highcharts [Highsoft
2021] allow the use of CSS to style visualizations, none of them offer the possibility to modify the layout
of visualizations via CSS. Instead, visualization authors have to learn and use custom APIs to position
elements, limiting the range of possible layouts to those supported by the individual libraries.

The RespVis Layouter module distinguishes between laid-out and non-laid-out elements, since not
every element in a visualization profits from being laid out. The positions and sizes of laid-out elements
are calculated by the Layouter, whereas non-laid-out elements are ignored during the layout process.
Theoretically, the Layouter could be used to position all visualization elements, since all that is necessary
is to determine a good mapping for each element that maps the rectangular bounding box calculated
by the Layouter to the desired SVG shape of the element. However, the positioning of elements in a
visualization is constrained more strictly than element positioning in typical HTML documents, since
the content of a visualization is communicated through visual features such as position, size, shape,
and poximity of elements, rather than simply through text which can be positioned much more freely.
For this reason, many elements of a visualization must be positioned at specific locations with specific
dimensions, which means there is very little profit in laying them out with an elaborate layout algorithm.
Hence, exactly-positioned elements like the <rect> elements of Bar Series and the <circle> elements of
Point Series are usually positioned directly via their SVG attributes.

Using the Layouter requires a more complex rendering process than would be needed if the boundaries
of elements would already be known before rendering them. The way the Layouter works, elements
affecting the layout need to be pre-rendered in advance, and afterwards, when the positions and sizes of
elements are known, the visualization needs to be rerendered in its final form. This leads to the three-
phased render process shown in Figure 6.2. The three phases are: 1. the First Render phase to render
elements affecting the layout, 2. the Layout Process, and 3. the Second Render phase to render elements
affected by the layout. The elements affecting the layout of the visualization are mainly laid-out container
<svg> and <g> elements containing exactly-positioned child elements. Dynamically-sized elements such
as <text> elements and axes also need to be fully rendered in the First Render phase. The Layout Process
is where the Layouter calculates the layout of a visualization using the process described in the following
paragraphs. In the Second Render phase, the bounding boxes calculated during the Layout Process are
used to perform a second rendering of the complete visualization. Here, every element affected by the
layout, i.e. nearly every element, is rendered at its final position with its final dimensions. In theory, the
two render phases could be implemented as separate functions, but it is more convenient to just invoke
the same render function twice and perform some operations only if the boundaries of elements have
already been calculated.

The Layouter Module can be found in the layouter.ts file of the Core package. The main function of



Core Package 57

Render Process

1. First Render 3. Second Render

2. Layout Process

a) Replication c) Synchronizationb) Layout

Figure 6.2: The three phases of the RespVis Layouter’s Render Process: First Render, Layout Process,
and Second Render. During the First Render phase, every element which affects the layout needs
to be rendered. The second phase consists of the Layout Process performed by the Layouter.
The Layout Process includes three steps: a) Replication, in which laid-out SVG elements are
replicated with <div> elements, b) Layout, in which these <div> elements are automatically laid
out by the browser, and c) Synchronization, in which the bounding boxes of the laid out <div>
elements are set as bounds attributes on the original SVG elements. In the Second Render phase,
the calculated boundaries are used to re-render all elements of the visualization in their final
positions with their final dimensions. [Image created by the author of this thesis using diagrams.net.]

this module is the layouterCompute function which implements the three-stepped Layout Process shown
in the middle of Figure 6.2. The three steps are:

a) Replication: The structure of the SVG document to be laid out is replicated with HTML <div>
elements, because only HTML elements can be affected by CSS-based positioning. These elements
are referred to as “layout elements” and have the same classes and data-* attributes as the SVG
elements they are replicating.

b) Layout: The replicated layout elements are affected by CSS rules to configure their positioning and
are automatically laid out by browsers. If the selectors of CSS rules used to style SVG elements
only select them using classes and data-* attributes, the layout of these elements can be directly
configured in these rules, since the corresponding layout elements have the same classes and data-*
attributes.

c) Synchronization: In this step, the positions of layout elements are synchronized with their respective
SVG elements. The calculated bounding boxes of layout elements are set as bounds attributes on SVG
elements to make the boundary information available in subsequent renderings for the positioning of
nested elements. In addition, the Layouter sets various default attributes on different types of SVG
elements in an attempt to fit them into their calculated boundaries without having to individually do
so for every element.

During the Replication step, the structure of an SVG document is replicated with HTML <div>
elements, which is implemented via a hierarchical D3 data join, in which the original SVG elements
are bound as data objects to layout elements. The hierarchical data join results in a counterpart in the
hierarchy of layout elements for each SVG element that should be affected by the Layouter. Since not
every SVG element should be positioned via the Layouter, the Layouter must be told which elements
to ignore. For this, the data-ignore-layout and data-ignore-layout-children attributes have been
introduced. Elements having the data-ignore-layout attribute or which are children of elements having
the data-ignore-layout-children attribute will not be replicated and laid out by the Layouter.

To configure the layout of such layout elements in CSS, it must be possible to select them uniquely
with a CSS selector. This selector should be as similar as possible to the selector of their corresponding
SVG elements, to make it as easy as possible to configure the CSS properties of layout elements. For
this purpose, the class attributes and all data-* attributes of SVG elements are copied to their layout
elements. In addition to the classes of the replicated SVG element, the layout class is set on all layout

https://diagrams.net/


58 6 RespVis Packages and Modules

<div class="layouter">

  <svg class="chart">

    <g class="draw-area" />

    <g class="axis-left" />

    <g class="axis-bottom" />

    <g class="legend" />

  </svg>

</div>

<div class="layouter">

  <svg class="chart">

    <g class="draw-area" />

    <g class="axis-left" />

    <g class="axis-bottom" />

    <g class="legend" />

  </svg> 
  <div class="layout chart">

    <div class="layout draw-area"></div>

    <div class="layout axis-left"></div>

    <div class="layout axis-bottom"></div> 

    <div class="layout legend"></div>

  </div>

</div>

Before Replication After Replication

Replicated

Original

Figure 6.3: The replicated layout element structure of an SVG document. Every SVG element has
a corresponding layout element with the same classes and data-* attributes. In addition to the
classes of the original SVG element, every layout element also has the layout class to allow
specific targeting of layout elements via CSS selectors. [Image created by the author of this thesis using
diagrams.net.]

elements, which makes it possible to specifically select an SVG element’s layout element via the same
selector extended by the layout class. If CSS rules affecting SVG elements use only classes and data-*
attributes in their selectors, the properties of corresponding layout elements can be directly configured
in the same rules, since these selectors will also match them. An example of how an SVG document is
replicated with <div> layout elements can be seen in Figure 6.3.

The size of dynamically-sized elements depends on the size of their content. Since layout elements
exist separately from their SVG elements and cannot access their content, a manual solution had to be
implemented to set the size of layout elements to the content size of their SVG elements when required.
<text> elements are a good example of dynamically-sized elements, because their size is rarely explicitly
declared and usually depends on the size of their textual content. The custom CSS --fit-width and --
fit-height properties were introduced to activate the manual copying of dimensions from SVG elements
to their layout elements. These boolean properties can be set in CSS rules and are checked during the
Replication step via the window.getComputedStyle method. If at least one of these properties is set
to true, the dimensions of the SVG element are calculated with the Element.getBoundingClientRect
method and are set as width or height properties in the style attribute on the corresponding layout
element. This way, layout elements will have the same sizes as their SVG elements and can be properly
used in the calculation of the overall layout.

Layout elements are positioned according to the layout information specified in CSS rules during the
Layout step. Since layout elements are merely <div> elements which have been styled via CSS rules,
the browser can position them automatically via its integrated layout engine, which happens immediately
after they have been created or updated in the Replication step. After the Layout step, the final bounding
boxes of layout elements can be calculated and used for further operations.

In the Synchronization step of the Layout Process, the Layouter calculates the bounding boxes of
all layout elements and sets this boundary information as attributes on the corresponding SVG ele-
ments. Bounding boxes of layout elements are calculated relative to their parent elements using the
elementRelativeBounds utility function, converted to their string representations via the rectToString
utility function, and set as bounds attributes on corresponding SVG elements. These bounds attributes
can then be deserialized to Rect objects whenever the bounding boxes of SVG elements are needed for
calculations in subsequent renderings. In addition to setting bounds attributes, the Layouter also sets
specific default attributes on different types of SVG elements in an attempt to automatically fit them into
their bounding boxes without manually having to set attributes in subsequent renderings. If the Layouter

https://diagrams.net/


Core Package 59

Figure 6.4: A rendered Left Axis with ticks, a title, and a subtitle, and a Bottom Axis with ticks and
a title. [Image created by the author of this thesis using RespVis and Inkscape.]

would not set these default attributes, they would have to be set manually on every laid-out element in
the rendering functions, which would be less convenient and lead to duplicated code in various places.
For those SVG elements which can be mapped directly to rectangular areas, such as <svg> and <rect>
elements, the x, y, width, and height attributes are set to the values of the element’s bounding boxes.
SVG shape elements which have explicit sizes and positions but are not rectangular, such as <circle>
and <line> elements, also receive attributes that fit them into their boundaries in a way that was deemed
most sensible. Other SVG elements which are not explicitly sized, such as <g> and <text> elements,
are merely moved to the correct positions by setting their transform attributes to translations so that
their top-left corners align with the top-left corners of their bounding boxes. The Layouter does not
automatically reposition exactly-positioned elements based on the changed boundary of the composite
<svg> or <g> elements containing them, so this has to be implemented manually in the render functions
of various components.

6.1.3 Axis Module

Axes are implemented in the axis.ts Axis module in the Core package and are used to visualize scales
that map abstract values to spatial dimensions. Currently, only Cartesian axes, distinguished by their
position relative to a visualization’s drawing area, are provided by RespVis, since only Cartesian Charts
have been implemented so far. Furthermore, the implementation has so far been focused on Left and
Bottom axes, because they are the most commonly encountered types of Cartesian axes and cover most
use cases. An Axis consists of ticks, an optional title, and an optional subtitle, where the ticks are the
actual visualization of a spatial-mapping scale, and the title and subtitle can be specified for additional
description. An example of what a rendered Left and Bottom Axis might look like can be seen in
Figure 6.4.

The Axis interface describes the shape of a data object with which an Axis can be configured. It includes
a scale property, representing the scale to be visualized, the title and subtitle string properties, and
the configureAxis function property, which can be used to configure the underlying D3 Axis before
rendering it. Like most other modules, the Axis module consists of two main functions: a data creation
function and a render function. The axisData function is used to create an Axis data object from a

https://inkscape.org/


60 6 RespVis Packages and Modules

Figure 6.5: A Cartesian Chart containing a Left Axis, a Bottom Axis, a Grouped Bar Series, a Label
Series, and a Legend. [Image created by the author of this thesis.]

Partial<Axis> object parameter, where all non-set but required properties are filled with default values.
The axisBottomRender and axisLeftRender functions are used to render a Left and Bottom Axis in a
composite element on which an Axis data object has been bound. An Axis’ root element is a CSS Grid
container and defines the layout of the title, subtitle, and ticks elements. The default configuration of a
Left Axis positions these elements in a three-column layout in which the title, subtitle, and ticks elements
are placed in this order from left to right. For a Bottom Axis, the default configuration positions the same
elements in a three-row layout, in which the ticks, title, and subtitle elements are placed in this order
from top to bottom. Furthermore, the title and subtitle elements of a Left Axis are oriented vertically to
save horizontal space using the textOrientation utility function. Internally, the Axis module uses the
axisBottom and axisLeft functions from the D3 Axis package [Bostock 2022a] to render the ticks of an
Axis. Since these D3 functions use attributes to position and style elements, as many of these attributes
as possible must be removed directly after the ticks have been rendered to enable their configuration via
CSS.

6.1.4 Chart Module

Charts are high-level components which represent a complete visualization with a title, Axes, Legends,
and Series. An example of a rendered RespVis Chart containing a Left Axis, a Bottom Axis, a Grouped
Bar Series, a Label Series, and a Legend can be seen in Figure 6.5. A Chart is typically rendered into the
root <svg> element of an SVG document. The chartRender function from the chart.ts Chart module
in the Core package can be used to set the necessary classes and attributes on these <svg> elements.

As mentioned previously, RespVis currently only supports Cartesian Charts, which visualize data in
a Cartesian coordinate system. The Cartesian Chart base module is located in the chart-cartesian.ts
file in the Core package. The ChartCartesian interface describes a data object for the configuration of
Cartesian Charts via the xAxis, yAxis, title, and subtitle properties. Transposing Axes is a useful
pattern to improve the responsiveness of visualizations and can be configured using the flipped boolean
property of a Cartesian Chart’s data object. If the flipped property is set to false, the xAxis object is
used to configure the Bottom Axis and the yAxis object is used to configure the Left Axis. If it is set to
true, it is the other way around.

The chartCartesianData function is used to create a Cartesian Chart’s data object. This function gets
a partial data object with only those properties set which are of interest to the calling code, and all non-set
properties are filled with default values. The default values of the xAxis and yAxis properties are set by
the axisData function from the Axis module. The flipped property is initialized to false.

The rendering of Cartesian Charts is split into two functions, which have to be called separately, because



Core Package 61

not all parts of a Cartesian Chart can be rendered simultaneously. The general structure of a Chart must
be rendered before anything else can be rendered, since this includes the drawing area container element
into which individual Series are rendered. A Chart’s Axes need fully initialized scales to be rendered
correctly. However, the range of a scale, i.e. the range of values into which abstract values are mapped,
depends on the size of the drawing area and is only set during the render function of the individual Series.
Therefore, a Cartesian Chart’s Axes must be rendered after its Series in order to ensure fully initialized
scales.

The structure of a Cartesian Chart is rendered with the chartCartesianRender function, which sets
the necessary attributes and classes on the root element and attaches the drawing area <svg> element to
it. The drawing area is the container element into which the Series of a Chart are rendered. An <svg>
element without actual content is not able to receive input events, which means that it would, for example,
not be possible to capture scroll events to control a zoom interaction when the cursor is over the empty
area of the drawing area. To counter this, a transparent <rect> background element filling the whole
drawing area is added, allowing input events to be received even in empty areas.

The chartCartesianAxesRender function is used to render the Axes of a Cartesian Chart. This function
must only be called on elements with a bound ChartCartesian data object and only after the scales that
are to be visualized by the Axes have been fully initialized. Charts must first render the Chart’s structure
using the chartCartesianRender function, followed by the desired Series, and only then can the Chart’s
Axes be rendered using the chartCartesianAxesRender function. The chartCartesianAxesRender
function creates two <g> elements and renders a Left Axis and a Bottom Axis in them. Depending on
whether the flipped property in the bound data object is set to true or false, the xAxis data object is
used to configure the Bottom Axis or Left Axis and the yAxis data object is used to configure the other.

The elements of a Cartesian Chart are positioned using a CSS Grid layout. By default, a grid is
created which defines the header, axis-left, axis-bottom, draw-area, and legend areas. Most rows
and columns of this grid are sized to fit their content, with the only exception being the row and column
containing the drawing area, which are set to fill the remaining space not occupied by other rows and
columns. The default CSS configuration of a Cartesian Chart positions a potential Legend to the right of
the drawing area, but this can be changed by either adjusting the grid directly via CSS or activating one
of the preconfigured positions via the data-legend-position attribute. To simplify setting the data-
legend-position attribute, the chartLegendPosition function can be used, which sets this attribute to
the value of the passed LegendPosition enum parameter.

6.1.5 Chart Window Module

The Chart Window module is implemented in the chart-window.ts file in the Core package. Chart
Windows render a wrapped Chart inside a Layouter and decorate it with a Toolbar. They represent
an even higher-level layer of abstraction than Charts and are used to manage their rendering process
and configuration. In most other visualization libraries, Charts are provided as the highest level of
components that can be configured, which typically means that additional HTML elements for the
runtime configuration of Charts have to be created and managed by the embedding web page itself. Chart
Windows are rendered with the chartWindowRender function on HTML <div> elements. Their structure
consists of a <div> element in which the Toolbar is rendered, and of another <div> element on which
a Layouter is initialized and which holds the wrapped Chart’s SVG document. An example of a Chart
Window with an expanded Tool Menu containing two Nominal Filtering Tools and an SVG Download
Tool can be seen in Figure 6.6.

Currently, the Toolbar only contains the Tool Menu, a dropdown menu into which individual tools
are added as menu items or as submenus. Dropdown menus are created with the menuDropdownRender
function and consist of a title and a container for menu items. The current dropdown menu implementation
uses no JavaScript and simply shows menu items via CSS when there is a hover interaction. The Tool



62 6 RespVis Packages and Modules

Figure 6.6: A Chart wrapped in a Chart Window. The Tool Menu has been expanded by hovering
over it, and the menu entries of two Nominal Filtering Tools and the SVG Download Tool can be
seen inside. [Image created by the author of this thesis.]

Menu is created with the menuToolsRender function, which internally uses the menuDropdownRender
function to initialize it as a dropdown menu.

The Core package provides various tools which can be added to the Tool Menu of Chart Windows.
One of these tools is the Nominal Filtering Tool located in the tools/tool-filter-nominal.ts file of
the Core package. This tool is used to filter a nominal (or categorical) data dimension of a visualized
dataset via a dropdown menu that includes a Checkbox Series. Nominal data, in contrast to ordinal or
quantitative data, consists only of labels that do not have a quantitative value assigned to them and therefore
have no inherent ordering. The data object for the configuration of a Nominal Filter Tool is described
by the ToolFilterNominal interface, which contains properties to specify the title of the dropdown
menu, the individual options to be filtered, and the keys of these options. The toolFilterNominalData
function is used to create a data object of type ToolFilterNominal from a partial input object where
undefined properties are being filled with default values. Nominal Filtering Tools can then be rendered
on elements with bound ToolFilterNominal data objects using the toolFilterNominalRender function,
which internally uses the menuDropdownRender function to initialize a dropdown menu into which the
checkboxes representing the individual options of the filter are rendered as menu items.

Checkbox Series are implemented in the series-checkbox.ts file in the Core package and render a
series of checkboxes consisting of checkbox <input> elements with associated <label> elements. They
are configured using data objects in the form of the SeriesCheckbox interface, which contains properties
to determine the type of checkbox container elements and the labels of checkboxes. A data object of
this type can be created with the seriesCheckboxData function, which creates a complete object from a
partial one. Checkbox Series are rendered using the seriesCheckboxRender function, which generates
individual checkboxes using a data join requiring an array of Checkbox data objects so that a single data
object can be bound to each checkbox. Individual Checkbox data objects contain all the data needed to
render a single checkbox and are created by transforming the SeriesCheckbox data objects bound on the
Series’ root element. Single checkboxes consist of a container element, an <input> checkbox element,
and a <label> element. In order to semantically assign the <label> elements to their <input> elements,
the for attributes on <label> elements must be set to the ids of their corresponding <input> elements.
This requires assigning unique ids to <input> elements, which are generated via the uuid function and set
as id attributes on the <input> elements and as for attributes on <label> elements when the checkbox is
first created. The uuid function is an alias for the v4 function from the uuid npm package [UUID 2022]
and is used to generate UUIDs (Universally Unique IDentifiers) [Leach et al. 2005] of the fourth version,
which are very likely to be unique and therefore can be safely used as values for id attributes.



Legend Package 63

Figure 6.7: The three Legends resulting from the source code in Listing 6.1. The first Legend has
been configured to have rectangles as symbols, the second to have circles as symbols, and the
third with rectangle symbols horizontally laid out. [Image created by the author of this thesis.]

The SVG Download Tool is implemented in the tools/tool-download-svg.ts file of the Core package
and is included by default in every Chart Window. SVG documents embedded in HTML documents
cannot be downloaded by web consumers as easily as raster images, which can simply be downloaded
with native browser tools. Instead, SVG documents must be encoded in Blob objects and then set as
as object URLs in the href attributes of <a> elements. However, since the presentation of RespVis
visualizations is mainly configured using CSS, the active CSS properties must first be converted to
attributes before the SVG document can be downloaded. For this, a clone of the whole SVG document
is made to set attributes on the cloned elements without affecting the rendered visualization. After the
document has been cloned, attributes reflecting the active CSS configuration of the original elements are
set on cloned elements. The active CSS configuration of the original elements is calculated using the
elementComputedStyleWithoutDefaults utility function, which yields a list of CSS properties and their
values, only containing properties that are not set to defaults. After setting all the necessary attributes
on cloned elements, the string representation of the cloned document is calculated using the Element.
innerHTML property and encoded in a Blob object with the content type image/svg+xml. At present, the
string representation of the SVG document is not processed further or prettily formatted, which results
in a rather difficult-to-read file and which will be improved in future work. The Blob object containing
the SVG document is further transformed into an object URL via the URL.createObjectURL method and
set in the href attribute of a newly created <a> element. This newly created <a> element is then briefly
attached to the <body> element of the active HTML document and clicked using the Element.click
method, which initiates the download of the final prepared SVG document. Download SVG Tools can
be rendered as menu items in a Chart Window’s Tool Menu with the toolDownloadSVGRender function,
which initializes them and triggers the download of the SVG document embedded in the Chart Window
when a visualization consumer clicks on the menu item.

6.2 Legend Package
The Legend package in the src/lib/legend/ directory currently comprises a single file legend.ts,
containing the implementation of the Legend module. Legends are used to visualize scales whose
abstract values are not mapped to spatial dimensions in a coordinate system, but to other visual properties
such as colors, shapes, or sizes. The Legend implemented in this module illustrates such scales by
creating labeled, configurable symbols for every mapping and, therefore, this component is best suited
for the visualization of discrete value mappings. Continuous data dimensions can still be visualized
with this component, but they must be approximated by dividing the continuous domain of values into
equal discrete steps. An example demonstrating the use of the Legend package can be found in the
legend.html file in the src/examples/ folder. An excerpt from this example can be seen in Listing 6.1,
with its rendering shown in Figure 6.7.



64 6 RespVis Packages and Modules

1 <html>
2 <head>
3 <style>
4 /* ... */
5 .horizontal -legend .items {
6 flex-direction: row;
7 }
8 </style>
9 </head>

10 <body>
11 <div id="chart"></div>
12 <script type="module">
13 // imports, init chart window, init chart, ...
14
15 const labels = [0, 1, 2, 3].map((n) => ‘Label ${n}‘);
16
17 // legend with rectangle symbols
18 const rectLegendData = legendData({
19 title: ’Legend’,
20 labels,
21 symbols: (p, s) => pathRect(p, rectFromSize(s)),
22 });
23
24 // legend with circle symbols
25 const circleLegendData = legendData({
26 title: ’Legend’,
27 labels,
28 symbols: (p, s) => pathCircle(p, circleInsideRect(rectFromSize(s))),
29 });
30
31 // horizontal legend with rectangle symbols
32 const horizontalLegendData = rectLegendData;
33
34 // handle render process, resize, ...
35 </script>
36 </body>
37 </html>

Listing 6.1: An excerpt from the source code of the example implemented in the legend.html file
in the src/examples/ directory. When executed, this code results in the three Legends shown in
Figure 6.7. Non-essential parts of the source code have been removed to focus on Legend-related
configurations. The horizontal Legend is configured with the same data object as the rectangle
symbol Legend, but the items of the horizontal Legend are laid out horizontally via the CSS
flex-direction property.



Tooltip Package 65

A data object for the configuration of a Legend is defined by the Legend interface, which contains
properties to describe the title, labels, and symbols of a Legend. Symbols are configured via functions
which take the boundaries calculated by the Layouter into account to set the d attributes of <path> elements.
Legend symbols are rendered as <path> elements because these enable the rendering of arbitrary symbols
that can be changed dynamically, whereas the usage of <rect> or <circle> elements would be much more
restrictive. A disadvantage of using <path> elements is that, since they require manual configuration
of exact shapes via path definition strings, their usage is more tedious than the usage of more restricted
SVG elements, and they require slightly more annotation effort when it comes to accessibility. Colors of
individual items in a Legend are indirectly configured via data-style attributes on items whose values
are specified in the Legend data objects. Some style classes, such as the categorical-x classes for
categorical styling, are already provided by RespVis and handled in the library’s distributable CSS file.
Furthermore, custom style classes can easily be added by simply handling them in custom CSS rules.
Legend data objects can be created with the legendData function, which receives a partial input object
in which the properties which are not of interest to the calling code are not required to be set and are
populated with default values.

A Legend is rendered into elements which have a Legend data object bound on them using the
legendRender function. This function attaches a <text> element with which the title of the Legend is
shown and a <g> element into which the individual items of the Legend are rendered via a data join. To
perform the data join, one LegendItem data object per item to be rendered is needed to describe individual
legend items, and these are generated via transformation of the bound Legend data object. Via a data
join with these data objects, one <g> element is created for every legend item, to which a <path> element
for the symbol and a <text> element for the associated label are attached. The operations performed
during this data join can be directly modified via the custom enter, update, and exit events, which are
dispatched on the root element of the Legend and which respectively contain the data join’s enter, update,
or exit selection in a property of the event object. Also, the legendRender function sets the data-style
and data-key attributes on the legend item elements to values configured via the bound data object.

6.3 Tooltip Package
Tooltips display additional contextual information which is too expansive to be shown all the time. The
more information a visualization shows simultaneously, the more cognitive effort is required to interpret
it. Detailed information which may be valuable, but is not absolutely necessary for understanding a
visualization’s core message, is only shown via a Tooltip, displayed when a visualization consumer
interacts with an element in whose context this information stands. Since Tooltips are only shown
explicitly after consumer interaction, they may overlap and cover other elements of a Chart which would
otherwise be too important to hide. An example of a Bar Chart with additional information in a Tooltip
can be seen in Figure 6.8.

The Tooltip package is located in the src/lib/tooltip/ directory of the RespVis library and contains
the implementation of Tooltips and utility functions to simplify the configuration of Tooltips in Series
modules. Tooltips are merely HTML <div> elements styled via CSS and can be initialized with the
tooltip function. Their visibility, position, and content is controlled via the tooltipShow, tooltipHide,
tooltipPosition, and tooltipContent functions in the tooltip.ts file of the Tooltip package. Since
RespVis supports multiple simultaneous Tooltips, all of these functions have to be passed the Tooltip
element they should affect. Alternatively, passing a null value operates on a default Tooltip element
that gets attached to the active documents <body> element. Tooltips are shown and hidden via the
tooltipShow and tooltipHide functions, which respectively add or remove the show class to the Tooltip
element. The actual showing and hiding is done in CSS by setting the CSS opacity property of the
element depending on whether or not the show class is set. Positions of Tooltips are configured via the
tooltipPosition function. This function calculates positions through an anchor position in viewport
coordinates and a directional offset from that anchor. Specifying the anchor position is necessary, but the



66 6 RespVis Packages and Modules

Figure 6.8: A Bar Chart with an active Tooltip displaying additional information for the data record
associated with an individual bar. Since a Tooltip is only visible during interaction with a
particular element, it may sometimes overlap and cover other important parts of a Chart. [Image
created by the author of this thesis.]

directional offset can be omitted to have a sensible one chosen by the tooltipPosition function, so that
the Tooltip is always placed inside the visible area of the browser. The actual positioning is again done
in CSS by setting a combination of the CSS left, right, bottom, and top properties depending on the
offset direction of the Tooltip. A Tooltip’s content can be set with the tooltipContent function, which
sets the Tooltip’s inner HTML to the HTML string passed to the function.

Apart from Tooltips, the Tooltip package also contains utility functions to simplify the setup and
handling of Tooltips in different Series modules such as the Bar or Point Series modules. Interfaces
describing the data objects of Series can inherit from the SeriesConfigTooltips interface to add ad-
ditional properties for the configuration of Tooltips to these data objects. Among these properties is a
property to enable the Tooltips of the Series and properties to specify the contents and positions of indi-
vidual Tooltips based on their associated context-element and the current cursor position. In addition to
the SeriesConfigTooltips interface, the seriesConfigTooltipsHandleEvents function is provided to
automatically set pointerover, pointermove, and pointerout event listeners on Series to automatically
update the visibility, content, and position of Tooltips based on the SeriesConfigTooltips properties
stored in the Series’ data object. The usage of these utilities is optional, and Series modules are free to
provide their own properties for the configuration of Tooltips and their handling. However, for consistency
reasons, the way of configuring Tooltips should not differ too much between different types of Series, and
therefore it is recommended to use the utilities provided here unless there is a good reason not to.

6.4 Bar Package
A bar chart is used to compare the values of a quantitative variable (values) uniquely associated with
the distinct values of a qualitative variable (categories), using rectangles whose lengths are proportional
to the values. Examples of datasets suitable for plotting with a bar chart would be countries with their
populations, people with their ages, and web browsers with their market shares. Bar charts have been in
use for many centuries, with one of the earliest documented occurrences being Playfair [1786], and are
among the most frequently encountered types of visualizations in the modern web.

The bars of a bar chart can be either horizontally or vertically oriented. In horizontal bar charts,
sometimes also called row charts, categories are spread in equal intervals across the y-axis to define
the positions and heights of bars, and the associated values of categories are mapped on the x-axis
to determine their widths. Conversely, in vertical bar charts, sometimes also called column charts,
categories are spread in equal intervals across the x-axis to determine the positions and widths of bars,



Bar Package 67

and the values of categories are mapped on the y-axis to determine their heights. Horizontal bar charts
are better suited for display in narrow contexts than vertical bar charts, because category labels can be
positioned more easily without having to rotate them and because these charts can be vertically extended
by having visualization consumers scroll vertically, which is strongly preferable to scrolling horizontally.

The Bar package is located in the src/lib/bars/ directory of the RespVis library and contains modules
to create single-series bar charts, grouped multi-series bar charts, and stacked multi-series bar charts that
can be used in different situations. For every type of bar chart, the Bar package provides a respective
Series module to render only the actual bars, a Chart module to render a full Chart including a Bar Series,
Axes, and a possible Legend, and a Chart Window module to render a full Bar Chart embedded into a
Layouter with additional tools provided via a Toolbar. Higher-level modules are more convenient to use,
but they also impose more assumptions, and therefore restrictions, on lower-level components contained
within them. The implementations of the different types of Bar Charts and when to best use which type
is described in the following sections.

6.4.1 Single-Series Bar Modules

Single-series bar charts are what most people think of when thinking of bar charts. They consist of
only a single series of bars and can therefore only visualize differences between categories associated
with a single quantitative value at a time. The categories of a single-series bar chart are mapped to
spatial dimensions via a band scale which partitions available space into equal intervals (bands) with
configurable padding between them. Thus, the width of bars is calculated via the total number of
categories, the range they are spread on, and the padding between them. The mapping of quantitative
values to spatial dimensions in a single-series bar chart is performed using a continuous scale, which
maps quantitative values stored in a dataset into a range of values between two extremes via a continuous
interpolation function. In most cases, linear interpolation via a linear scale is used to map quantitative
values, but visualization authors can choose other forms of interpolation, such as logarithmic interpolation
via a logarithmic scale.

In RespVis, the Bar Series module renders collections of <rect> elements representing the bars in a
Bar Chart’s drawing area, and they are the lowest-level components required for rendering Bar Charts.
Their implementation is located in the series-bar.ts file of the Bar package and contains the SeriesBar
interface describing data objects to configure Bar Series, the seriesBarData function to create these data
objects from partial data objects, and the seriesBarRender function to render Bar Series. The SeriesBar
interface inherits Tooltip configuration properties from the SeriesConfigTooltips interface described
in Section 6.3 and adds additional properties to configure the used categories and values, the scales to
map them to spatial dimensions, whether or not bars should be oriented vertically or horizontally, and
properties to configure their colors and keys. After the desired SeriesBar data objects have been created
and bound to <svg> or <g> elements, the seriesBarRender function can be used to render Bar Series
on these elements. During rendering, the bound SeriesBar data object is transformed into an array of
Bar data objects, and a data join with these data objects is performed to render the individual bars. The
output range of the scales used to map categories and values to spatial dimensions is set to the dimensions
of the Bar Series element’s bounding box that has been previously calculated and stored in the bounds
attribute by the Layouter. With these scales, the dimensions of bars are calculated, and enter, update, and
exit transitions are utilized to interpolate them towards these new dimensions, so that changes are easier
to track, which leads to an improved experience for visualization consumers. As with all other Series,
the enter, update, and exit events containing the respective data join Selections are dispatched on the
Series’ root element and allow the injection of custom behavior into the different phases of the Series’
data join.

Bar Charts are Cartesian Charts, as discussed in Section 6.1.4, which display a Bar Series with
optional labels in their drawing area and visualize the scales used to map categories and values to spatial
dimensions as Axes. Their implementation can be found in the chart-bar.ts file of the Bar package,



68 6 RespVis Packages and Modules

1 select(’#chart’)
2 .append(’div’)
3 .datum(
4 chartWindowBarData({
5 categories: [’A’, ’B’, ’C’, ’D’, ’E’, ’F’],
6 values: [2, 4, 3, 1, 5, 2],
7 xAxis: { title: ’Category’ },
8 yAxis: { title: ’Value’ },
9 })

10 )
11 .call(chartWindowBarRender)
12 .call(chartWindowBarAutoResize)
13 .call(chartWindowBarAutoFilterCategories());

Listing 6.2: The source code to create the Bar Chart Window shown in Figure 6.9. This Bar
Chart Window is configured with the bound data object initialized with the chartWindowBarData
function and rendered with the chartWindowBarRender function. Since no special responsive

behavior is desired in this example, the default resize and category filter behavior is attached to the
Chart Window via the chartWindowBarAutoResize and chartWindowBarAutoFilterCategories
functions.

which contains the ChartBar interface to describe data objects used for the configuration of Bar Charts,
the chartBarData function to create a fully initialized ChartBar data object from a partial input object,
and the chartBarRender function to render Bar Charts into <svg> or <g> elements to which ChartBar
data objects have been bound. The ChartBar interface inherits all properties of the ChartCartesian
and SeriesBar interfaces and adds additional properties for the configuration of bar labels. It is not
necessary to manually specify all the offered properties of this interface, because the chartBarData
function initializes all of them with sensible defaults derived from the properties callers are interested in
and which have been specified in the partial data object passed to this function. The chartBarRender
function simply initializes a Cartesian Chart and renders a Bar Series and an optional series of labels to
annotate the bars of the Bar Series into the Cartesian Chart’s drawing area. Furthermore, the scales used
for rendering the Bar Series are visualized as Left and Bottom Axes of the Cartesian Chart, and pointer
event listener to highlight bars and their corresponding ticks on the category axis are attached to bars.

Bar Chart Windows wrap a Bar Chart into a Layouter, so its elements can be laid out with CSS. They
also add a Toolbar containing tools to filter a Bar Chart’s categories and download an SVG version of the
current chart. Their implementation can be found in the chart-window-bar.ts file of the Bar package,
which contains the ChartWindowBar interface to describe data objects for the configuration of Bar Chart
Windows, the chartWindowBarData function to create a fully initialized ChartWindowBar data object
from a partial input object containing only relevant properties, and the chartWindowBarRender function
to render a Bar Chart Window into <div> elements onto which a ChartWindowBar data object has been
bound. The ChartWindowBar interface inherits all properties of the ChartBar interface to configure
the wrapped Bar Chart and adds additional properties needed for the filtering of categories. Bar Chart
Windows are rendered with the chartWindowBarRender function, which renders a Toolbar including a
Nominal Filtering Tool for categories and an SVG Download Tool, initializes the nested Bar Chart with
the filtered values, and renders it, according to the render process required by the Layouter defined in
Section 6.1.2.

By default, Bar Chart Windows are not automatically updated when the viewport size changes or if
their categories are filtered. Instead, a custom resize event listener is attached to the Chart Window’s



Bar Package 69

Figure 6.9: The Bar Chart Window resulting from the code in Listing 6.2. [Image created by the author of
this thesis using RespVis.]

element, in which the Chart Window is responsively reconfigured according to the changed viewport
size and subsequently rerendered via the chartWindowBarRender function. Furthermore, Bar Chart
Windows dispatch custom categoryfilter events containing the currently active categories whenever
categories are activated or deactivated via the Nominal Filtering Tool. These events can be used to respon-
sively reconfigure Bar Chart Windows according to the currently active categories by adding a custom
categoryfilter event listener which updates the configuration of the Bar Chart Window accordingly
and rerenders it. If no special configuration is required when the viewport size or the category filtering
changes, then the chartWindowBarAutoResize and chartWindowBarAutoFilterCategories functions
can be used to attach resize and categoryfilter event listeners that implement the default behavior. A
simple example of how a scalable Bar Chart Window with filterable categories can be created is shown
in Listing 6.2 and the resulting visualization is shown in Figure 6.9.

6.4.2 Grouped Bar Modules

Grouped bar charts, sometimes also called clustered or multi-series bar charts, consist of multiple series
of bars and are used to visualize differences between categories, where each category is associated
with a number of quantitative variables. Every category must be associated with the same number of
quantitative variables, effectively splitting categories into subcategories, and all values assigned to these
subcategories must be comparable with one another, meaning they must have the same units and scales.
As with single-series bar charts, categories in grouped bar charts are also mapped to spatial dimensions
using band scales, but here, two different band scales have to be applied. The category band scale divides
the available space along either the x or y-axis into equal intervals based on the number of categories,
whereas the subcategory band scale further divides these intervals into even smaller intervals based on
the number of subcategories. Quantitative values are again mapped to spatial dimensions via a single
continuous scale.

In RespVis, the Bar package provides the Grouped Bar Series, Grouped Bar Chart, and Grouped Bar
Chart Window modules, which are very similar to their Single-Series Bar Chart counterparts, to render
grouped bar charts in different levels of hierarchy. Grouped Bar Series are the lowest-level components of
these and render a collection of <rect> elements meant for display in the drawing area of a Grouped Bar
Chart. The difference between a Grouped Bar Series and a Single-Series Bar Series is that this one offers
additional properties needed for the configuration of subcategories and that other properties specified as
one-dimensional arrays in Single-Series Bar Series are here required to hold two-dimensional arrays so
that their values can be assigned to the two-dimensionally grouped bars. All bars belonging to the same



70 6 RespVis Packages and Modules

1 select(’#chart’)
2 .append(’div’)
3 .datum(
4 chartWindowBarGroupedData({
5 categories: [’A’, ’B’, ’C’],
6 subcategories: [’X’, ’Y’, ’Z’],
7 values: [
8 [2, 3, 4],
9 [3, 4, 2],

10 [2, 1, 3],
11 ],
12 xAxis: { title: ’Category’ },
13 yAxis: { title: ’Value’ },
14 legend: { title: ’Subcategories ’ },
15 })
16 )
17 .call(chartWindowBarGroupedRender)
18 .call(chartWindowBarGroupedAutoResize)
19 .call(chartWindowBarGroupedAutoFilterCategories())
20 .call(chartWindowBarGroupedAutoFilterSubcategories());

Listing 6.3: The source code to create the Grouped Bar Chart Window shown in Figure 6.10. The
Grouped Bar Chart Window is configured via a bound data object, which is initialized with the
chartWindowBarGroupedData function and rendered with the chartWindowBarGroupedRender
function. Since no special responsive behavior is desired in this example, the default

resize, category filter, and subcategory filter behavior is attached to the Chart Window via
the chartWindowBarGroupedAutoResize, chartWindowBarGroupedAutoFilterCategories, and
chartWindowBarGroupedAutoFilterSubcategories functions.

subcategory have the same style to simplify their comparison across all categories.

Grouped Bar Charts are Cartesian Charts which contain a Grouped Bar Series with optional labels in
their drawing area, Left and Bottom Axes that visualize the scales used by this Grouped Bar Series, and
a Legend that visualizes the color-encoding of subcategories. These Charts also attach event listeners to
various elements to highlight bars, labels, ticks on the category axis, and Legend items that semantically
belong together.

Grouped Bar Chart Windows contain a Grouped Bar Chart wrapped inside a Layouter and render it
following the render process defined in Section 6.1.2 to allow positioning of their elements via CSS.
Furthermore, they decorate their nested Charts with Toolbars containing tools to download them as
SVG documents and filter their categories and subcategories. Every time a visualization consumer
interacts with these Nominal Filtering Tools to change the configuration of displayed categories and
subcategories, the categoryfilter and subcategoryfilter events are dispatched, containing the newly
active categories and subcategories respectively. Visualization authors can either implement special
resize and filter behavior by attaching custom listeners to these events, or can activate the default
behavior via the chartWindowBarGroupedAutoResize, chartWindowBarGroupedAutoFilterCategories
, and chartWindowBarGroupedAutoFilterSubcategories functions. Example code to create a scalable
Grouped Bar Chart Window whose categories and subcategories can be filtered via the Toolbar is shown
in Listing 6.3 and the resulting visualization is shown in Figure 6.10.



Bar Package 71

Figure 6.10: The Grouped Bar Chart Window resulting from the source code in Listing 6.3. The
Tool Menu popup has been manually displaced to not cover the legend. [Image created by the author
of this thesis using RespVis.]

6.4.3 Stacked Bar Modules

Stacked bar charts are multi-series bar charts, in which individual series of bars are rendered as stacks
rather than as clusters. Since the bars of stacked bar charts do not share a common baseline, these
charts are not well-suited for comparing individual subcategories across multiple categories but rather
for approximating the contributions of subcategories to the totals of their categories. A bar’s color is
determined by its subcategory so that all bars that have the same subcategory are colored equally. Percent
stacked bar charts are variants of stacked bar charts, in which the totals of all categories are transformed
to equal 100% by treating the quantitative values of subcategories as ratios of a whole. Due to this
transformation, all stacks of bars are of equal length, meaning the information about their totals is lost,
but the share subcategories contribute to their categories is emphasized more strongly than in ordinary
stacked bar charts. Bar stacks are created by splitting the category axis into equal intervals via a band
scale into which bars representing the different subcategories are stacked on top of one another. The
lengths of stacked bars are proportional to their quantitative values and are calculated via a continuous
scale which maps these values into the range of the value axis.

The RespVis library provides a Series, a Chart, and a Chart Window module to render stacked bar
charts, all of which are highly similar to their grouped bar chart counterparts. Bars in Stacked Bar Series
are grouped two-dimensionally (category/subcategory), and configuration properties affecting individual
bars are specified as two-dimensional arrays. The main difference between Stacked Bar Series and
Grouped Bar Series lies in how the positions and extents of bars are calculated. Stacked Bar Charts are,
just like Grouped Bar Charts, Cartesian Charts consisting of a Stacked Bar Series with optional labels, two
Axes, and a Legend. Furthermore, Stacked Bar Chart Windows are also equivalent to Grouped Bar Chart
Windows as they wrap a Stacked Bar Chart into a Layouter, manage their render process, and decorate
it with a Toolbar containing two Nominal Filtering Tools to filter categories and subcategories. Percent
Stacked Bar Charts can be rendered either by directly setting percentual values that lead to all category
totals summing up to 100% or by enabling the valuesAsRatios configuration property, which causes
quantitative values to be treated as ratios which are transformed to percentual shares of their category
totals during rendering. Listing 6.4 shows example code to create a scalable Stacked Bar Chart Window
whose categories and subcategories can be filtered. The chart itself is shown in Figure 6.11.



72 6 RespVis Packages and Modules

1 select(’#chart’)
2 .append(’div’)
3 .datum(
4 chartWindowBarStackedData({
5 categories: [’A’, ’B’, ’C’],
6 subcategories: [’X’, ’Y’, ’Z’],
7 values: [
8 [2, 3, 4],
9 [1, 4, 2],

10 [2, 1, 3],
11 ],
12
13 // to turn into a percent stacked bar chart
14 // valuesAsRatios: true,
15
16 xAxis: { title: ’Category’ },
17 yAxis: { title: ’Percent’ },
18 legend: { title: ’Subcategories ’ },
19 })
20 )
21 .call(chartWindowBarStackedRender)
22 .call(chartWindowBarStackedAutoResize)
23 .call(chartWindowBarStackedAutoFilterCategories())
24 .call(chartWindowBarStackedAutoFilterSubcategories());

Listing 6.4: The source code to create the Stacked Bar Chart Window shown in Figure 6.11a.
The Stacked Bar Chart Window is configured with the bound data object initialized via the
chartWindowBarStackedData function and rendered with the chartWindowBarStackedRender
function. Since no special responsive behavior is desired in this example, the default

resize, category filter, and subcategory filter behavior is attached to the Chart Window via
the chartWindowBarStackedAutoResize, chartWindowBarStackedAutoFilterCategories, and
chartWindowBarStackedAutoFilterSubcategories functions. Setting the valuesAsRatios
variable to true would result in the Percent Stacked Bar Chart shown in Figure 6.11b.



Bar Package 73

(a) Stacked Bar Chart

(b) Percent Stacked Bar Chart

Figure 6.11: The Stacked Bar Chart and Percent Stacked Bar Chart rendered by the source code in
Listing 6.4. The Tool Menu popup has been manually displaced to not cover the legend. (a) An
ordinary Stacked Bar Chart to compare category totals and subcategory contributions to these
totals. (b) A Percent Stacked Bar Chart to better compare subcategory contributions to category
totals. [Image created by the author of this thesis using RespVis.]



74 6 RespVis Packages and Modules

1 select(’#chart’)
2 .append(’div’)
3 .datum(
4 chartWindowLineData({
5 xValues: [’A’, ’B’, ’C’, ’D’, ’E’, ’F’],
6 yValues: [[0, 1, 3, 1, 5, 2]],
7 xAxis: { title: ’X Values’ },
8 yAxis: { title: ’Y Values’ },
9 })

10 )
11 .call(chartWindowLineRender)
12 .call(chartWindowLineAutoResize);

Listing 6.5: The source code to create the Line Chart Window shown in Figure 6.12. The Line
Chart Window is configured with a bound data object initialized with the chartWindowLineData
function and rendered with the chartWindowLineRender function. Since no special responsive
behavior is desired in this example, the default resize behavior is attached to the Chart Window
via the chartWindowLineAutoResize function.

6.5 Line Package
Line charts show trends in data by plotting individual data records as regularly-spaced markers connected
by lines. The variables used to position markers can be of any type as long as they can be spatially
encoded via scales. Usually, continuous scales are used to map abstract variables to marker positions, but
depending on the variable’s data types, any suitable type of scale that maps into the respective axis’ range
can be used. Single-series line charts visualize two-dimensional data via a single line, and multi-series
line charts visualize multi-dimensional data via multiple lines. In multi-series line charts, each line
represents a different variable and is usually given a unique color. This color encoding is frequently
visualized via a legend.

The Line package is located in the src/lib/line/ directory of the RespVis library and contains
modules to render Line Series, Line Charts, and Line Chart Windows. A Line Series renders a collection
of <path> elements representing polylines, whose individual points are calculated by mapping arrays of
x and y values into the bounding box of the Series’ root element via x and y scales. Line Series support
rendering multiple polylines by specifying multiple arrays of y values which can all be mapped via the
same scale. The colors of individual polylines are specified via style classes. Individual <path> elements
are rendered via a data join using an array of data objects created by transforming the bound Series data
object. As with other Series, the data join can be customized via custom enter, update, and exit event
listeners.

Line Charts are Cartesian Charts which contain a Line Series, multiple optional Point Series for the
markers of individual lines, and optional labels for these markers. Additionally, if a Line Chart renders
multiple lines and color-encodes them, a Legend is rendered by the Line Chart. Marker labels and tooltips
can be configured via the Chart’s data object. Furthermore, Line Charts attach pointer event listeners to
lines, markers, and legend items to highlight related elements when hovering over one of them.

Line Chart Windows wrap a Line Chart into a Layouter, handle their render process so that their
elements can be laid out with CSS, and decorate them with a Toolbar. By default, the Toolbars of Line
Chart Windows only contain an SVG Download Tool, because only a limited number of Tools have been
developed so far, and they are not necessarily applicable to Line Charts. Depending on the type of data
visualized by a Line Chart, a Nominal Filtering Tool could be added to the Toolbar. Once additional tools



Point Package 75

Figure 6.12: The Line Chart Window resulting from the source code in Listing 6.5. [Image created by
the author of this thesis using RespVis.]

for different types of data, like a tool to filter quantitative values, have been developed, they could also be
added to a Line Chart’s Toolbar. Example source code to create the scalable Line Chart Window shown
in Figure 6.12 can be found in Listing 6.5.

6.6 Point Package
Point charts, also commonly known as scatter charts or scatterplots, show the relationship between
two variables by plotting them as points in a Cartesian coordinate system. Each of the two variables
determines a point’s position on one of the coordinate system’s two axes, and typically, these variables
contain quantitative data. However, the data type of the variables used to position points is not relevant, as
long as their values can be mapped to spatial dimensions via scales. Point charts are particularly suitable
for discovering potential correlations and patterns between variables. They can also visualize more than
two variables simultaneously by encoding additional variables via the colors, sizes, and shapes of the
plotted points. Point charts which encode an additional variable as the sizes of points are called bubble
charts.

The Point package is located in the src/lib/point/ directory of the RespVis library and contains the
Point Series, Point Chart, and Point Chart Window modules. Point Series render a collection of <circle>
elements, whose center positions are calculated by mapping arrays of x and y values into the bounding
boxes of the Series’ root elements via x and y scales. The colors of points are specified as style classes,
and their radiuses can be configured, meaning that it is also possible to create bubble charts with these
modules. As with other Series, individual elements of Point Series are rendered via a data join using an
array of data objects created through transforming the bound Series data object, and this data join can
be customized by providing custom enter, update, and exit event listeners. Point Charts are Cartesian
Charts which contain Point Series in their drawing areas and two Axes visualizing the scales used to
render the Point Series.

Point Chart Windows wrap a Point Chart into a Layouter, handle the nested Chart’s render process so
that their elements can be laid out with CSS, and decorate them with a Toolbar. Currently, the Toolbars
of Point Chart Windows only contain SVG Download Tools, because only a limited number of Tools,
not suited for application on Point Charts, have been developed so far. Further Tools which can also be
applied to Point Charts, such as Zoom and Quantitative Filter Tools, are planned for development, and
once these are available, they will be added to the default Tools attached to the Toolbars of Point Chart
Windows. Example source code to create a scalable Point Chart Window can be found in Listing 6.6,
and the resulting visualization is shown in Figure 6.13.



76 6 RespVis Packages and Modules

1 select(’#chart’)
2 .append(’div’)
3 .datum(
4 chartWindowPointData({
5 xValues: [10, 50, 20, 15, 35, 15, 35, 25, 45],
6 yValues: [1.5, 4, 3, 3.5, 4.5, 2.5, 4, 4, 4.5],
7 xAxis: { title: ’X Values’ },
8 yAxis: { title: ’Y Values’ },
9 })

10 )
11 .call(chartWindowPointRender)
12 .call(chartWindowPointAutoResize);

Listing 6.6: The source code to create the Point Chart Window shown in Figure 6.13. The Point
Chart Window is configured with a bound data object initialized with the chartWindowPointData
function and rendered with the chartWindowPointRender function. Since no special responsive
behavior is desired in this example, the default resize behavior is attached to the Chart Window
via the chartWindowPointAutoResize function.

Figure 6.13: The Point Chart Window resulting from the source code in Listing 6.6. [Image created by
the author of this thesis using RespVis.]



Chapter 7

RespVis Usage

This chapter discusses how different responsive patterns can be implemented using the modules provided
by the various RespVis packages presented in Chapter 6. The src/examples directory of the RespVis
library contains examples showing how the library can be used to create different kinds of charts with
varying degrees of responsiveness. An example of a news article with an embedded RespVis Chart can
be seen in Figure 7.1.

Even though users can manually compose custom charts using low-level modules like Series, Axes, and
Legends, all the examples in this chapter focus on creating responsive visualizations using higher-level
Chart Windows. Chart Windows represent convenient interfaces which allow visualization authors to
focus on responsive configuration, rather than on laborious tasks like setting up a Chart’s structure and
handling their render process.

All the example visualizations provided by the RespVis library follow the same basic structure, outlined
in Listing 7.1, namely:

1. Import the RespVis CSS file respvis.css. This file contains the necessary default styling of
visualizations rendered by the RespVis library [Line 3].

2. Import D3 and RespVis. RespVis is a D3 extension library, and therefore the functionality of both
libraries needs to be imported from either IIFE or ES modules to create visualizations with RespVis
[Lines 9 and 11].

3. Attach a new <div> element to the root <div> element (the one with id="chart") [Line 14].

4. Bind a fully-initialized data object to the <div> element, containing the render configuration of the
Chart Window. This data object is usually created by deriving default properties from a partial
object via one of the chartWindowXData functions [Lines 12 and 15].

5. Render the Chart Window using the appropriate chartWindowXRender function [Line 16].

6. Attach a resize event listener to the <div> element. This event listener should update the Chart
Window’s bound data object based on media queries and rerender it. Theoretically, it is possible
to use the actual viewport size in pixels for responsive configuration decisions, but it is strongly
recommended to use media queries via the window.matchMedia function instead. Using media
queries allows a Chart’s JavaScript configuration to be based on the same media queries that might
be used for the CSS configuration of the same Chart [Line 17].

Since one of the core premises of RespVis is to enable the configuration of SVG-based visualizations
with CSS, many responsive patterns can be implemented without JavaScript. In general, everything which
does not affect the content or behavior of a Chart should be handled in CSS, including the configuration of
presentation attributes and the layout of laid-out elements. Configuration changes which affect a Chart’s

77



78 7 RespVis Usage

(a) 70rem (b) 30rem

Figure 7.1: An example showing a RespVis Chart Window embedded into the context of a news
article. (a) At 70rem, the content is displayed in its entire width. (b) At 30rem, the chart is
transposed, its Legend is moved above the drawing area, the legend title is hidden, axis tick labels
are shortened, and fewer axis ticks are shown. [Image created by the author of this thesis.]

1 <html>
2 <head>
3 <link rel="stylesheet" href="./path/to/respvis.css" />
4 <style >/* user styling */</style>
5 </head>
6 <body>
7 <div id="chart"></div>
8 </body>
9 <script src="./path/to/d3.js"></script>

10 <script type="module">
11 import { chartWindowXData , chartWindowXRender } from ’./path/to/respvis.mjs’;
12 const data = {/* ... */};
13 const chartWindow = d3.select(’#chart’)
14 .append(’div’)
15 .datum(chartWindowXData(data))
16 .call(chartWindowXRender)
17 .on(’resize’, function () {/* ... */});
18 </script>
19 </html>

Listing 7.1: The basic structure of all responsive examples provided by RespVis. Some parts have
been removed, so as not to distract the essential parts.



Axes 79

content or behavior, like changing the visualized data, texts, or interaction mechanisms, still need to be
applied in JavaScript. Knowing what kind of configuration is better done in CSS or JavaScript is not
immediately obvious and can be confusing to figure out for developers unfamiliar with RespVis. There
are plans to allow configuring even more in CSS, but this would require extensive redesign and refactoring
and, therefore, will be considered for a future release of the library.

7.1 Axes
Axes are used to visualize the spatial mapping of abstract values, by rendering abstract values as ticks
at the appropriate spatial positions to which they are being mapped. In addition to ticks, an Axis also
contains an optional title and an optional subtitle to describe the axis. Axis-related responsive patterns
are of great importance, since nearly every Chart includes Axes, and often improving their responsiveness
alone can already significantly improve a visualization consumer’s experience.

The following responsive patterns can be applied to Axes in RespVis visualizations:

• Rotate tick labels: One of the most effective ways to prevent tick labels from overlapping is rotating
them by up to 90 degrees. All the available information is preserved and only presented differently.
Tick labels can be rotated by setting a rotation in the CSS transform property on them and modifying
their CSS text-anchor property accordingly.

• Simplify tick labels: In some cases, rotating tick labels may not be desired, or labels might still
overlap after rotation. The next best thing in these cases is to shorten the tick labels, if shorter
textual representations exist. The D3 Axis object used for rendering ticks is accessible via the
configureAxis function property on an Axis’ data object. How exactly tick labels are shortened is
specified as a formatting callback set via the D3 Axis’ tickFormat function.

• Remove ticks: If neither rotation nor shortening of tick labels is applicable, the last thing that can be
done is to reduce the number of ticks shown. This can be achieved either via a D3 Axis’ ticks or
tickValues function, or via the CSS display property. A D3 Axis’ ticks function allows specifying
the desired number of ticks that shall be rendered, and the D3 Axis’ render function decides how
many ticks to create based on this number and other contributing factors. The tickValues function
of a D3 Axis allows for much more control than the ticks function, because it is used to specify the
exact values for which ticks shall be rendered.

• Simplify title/subtitle: Since Axes do not just contain ticks, but also optional titles and subtitles,
these should not be ignored when optimizing the responsiveness of Axes. Titles and subtitles can
be simplfied by specifying shorter text strings via the title and subtitle properties on Axes’ data
objects.

• Relocate title/subtitle: The titles and subtitles of Axes can be relocated by modifying the Axes’ grid
layouts via the CSS grid-template property.

• Remove title/subtitle: The titles and subtitles of Axes can be hidden via the CSS display property.

7.2 Legends
Legends visualize the non-spatial mapping of abstract values such as mappings to colors, shapes, and
sizes via labeled symbols. They are used to explain a visual encoding to a viewer and are frequently
encountered. As such, Legends must not be ignored when optimizing a visualization’s responsiveness.

The following responsive patterns can be applied to Legends in RespVis visualizations:

• Relocate Legend: A Legend’s position in its containing Chart can be controlled by directly mod-
ifying the Chart’s grid layout via the CSS grid-template property, or by positioning the Legend



80 7 RespVis Usage

at predefined "top", "right", "bottom", and "left" positions via the data-legend-position
attribute.

• Simplify title: A Legend’s title can be shortened by specifying a shorter text string for it via the
title property on a Chart’s data object.

• Remove title: If the title cannot be further shortened, or if it does not convey too much important
information, it can be hidden via the CSS display property.

• Simplify symbol labels: If the symbol labels can be shortened, this can be done via the labels
property on a Legend’s data object. This property allows the specification of the text strings of all
labels as an array of string values.

• Relocate labeled symbols: Changing the layout of labeled symbols is one of the most effective
responsive patterns applicable to Legends. By default, labeled symbols are laid out using CSS
Flexbox layouting. Thus, whether labeled symbols are laid out horizontally or vertically can be
controlled using the CSS flex-direction property on their container element.

7.3 Bar Charts
Bar charts are used to compare categories associated with quantitative values by visualizing them as bars
whose lengths depend on the quantitative dimension of the data. In the case of multi-series bar charts, like
grouped bar charts and stacked bar charts, categories are further divided into subcategories associated
with quantitative values and compared with one another rather than categories themselves. Bars in a
multi-series bar chart are usually colored based on their subcategories, which is why these charts often
include a legend to explain the color coding.

The different responsive patterns applicable to bar charts have already been discussed in Section 4.2.1,
and the focus here lies on demonstrating their implementation using RespVis Bar Chart Windows.
Listing 7.2 demonstrates how some of these patterns can be implemented to create the responsive Bar
Chart shown in Figure 7.2. In practice, the responsive patterns which can be applied to different variants
of Bar Charts are very similar, which is why this section does not differentiate between them.

The following responsive patterns can be applied to RespVis Bar Charts:

• Rescale drawing area: Scaling a Bar Chart to fit into the available space is done automatically by
their render functions. By default, Axes and Legends only take up as much space as necessary, and
the remaining space is filled with the Chart’s drawing area. Bars and labels in this drawing area are
automatically scaled and positioned to fit into the allocated space.

• Reduce bar padding: Reducing the padding between bars frees up space that can be used by the bars
themselves. Padding can be controlled via the padding function on the categoryScale property of
a Bar Chart’s data object.

• Simplify bar labels: When reducing the width of Bar Charts, bar labels might start overlapping one
another, and it might be a good idea to shorten them, if possible. Bar labels can be configured using
the labels property of a Bar Chart’s data object.

• Remove bar labels: An alternative to prevent bar labels from overlapping is to hide some or even
all of them. The best way of implementing this is to hide them via the CSS opacity or display
properties.

• Transpose Chart: By default, a Bar Chart is rendered with vertical bars, transposing it would make
the bars horizontal. Horizontal Bar Charts are better suited for narrow spaces, because the bar labels
and Axis tick labels of the categories are easier to place. Furthermore, Horizontal Bar Charts are



Bar Charts 81

allowed to extend outside the visible viewport because vertical scrolling is more acceptable than
horizontal scrolling. A Bar Chart can be transposed by setting the flipped property on its data
object.

• Remove bars: Sometimes it might be required to reduce the number of bars to maintain a good visu-
alization consumer experience. Bars representing certain categories or subcategories can be hidden
by declaring them as inactive via the activeCategories and activeSubcategories properties on
a Bar Chart’s data object. Using these properties is easier than manually adapting the categories,
values, categoryScale, and valueScale properties on the data object. Furthermore, categories
and subcategories which have been hidden via the activeCategories and activeSubcategories
properties can also be unhidden by consumers via a Chart’s Toolbar, if they wish to see the additional
data.

• Apply Axis patterns: Since a Bar Chart usually contains two Axes to visualize the spatial mappings
of categories and values, all the responsive patterns described in Section 7.1 can and should be
applied to Bar Charts.

• Apply Legend patterns: For a Multi-Series Bar Chart containing a Legend, the responsive patterns
mentioned in Section 7.2 can and should be applied.



82 7 RespVis Usage

1 <html>
2 <head>
3 <link rel="stylesheet" href="./path/to/respvis.css" />
4 <style>
5 #chart { width: 100%; height: 75vh; min-height: 25rem; }
6 /* legend below draw area on narrow screens */
7 @media (max-width: 40rem) { .chart {
8 grid-template: ’axis-left draw-area’ 1fr
9 ’. axis-bottom’ auto

10 ’. legend’ auto / auto 1fr; }}
11 /* hide legend title on narrow screens */
12 @media (max-width: 40rem) { .legend .title { display: none; } }
13 /* row-layout of legend items on narrow screens */
14 @media (max-width: 40rem) { .legend .items { flex-direction: row; } }
15 /* hide every second y-axis tick on narrow screens */
16 @media (max-width: 40rem) { .axis-y .tick:nth-of-type(2n) { display: none; } }
17 </style>
18 </head>
19 <body><div id="chart"></div></body>
20 <script src="./path/to/d3.js"></script>
21 <script type="module">
22 import { /* ... */ } from ’./path/to/respvis.mjs’;
23 import { sites, revenues, years } from ’./path/to/data/company.js’;
24 const data = {
25 categories: sites, subcategories: years, values: revenues ,
26 labels: { labels: revenues.flat().map((r) => d3.format(’.2s’)(r)) },
27 legend: { title: ’Years’ },
28 xAxis: { title: ’Site’ }, yAxis: { title: ’Revenue’, subtitle: ’[USD]’ },
29 };
30 const chart = d3.select(’#chart’).append(’div’)
31 .datum(chartWindowBarGroupedData(data))
32 .call(chartWindowBarGroupedAutoFilterCategories(data))
33 .call(chartWindowBarGroupedAutoFilterSubcategories(data))
34 .call(chartWindowBarGroupedRender)
35 .on(’resize’, handleResize);
36 function handleResize() {
37 const wide = window.matchMedia(’(min-width: 40rem)’).matches;
38 const widest = window.matchMedia(’(min-width: 60rem)’).matches;
39 // transpose chart on narrow screens
40 data.flipped = !wide;
41 // move labels from top to right of bars in transposed chart
42 data.labels.relativePositions = !wide ? { x: 1, y: 0.5 } : { x: 0.5, y: 0 };
43 // simplify y-axis tick labels using scientific notation on narrow screens
44 const yTickFormat = largeWidth ? d3.format(’,’) : d3.format(’.1s’);
45 data.yAxis.configureAxis = (a) => a.tickFormat(yTickFormat);
46 chart.datum(chartWindowBarGroupedData(data)).call(chartWindowBarGroupedRender);
47 }
48 </script>
49 </html>

Listing 7.2: The implementation of the responsive Grouped Bar Chart shown in Figure 7.2.
Depending on the available width, axis tick labels are simplified, the legend title is hidden,
the legend is moved below the drawing area, and the whole chart is transposed. Non-essential
parts have been removed for clarity.



Bar Charts 83

(a) 60rem

(b) 40rem (c) 30rem

Figure 7.2: The responsive Grouped Bar Chart resulting from the implementation in Listing 7.2.
(a) At a width of 60rem, the chart is not yet transposed and revenue axis tick labels are not yet
abbreviated. (b) At a width of 40rem, revenue axis tick labels are abbreviated using scientific
notation. (c) At a width of 30rem, the chart is transposed, bar labels are moved to the right of
bars, the legend title is hidden, the legend is moved below the drawing area, legend items are laid
out in a row, and every second revenue axis tick is hidden. [Image created by the author of this thesis using
RespVis.]



84 7 RespVis Usage

7.4 Line Charts
Line charts are visualizations which show trends in data by plotting markers at regular intervals and
connecting them with lines. Single-series line charts show trends in two-dimensional data via a single
line, and multi-series line charts show trends in multi-dimensional data via multiple lines. The different
lines in a multi-series line chart can be seen as representations of subcategories in the data and are usually
colored differently to reflect this. For this reason, a multi-series line chart typically includes a legend to
explain the color coding of subcategories.

The responsive patterns applicable to line charts have already been discussed in Section 4.2.2. The
focus here lies in demonstrating how they can be implemented using RespVis Line Chart Windows.
Listing 7.3 demonstrates how some of these patterns can be combined to create the responsive Line Chart
shown in Figure 7.3.

The following responsive patterns can be applied to RespVis Line Charts:

• Rescale drawing area: As for Bar Charts, Line Charts are automatically scaled by their render
functions. The default behavior is that Axes and potential Legends only take up as much space as
necessary, and whatever space is left is filled with the Chart’s drawing area. Elements contained in
the drawing area like lines, markers, and labels are automatically scaled and positioned to fit into
the available space.

• Remove markers: If a Chart contains a large number of individual data points, visual clutter can be
reduced by not showing markers for every single data point. The best way to remove markers is to
hide them via the CSS opacity or display properties.

• Rescale markers: An alternative to removing markers is to decrease their size. Marker sizes can be
controlled via the markers.radiuses property on the data objects of Line Charts.

• Simplify marker labels: The labels of markers might start overlapping when trying to fit a Line Chart
into increasingly narrow widths. A good solution for this is to shorten marker labels by providing
shorter text strings for them via the labels property on the Line Chart’s data object.

• Remove marker labels: Sometimes, shortening marker labels may not be possible, desired, or
effective enough. An alternative to prevent them from overlapping is to remove some or all of them.
The recommended way to remove marker labels is to hide them via the CSS opacity or display
properties.

• Transpose Chart: Even though Line Charts are less frequently transposed than Bar Charts, there are
still situations when transposing a Line Chart could improve the visualization consumer’s experience.
One such situation would be a Line Chart with so many data points that a Horizontal Line Chart
with limited width is too dense. Transposing such a chart into a Vertical Line Chart might reduce
the data density by allowing the Chart to extend outside the visible viewport and having consumers
scroll vertically. Furthermore, Vertical Line Charts are useful for heavily annotated Line Charts
because labels are much easier to place than in horizontal ones. Line Charts can be transposed by
setting the flipped property on their data objects.

• Apply Axis patterns: As with all Charts which use Axes to visualize spatial mappings, the responsive
patterns described in Section 7.1 can and should be applied to the Axes in a Line Chart. The Axes
of a Line Chart could even be removed completely via the CSS display property, turning the Line
Chart into a Sparkline, but this should be considered carefully because information about the scale
is lost when hiding Axes.

• Apply Legend patterns: Where a Multi-Series Line Chart contains a Legend to explain a non-spatial
data encoding, the responsive patterns discussed in Section 7.2 can and should be applied.



Line Charts 85

1 <html>
2 <head>
3 <link rel="stylesheet" href="./path/to/respvis.css" />
4 <style>
5 #chart { width: 100%; height: 75vh; min-height: 25rem; }
6 /* show subtitle on wide screens */
7 @media (max-width: 40rem) { .chart .header .subtitle { display: none; } }
8 /* show axis only on wide screens */
9 @media (max-width: 40rem) { .axis { display: none; } }

10 /* show more ticks the wider the screen */
11 .tick { display: none; }
12 @media (min-width: 40rem) { .tick:nth-of-type(2n + 1) { display: block; } }
13 @media (min-width: 60rem) { .tick { display: block; } }
14 /* show only first and last marker on <40rem screens */
15 .point { opacity: 0; }
16 .point:first-of-type, .point:last-of-type { opacity: 1; }
17 @media (min-width: 40rem) { .point { opacity: 1; } }
18 /* show first and last marker label only on <40rem screens */
19 .label:not(:first-of-type), .label:not(:last-of-type) { display: none; }
20 @media (min-width: 40rem) { .label { display: none; } }
21 </style>
22 </head>
23 <body><div id="chart"></div></body>
24 <script src="./path/to/d3.js"></script>
25 <script type="module">
26 import { /* ... */ } from ’./path/to/respvis.mjs’;
27 import { years, averageOpens } from ’./path/to/data/google-stock.js’;
28 const data = {
29 subtitle: ’2004 to 2022’, xValues: years, yValues: [averageOpens],
30 xAxis: { title: ’Years’ },
31 yAxis: { title: ’Average Open Prices’, subtitle: ’[USD]’ },
32 };
33 const chart = d3.select(’#chart ’).append(’div’)
34 .datum(chartWindowLineData(data)).call(chartWindowLineRender)
35 .on(’resize’, handleResize);
36 function handleResize() {
37 const wide = window.matchMedia(’(min-width: 40rem)’).matches;
38 const widest = window.matchMedia(’(min-width: 60rem)’).matches;
39 /* longer title on wide screens */
40 data.title = wide ? ’Open Prices of the Google Stock’ : ’Google Stock Prices ’;
41 // shorten price tick labels using scientific notation on <60rem screens
42 const priceTickFormat = widest ? d3.format(’,’) : d3.format(’.2s’);
43 data.yAxis.configureAxis = (axis) => axis.tickFormat(priceTickFormat);
44 // shorten year tick labels on <60rem screens
45 const yearTickFormat = widest ? (v) => v : (v) => ‘’${v.slice(-2)}‘;
46 data.xAxis.configureAxis = (axis) => axis.tickFormat(yearTickFormat);
47 chart.datum(chartWindowLineData(data)).call(chartWindowLineRender);
48 }
49 </script>
50 </html>

Listing 7.3: The implementation of the responsive Line Chart shown in Figure 7.3. Depending on
the available width, axis ticks and markers are hidden, axis tick labels are simplified, and on very
narrow screens, axes are hidden turning the line chart into a sparkline. Non-essential parts of the
implementation have been removed for clarity.



86 7 RespVis Usage

Open Pr ices of  the Google Stock
2004 to 2022

0

400

800

1,200

1,600

2,000

2,400

2,800

A
ve

ra
ge

 O
pe

n 
P

ri
ce

s
[U

SD
]

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

Years

(a) 60rem

Open Pr ices of  the Google Stock
2004 to 2022

0.0

400

800

1.2k

1.6k

2.0k

2.4k

2.8k

A
ve

ra
ge

 O
pe

n 
P

ri
ce

s
[U

SD
]

'04 '06 '08 '10 '12 '14 '16 '18 '20 '22

Years

(b) 40rem

2004: $76

2022: $2.8k

Google Stock Pr ices

(c) 30rem

Figure 7.3: The responsive Line Chart resulting from the implementation in Listing 7.3. (a) At a
width of 60rem, all markers are shown and tick labels are not shortened. (b) At a width of 40rem,
tick labels are shortened. (c) At a width of 30rem, axes are hidden, the title is simplified, the
subtitle is hidden, and only the first and last markers and marker labels are shown, turning the
chart into a sparkline. [Image created by the author of this thesis using RespVis.]



Point Charts 87

7.5 Point Charts
Point charts, sometimes also called scatterplots, are used to discover patterns and correlations in data by
plotting individual data points as points in a Cartesian coordinate system. Often, point charts are only
used to visualize two-dimensional data by plotting points of the same color and size, but they can also be
used to visualize multi-dimensional data by adding color, size, or shape encodings. If such an additional
encoding is used, a point chart usually includes a legend to explain it.

The responsive patterns applicable to point charts have already been discussed in Section 4.2.3. The
focus here lies on demonstrating their implementation using RespVis Point Chart Windows. Listing 7.4
shows how some of these patterns can be implemented to create the responsive Point Chart displayed in
Figure 7.4.

The following responsive patterns can be applied to RespVis Point Charts:

• Rescale drawing area: As with other Cartesian Charts, the drawing area of a Point Chart and its
contents are automatically scaled by the Chart’s render functions to fill the space not occupied by
the Axes and any potential Legend.

• Rescale points: When a large number of data points are rendered in a Point Chart, it can be helpful
to reduce their sizes to make individual points easier to see and reduce clutter. The sizes of points
can be controlled via the radiuses property on the data objects of Point Charts.

• Simplify labels: When labels are shown in a Point Chart, it might be helpful to shorten them when
reducing the width of Charts to prevent them from overlapping. The texts of labels can be configured
via the labels property on the data object of the Point Chart.

• Remove labels: Often, Point Charts are used to visualize large data sets. In such situations, rendering
labels for all points would only clutter the visualization, and it might be better to hide them via the
CSS opacity or display properties.

• Zoom drawing area: Zooming allows visualization consumers to view data at various levels of
detail. A Point Chart can be zoomed by adjusting the domains of the scales handling the spatial
encoding of data, which are the xScale and yScale properties of the data object of the Point Chart.
To simplify the setup and handling of zooming interaction, the D3 Zoom package [Bostock 2022c]
can be used, which is illustrated in Listing 7.4.

• Apply Axis patterns: As with all Charts which use Axes to visualize spatially-encoded data, the
responsive patterns described in Section 7.1 can and should be applied to Point Charts.

• Apply Legend patterns: Where a Point Chart visualizes an additional non-spatial data encoding with
a Legend, the responsive patterns discussed in Section 7.2 can and should be applied.



88 7 RespVis Usage

1 <html>
2 <head>
3 <link rel="stylesheet" href="./path/to/respvis.css" />
4 <style>
5 #chart { width: 100%; height: 75vh; min-height: 25rem; }
6 /* show more ticks the wider the screen */
7 .tick { display: none; }
8 .tick:nth-of-type(2n + 1) { display: block; }
9 @media (min-width: 60rem) { .tick { display: block; } }

10 </style>
11 </head>
12 <body><div id="chart"></div></body>
13 <script src="./path/to/d3.js"></script>
14 <script type="module">
15 import { /* ... */ } from ’./path/to/respvis.mjs’;
16 import { areas, prices } from ’./path/to/data/houses.js’;
17 const areaScale = d3.scaleLinear().domain([0, Math.max(...areas)]).nice();
18 const priceScale = d3.scaleLinear().domain([0, Math.max(...prices)]).nice();
19 const data = {
20 xValues: areas, xScale: areaScale , yValues: prices, yScale: priceScale ,
21 xAxis: { /* ... */ }, yAxis: { /* ... */ }
22 };
23 const chartWindow = d3.select(’#chart’).append(’div’)
24 .datum(chartWindowPointData(data)).call(chartWindowPointRender)
25 .on(’resize’, handleResize);
26 // set up zooming on draw area with minimum 1x and maximum 20x magnification
27 const zoom = d3.zoom().scaleExtent([1, 20]).on(’zoom’, handleZoom);
28 const drawArea = chartWindow.selectAll(’.draw-area’).call(zoom);
29 function handleResize() {
30 // limit panning by setting zoom extents to draw area bounds
31 const { width, height } = rectFromString(drawArea.attr(’bounds ’));
32 const extent = [[0, 0], [width, height]];
33 zoom.extent(extent).translateExtent(extent);
34 const wide = window.matchMedia(’(min-width: 40rem)’).matches;
35 const widest = window.matchMedia(’(min-width: 60rem)’).matches;
36 // shorten axis tick labels on <40rem screens using scientific notation
37 data.xAxis.configureAxis = data.yAxis.configureAxis =
38 (a) => a.tickFormat(d3.format(!wide ? ’.2s’ : ’,’));
39 // gradually reduce radiuses of points
40 data.radiuses = !wide ? 3 : !widest ? 5 : 7;
41 chartWindow.datum(chartWindowPointData(data)).call(chartWindowPointRender)
42 }
43 function handleZoom(e) {
44 // calculate new scales based on zoom transformation
45 data.xScale = e.transform.rescaleX(areaScale);
46 data.yScale = e.transform.rescaleY(priceScale);
47 chartWindow.datum(chartWindowPointData(data)).call(chartWindowPointRender)
48 }
49 </script>
50 </html>

Listing 7.4: The implementation of the responsive Point Chart shown in Figure 7.4. Depending on
the available width, axis ticks are hidden, axis tick labels are shortened, and point radiuses are
reduces. Additionally, zooming is implemented using the D3 Zoom package [Bostock 2022c].
Non-essential parts of the implementation have been removed for clarity.



Point Charts 89

(a) 60rem

(b) 40rem (c) 30rem, zoomed

Figure 7.4: The resulting responsive Point Chart that is rendered from the implementation in List-
ing 7.4. (a) At a width of 60rem, all ticks are shown, tick labels are not shortened, and points are
rendered at their full size. (b) At a width of 40rem, only every second tick is shown and point
sizes are reduced. (c) At a width of 30rem, tick labels are shortened using scientific notation and
point sizes are reduced further. Additionally, the chart has been zoomed in. [Image created by the
author of this thesis using RespVis.]



90 7 RespVis Usage



Chapter 8

Outlook and Future Work

Many things could still be done to the RespVis library which would not change its core mechanisms, but
would improve both the visualization consumer’s and visualization author’s experience. One of the most
apparent improvements would be the addition of further Series, Charts, and Chart Windows to extend the
range of realizable visualizations and enable the creation of things like parallel coordinates, pie charts,
heatmaps, small multiples, and other charts. In addition to supporting more types of charts, the RespVis
library would benefit from additional tools which could be added to the Toolbars of Chart Windows to
provide easy access to supplementary operations like interval-based numerical filtering and zooming.
Improvements which could be made to already existing functionality include improving interactions via
the application of Delaunay triangulation [Delaunay 1934; Lee and Schachter 1980] to find the closest
interactable element to the cursor position, preventing class and data-* attribute name conflicts via a
library prefix, improving downloaded SVGs through optimizing and formatting their document contents,
and improving responsive styling via the application of the newly proposed CSS Container Queries
[Atkins et al. 2021] when they become available in browsers.

The layouting of SVG elements could be improved by separating visualizations into different <div>
elements that can be natively laid out by browsers. With such a layouting mechanism, the custom Layouter
could be removed, and the render process imposed by it, which effectively forces every laid out element to
be rendered twice, would be unnecessary. The elimination of the custom Layouter and its render process
would improve performance and be much less complex to implement and understand. The downside of
this change would be that visualizations are not directly rendered as pure and complete SVG documents
anymore, but rather as multiple SVG documents representing separate parts of the visualization. This
separation into multiple SVG documents would not be a problem for displaying visualizations in browsers.
To download such a visualization, its individual parts could be merged back into a pure and complete
SVG document during an additional download pre-processing step.

Custom visualizations are rather tedious to create with the current implementation, because visualiza-
tion authors must manually set up their structure, propagate data through the component hierarchy, and
handle the Layouter’s render process. The creation of custom visualizations could be simplified by intro-
ducing generic Chart Windows that would enable the definition of visualizations using a data structure
potentially similar to visualization grammars like Vega [IDL 2021]. The data structure of generic Chart
Windows would have to include the actual abstract data that should be visualized and define the trans-
formations of this data into scales, Axes, Legends, and Series. During rendering, the render functions of
such generic Chart Windows could then create custom visualizations to reflect the configuration stored
in these data structures. In addition to simplifying the creation of custom visualizations, generic Chart
Windows would also enable responsively changing a visualization’s encoding, like, for example, turning
Point Charts into Heatmap Charts.

91



92 8 Outlook and Future Work



Chapter 9

Concluding Remarks

This thesis presented RespVis, a new open-source software library to create responsive visualizations for
the web. RespVis is as an extension of the D3 library, which renders visualizations as composite SVG
documents styled with CSS. The most significant contribution of this work is a custom layouter, which
uses the browser’s own layout engine to enable visualization authors to configure the layout of SVG-based
chart components (such as title, axes, legend, and the chart itself) via CSS. Media queries can be used in
combination with Flexbox and Grid to position chart components responsively.

Rearranging content in this way is one of the main techniques of responsive web design. With
RespVis, visualization authors can now use the same tried and trusted techniques to compose and
configure responsive charts. Hence, RespVis is a first step towards easier and more flexible creation of
responsive visualizations.

93



94 9 Concluding Remarks



Bibliography

Adobe [2022]. Illustrator. 2022. https://adobe.com/products/illustrator.html (cited on page 11).

Aisch, Gregor, Larry Buchanan, Amanda Cox, and Kevin Quealy [2017]. Some Colleges Have More
Students From the Top 1 Percent Than the Bottom 60. Find Yours. The New York Times. 18 Jan 2017.
https://nytimes.com/interactive/2017/01/18/upshot/some-colleges-have-more-students-from-the-t

op-1-percent-than-the-bottom-60.html (cited on page 34).

Amar, Robert, James Eagan, and John Stasko [2005]. Low-level Components of Analytic Activity in
Information Visualization. Proc. 2005 IEEE Symposium on Information Visualization (InfoVis 2005)
(Minneapolis, USA). IEEE, 2005, pages 111–117. doi:10.1109/INFVIS.2005.1532136. https://faculty.c
c.gatech.edu/~stasko/papers/infovis05.pdf (cited on page 17).

amCharts [2021]. amCharts. 2021. https://amcharts.com/ (cited on page 26).

Andrews, Keith [2016]. Responsive Data Visualisation. Talk at Graphical Web 2016, Exeter, UK. 06 Nov
2016. https://youtu.be/cQKzpKfea-E (cited on pages 1, 31).

Andrews, Keith [2018a]. Responsive Data Visualisation. 2018. https://projects.isds.tugraz.at/respv
is/ (cited on pages 1, 31, 34–36).

Andrews, Keith [2018b]. Responsive Visualization. Proc. CHI 2018 Workshop on Data Visualization on
Mobile Devices (MobileVis 2018) (Montréal, Canada). 21 Apr 2018. https://mobilevis.github.io/a
ssets/mobilevis2018_paper_4.pdf (cited on pages 1, 31, 33–35).

Andrews, Keith [2019]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. 24 Jan 2019. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on page xiii).

Andrews, Keith [2022]. Information Visualisation: Course Notes. Graz University of Technology, Austria.
16 Mar 2022. https://courses.isds.tugraz.at/ivis/ivis.pdf (cited on pages 15–16).

Anscombe, Francis J [1973]. Graphs in Statistical Analysis. The American Statistician 27.1 (Feb 1973),
pages 17–21. doi:10.1080/00031305.1973.10478966. https://jstor.org/stable/pdf/2682899.pdf (cited on
page 15).

Apple [2021]. WebKit - A Fast, Open-Source Web Browser Engine. 2021. https://webkit.org/ (cited on
page 13).

Atkins, Tab, Elika J. Etemad, and Rossen Atanassov [2018]. CSS Flexible Box Layout Module Level 1.
W3C Candidate Recommendation. W3C, 19 Nov 2018. https://w3.org/TR/css-flexbox-1 (cited on
pages 5–6).

Atkins, Tab, Elika J. Etemad, Rossen Atanassov, and Oriol Brufau [2020]. CSS Grid Layout Module Level
1. W3C Candidate Recommendation. W3C, 18 Dec 2020. https://w3.org/TR/css-grid-1/ (cited on
pages 6–7).

95

https://adobe.com/products/illustrator.html
https://nytimes.com/interactive/2017/01/18/upshot/some-colleges-have-more-students-from-the-top-1-percent-than-the-bottom-60.html
https://nytimes.com/interactive/2017/01/18/upshot/some-colleges-have-more-students-from-the-top-1-percent-than-the-bottom-60.html
https://doi.org/10.1109/INFVIS.2005.1532136
https://faculty.cc.gatech.edu/~stasko/papers/infovis05.pdf
https://faculty.cc.gatech.edu/~stasko/papers/infovis05.pdf
https://amcharts.com/
https://youtu.be/cQKzpKfea-E
https://projects.isds.tugraz.at/respvis/
https://projects.isds.tugraz.at/respvis/
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://ftp.isds.tugraz.at/pub/keith/thesis/
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://doi.org/10.1080/00031305.1973.10478966
https://jstor.org/stable/pdf/2682899.pdf
https://webkit.org/
https://w3.org/TR/css-flexbox-1
https://w3.org/TR/css-grid-1/


96 Bibliography

Atkins, Tab, Elika J. Etemad, and Florian Rivoal [2020]. CSS Snapshot 2020. W3C Working Group Note.
W3C, 22 Dec 2020. https://w3.org/TR/css-2020/ (cited on page 4).

Atkins, Tab, Florian Rivoal, and Miriam E. Suzanne [2021]. CSS Containment Module Level 3. W3C
First Public Working Draft. W3C, 21 Dec 2021. https://w3.org/TR/2021/WD-css-contain-3-20211221/
(cited on page 91).

Barnett, Andrew, Jason French, and Robert Wall [2016]. Comparing the World’s Fighter Jets. The Wall
Street Journal. 25 Sep 2016. https://graphics.wsj.com/how-the-worlds-best-fighter-jets-measure-
up (cited on page 33).

Barton, Susanne and Hannah Recht [2018]. The Massive Prize Luring Miners to the Stars. Bloomberg.
08 Mar 2018. https://bloomberg.com/graphics/2018-asteroid-mining/ (cited on pages 34–35).

Bellamy-Royds, Amelia, Bogdan Brinza, Chris Lilley, Dirk Schulze, David Storey, and Eric Willigers
[2018]. Scalable Vector Graphics (SVG) 2. W3C Candidate Recommendation. W3C, 04 Oct 2018.
https://w3.org/TR/SVG2/ (cited on pages 10–11, 53).

Berners-Lee, Tim [1989]. Information management: A Proposal. 1989. https://w3.org/History/1989/pr
oposal.html (cited on page 3).

Bierman, Gavin, Martín Abadi, and Mads Torgersen [2014]. Understanding TypeScript. Proc. 28th Euro-
pean Conference on Object-Oriented Programming (ECOOP 2014) (Uppsala, Sweden). Springer, Aug
2014, pages 257–281. doi:10.1007/978-3-662-44202-9_11. https://users.soe.ucsc.edu/~abadi/Papers
/FTS-submitted.pdf (cited on page 10).

Bos, Bert, Tantek Çelik, Ian Hickson, and Håkon Wium Lie [2011]. Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification. W3C Recommendation. W3C, 07 Jun 2011. https://w3.org
/TR/CSS2 (cited on page 4).

Bostock, Michael [2022a]. d3-axis. GitHub. 06 Jan 2022. https://github.com/d3/d3-axis (cited on
pages 40, 60).

Bostock, Michael [2022b]. d3-scale. GitHub. 06 Jan 2022. https://github.com/d3/d3-scale (cited on
page 40).

Bostock, Michael [2022c]. d3-zoom. GitHub. 09 Apr 2022. https://github.com/d3/d3-zoom (cited on
pages 87–88).

Bostock, Michael and Jeffrey Heer [2009]. Protovis: A Graphical Toolkit for Visualization. IEEE Trans-
actions on Visualization and Computer Graphics 15.6 (23 Oct 2009), pages 1121–1128. doi:10.1109
/TVCG.2009.174. https://idl.cs.washington.edu/files/2009-Protovis-InfoVis.pdf (cited on page 20).

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D3 Data-Driven Documents. IEEE Trans-
actions on Visualization and Computer Graphics 17.12 (03 Nov 2011), pages 2301–2309. doi:10.1109
/TVCG.2011.185. https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf (cited on pages 1, 20).

Bostock, Mike [2021]. D3.js – Data-Driven Documents. 2021. https://d3js.org/ (cited on pages 1, 20).

Boutell, Thomas [2003]. Portable Network Graphics (PNG) Specification (Second Edition). W3C Rec-
ommendation. W3C, 10 Nov 2003. https://w3.org/TR/PNG/ (cited on page 10).

Browsersync [2022]. GitHub. 04 Jan 2022. https://browsersync.io/ (cited on page 49).

Bui, Quoctrung [2019]. Three Months’ Salary for an Engagement Ring? For Most People, It’s More Like
Two Weeks. The New York Times. 13 Feb 2019. https://nytimes.com/interactive/2019/02/13/upshot
/engagement-rings-cost-two-weeks-pay.html (cited on page 33).

https://w3.org/TR/css-2020/
https://w3.org/TR/2021/WD-css-contain-3-20211221/
https://graphics.wsj.com/how-the-worlds-best-fighter-jets-measure-up
https://graphics.wsj.com/how-the-worlds-best-fighter-jets-measure-up
https://bloomberg.com/graphics/2018-asteroid-mining/
https://w3.org/TR/SVG2/
https://w3.org/History/1989/proposal.html
https://w3.org/History/1989/proposal.html
https://doi.org/10.1007/978-3-662-44202-9_11
https://users.soe.ucsc.edu/~abadi/Papers/FTS-submitted.pdf
https://users.soe.ucsc.edu/~abadi/Papers/FTS-submitted.pdf
https://w3.org/TR/CSS2
https://w3.org/TR/CSS2
https://github.com/d3/d3-axis
https://github.com/d3/d3-scale
https://github.com/d3/d3-zoom
https://doi.org/10.1109/TVCG.2009.174
https://doi.org/10.1109/TVCG.2009.174
https://idl.cs.washington.edu/files/2009-Protovis-InfoVis.pdf
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf
https://d3js.org/
https://w3.org/TR/PNG/
https://browsersync.io/
https://nytimes.com/interactive/2019/02/13/upshot/engagement-rings-cost-two-weeks-pay.html
https://nytimes.com/interactive/2019/02/13/upshot/engagement-rings-cost-two-weeks-pay.html


97

Bui, Quoctrung [2021]. Delta Variant Hasn’t Yet Changed Many Return-to-Office Plans. The New York
Times. 23 Aug 2021. https://nytimes.com/2021/08/12/upshot/covid-return-to-office.html (cited on
page 34).

Canipe, Chris and Randy Yeip [2017]. Health-Care Holdouts in the House. The Wall Street Journal.
02 May 2017. https://wsj.com/graphics/house-health-care-holdouts-round-two/ (cited on page 34).

Çelik, Tantek, Elika J. Etemad, Daniel Glazman, Ian Hickson, Peter Linss, and John Williams [2018].
Selectors Level 3. W3C Recommendation. W3C, 06 Nov 2018. https://w3.org/TR/selectors-3/ (cited
on page 4).

Chart.js [2021]. Chart.js. GitHub. 2021. https://github.com/chartjs/Chart.js (cited on page 26).

Chatterjee, Sangit and Aykut Firat [2007]. Generating Data with Identical Statistics but Dissimilar Graph-
ics: A Follow up to the Anscombe Dataset. The American Statistician 61.3 (Aug 2007), pages 248–254.
doi:10.1198/000313007X220057. https://jstor.org/stable/pdf/27643902.pdf (cited on page 15).

Chhipa, Juned and Brian Lagunas [2021]. ApexCharts. 2021. https://apexcharts.com/ (cited on page 26).

Chromium [2021]. Blink - Rendering Engine. 2021. https://chromium.org/blink/ (cited on page 13).

Cohen, I. Bernard [1984]. Florence Nightingale. Scientific American 250.3 (Mar 1984), pages 128–137.
doi:10.1038/scientificamerican0384-128. https://accounts.smccd.edu/case/biol675/docs/nightingale.pdf
(cited on page 18).

Coyier, Chris [2021]. A Complete Guide to Flexbox. 10 Sep 2021. https://css-tricks.com/snippets/css
/a-guide-to-flexbox/ (cited on page 6).

Dahlström, Erik, Patrick Dengler, Anthony Grasso, Chris Lilley, Cameron McCormack, Doug Schepers,
and Jonathan Watt [2011]. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C Recommenda-
tion. W3C, 16 Aug 2011. https://w3.org/TR/SVG11/ (cited on pages 10–11, 53).

Deakin, Neil, Ian Hickson, and David Hyatt [2009]. CSS Flexible Box Layout Module. W3C Working
Draft. W3C, 23 Jul 2009. https://w3.org/TR/2009/WD-css3-flexbox-20090723/ (cited on page 5).

Delaunay, Boris [1934]. Sur la sphere vide. Bulletin de l’Académie des Sciences de l’URSS 7 (1934),
pages 793–800. https://galiulin.narod.ru/delaunay_.pdf (cited on page 91).

Deutsch, Peter [1996]. RFC1952: GZIP File Format Specification Version 4.3. RFC. IETF, May 1996.
https://datatracker.ietf.org/doc/html/rfc1952 (cited on pages 42, 46).

Deveria, Alexis [2021a]. Can I use CSS Flexible Box Layout Module. 13 Aug 2021. https://caniuse.co
m/flexbox (cited on page 5).

Deveria, Alexis [2021b]. Can I use CSS Grid Layout. 19 Aug 2021. https://caniuse.com/css-grid (cited
on page 6).

ECMA [1997]. ECMAScript: A general purpose, cross-platform programming language. ECMA-262.
Ecma International, Jun 1997. https://ecma-international.org/wp-content/uploads/ECMA-262_1st_ed
ition_june_1997.pdf (cited on page 8).

ECMA [2009]. ECMAScript 5th Edition Language Specification. ECMA-262. Ecma International, Dec
2009. https://ecma-international.org/wp-content/uploads/ECMA-262_5th_edition_december_2009.pdf
(cited on page 8).

ECMA [2015]. ECMAScript 6th Edition Language Specification. ECMA-262. Ecma International, Jun
2015. https://262.ecma-international.org/6.0/ (cited on pages 8, 45).

ECMA [2016]. ECMAScript 7th Edition Language Specification. ECMA-262. Ecma International, Jun
2016. https://262.ecma-international.org/7.0/ (cited on page 8).

https://nytimes.com/2021/08/12/upshot/covid-return-to-office.html
https://wsj.com/graphics/house-health-care-holdouts-round-two/
https://w3.org/TR/selectors-3/
https://github.com/chartjs/Chart.js
https://doi.org/10.1198/000313007X220057
https://jstor.org/stable/pdf/27643902.pdf
https://apexcharts.com/
https://chromium.org/blink/
https://doi.org/10.1038/scientificamerican0384-128
https://accounts.smccd.edu/case/biol675/docs/nightingale.pdf
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://css-tricks.com/snippets/css/a-guide-to-flexbox/
https://w3.org/TR/SVG11/
https://w3.org/TR/2009/WD-css3-flexbox-20090723/
https://galiulin.narod.ru/delaunay_.pdf
https://datatracker.ietf.org/doc/html/rfc1952
https://caniuse.com/flexbox
https://caniuse.com/flexbox
https://caniuse.com/css-grid
https://ecma-international.org/wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_1st_edition_june_1997.pdf
https://ecma-international.org/wp-content/uploads/ECMA-262_5th_edition_december_2009.pdf
https://262.ecma-international.org/6.0/
https://262.ecma-international.org/7.0/


98 Bibliography

ECMA [2017]. ECMAScript 8th Edition Language Specification. ECMA-262. Ecma International, Jun
2017. https://262.ecma-international.org/8.0/ (cited on page 8).

ECMA [2018]. ECMAScript 9th Edition Language Specification. ECMA-262. Ecma International, Jun
2018. https://262.ecma-international.org/9.0/ (cited on page 8).

ECMA [2019]. ECMAScript 10th Edition Language Specification. ECMA-262. Ecma International, Jun
2019. https://262.ecma-international.org/10.0/ (cited on page 8).

ECMA [2020]. ECMAScript 11th Edition Language Specification. ECMA-262. Ecma International, Jun
2020. https://262.ecma-international.org/11.0/ (cited on page 8).

ECMA [2021]. ECMAScript 12th Edition Language Specification. ECMA-262. Ecma International, Jun
2021. https://262.ecma-international.org/12.0/ (cited on page 8).

Etemad, Elika J. and Tab Atkins [2021]. CSS Cascading and Inheritance Level 3. W3C Recommendation.
W3C, 11 Feb 2021. https://w3.org/TR/css-cascade-3/ (cited on page 4).

Facebook [2021a]. ComponentKit: A Declarative UI framework for iOS. Facebook Open Source. 2021.
https://componentkit.org/ (cited on page 14).

Facebook [2021b]. Litho: A Declarative UI Framework for Android. Facebook Open Source. 2021.
https://fblitho.com/ (cited on page 14).

Facebook [2021c]. React Native. Facebook Open Source. 2021. https://reactnative.dev/ (cited on
page 14).

Facebook [2021d]. Yoga Layout. Facebook Open Source. 2021. https://yogalayout.com/ (cited on
pages 14, 56).

Ferdio [2021a]. Grouped Bar Chart. Data Viz Project. 22 Oct 2021. https://datavizproject.com/data-t
ype/grouped-bar-chart/ (cited on page 33).

Ferdio [2021b]. Stacked Bar Chart. Data Viz Project. 22 Oct 2021. https://datavizproject.com/data-ty
pe/stacked-bar-chart/ (cited on page 33).

Ferraiolo, Jon [1999]. Scalable Vector Graphics (SVG) Specification. W3C Working Draft. W3C, 11 Feb
1999. https://w3.org/TR/1999/WD-SVG-19990211/ (cited on page 10).

Fessenden, Ford and Haeyoun Park [2016]. Chicago’s Murder Problem. The New York Times. 27 May
2016. https://nytimes.com/interactive/2016/05/18/us/chicago- murder- problem.html (cited on
page 34).

Florent, Michael Florent van [1644]. La Verdadera Longitud por Mar y Tierra. 1644 (cited on page 17).

Francis, Theo [2017]. Why You Probably Work for a Giant Company, in 20 Charts. The Wall Street
Journal. 06 Apr 2017. https://wsj.com/graphics/big-companies-get-bigger/ (cited on pages 33–34).

Friendly, Michael [2008]. A Brief History of Data Visualization. In: Handbook of Data Visualization.
Springer, 2008, pages 15–56. ISBN 3540330364. doi:10.1007/978-3-540-33037-0_2 (cited on page 20).

Friendly, Michael and Howard Wainer [2021]. A History of Data Visualization and Graphic Communi-
cation. Harvard University Press, 08 Jun 2021. 320 pages. ISBN 0674975235 (cited on page 20).

FusionCharts [2021]. FaberJS. GitHub. 21 Oct 2021. https://github.com/fusioncharts/faberjs (cited
on pages 14, 56).

Gao, Zheng, Christian Bird, and Earl T. Barr [2017]. To Type or Not to Type: Quantifying Detectable
Bugs in JavaScript. Proc. 39th International Conference on Software Engineering (ICSE 2017) (Buenos
Aires, Argentina). Institute of Electrical and Electronics Engineers, May 2017, pages 758–769. doi:10
.1109/ICSE.2017.75. https://earlbarr.com/publications/typestudy.pdf (cited on page 9).

https://262.ecma-international.org/8.0/
https://262.ecma-international.org/9.0/
https://262.ecma-international.org/10.0/
https://262.ecma-international.org/11.0/
https://262.ecma-international.org/12.0/
https://w3.org/TR/css-cascade-3/
https://componentkit.org/
https://fblitho.com/
https://reactnative.dev/
https://yogalayout.com/
https://datavizproject.com/data-type/grouped-bar-chart/
https://datavizproject.com/data-type/grouped-bar-chart/
https://datavizproject.com/data-type/stacked-bar-chart/
https://datavizproject.com/data-type/stacked-bar-chart/
https://w3.org/TR/1999/WD-SVG-19990211/
https://nytimes.com/interactive/2016/05/18/us/chicago-murder-problem.html
https://wsj.com/graphics/big-companies-get-bigger/
http://amazon.co.uk/dp/3540330364/
https://doi.org/10.1007/978-3-540-33037-0_2
http://amazon.co.uk/dp/0674975235/
https://github.com/fusioncharts/faberjs
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1109/ICSE.2017.75
https://earlbarr.com/publications/typestudy.pdf


99

Google [2008]. A Fresh Take on the Browser. 01 Sep 2008. https://googleblog.blogspot.com/2008/09/f
resh-take-on-browser.html (cited on page 8).

Google [2022a]. Sass. 03 May 2022. https://sass-lang.com/ (cited on page 43).

Google [2022b]. V8 JavaScript Engine. 06 Jan 2022. https://v8.dev/ (cited on page 43).

Gulp [2022]. gulp. 24 Jan 2022. https://gulpjs.com/ (cited on pages 41, 48).

Harvard Library [2022]. Harvard Digital Collections. 28 Apr 2022. https://library.harvard.edu/digit
al-collections (cited on pages xiii, 19).

Hickson, Ian and David Hyatt [2008]. HTML 5. W3C Working Draft. W3C, 22 Jan 2008. https://w3.or
g/TR/2008/WD-html5-20080122/ (cited on page 11).

Hickson, Ian, Simon Pieters, Anne van Kesteren, Philip Jägenstedt, and Domenic Denicola [2021]. HTML
Standard. Living Standard. WHATWG, 11 Aug 2021. https://html.spec.whatwg.org (cited on pages 3,
12).

Highsoft [2021]. Highcharts. 2021. https://highcharts.com/ (cited on pages 26, 56).

Hinderman, Bill [2015]. Building Responsive Data Visualization for the Web. Wiley, 02 Nov 2015. ISBN
1119067146 (cited on pages 1, 31).

Hoban, Luke [2012]. Announcing TypeScript 0.8.1. 15 Nov 2012. https://devblogs.microsoft.com/type
script/announcing-typescript-0-8-1/ (cited on page 9).

Hoffswell, Jane, Wilmot Li, and Zhicheng Liu [2020]. Techniques for Flexible Responsive Visualization
Design. Proc. Conference on Human Factors in Computing Systems (CHI 2020) (Online). ACM,
25 Apr 2020, pages 1–13. doi:10.1145/3313831.3376777. https://idl.cs.washington.edu/files/2020-Re
sponsiveVis-CHI.pdf (cited on pages 1, 25, 31–32).

Horak, Tom, Wolfgang Aigner, Matthew Brehmer, Alark Joshi, and Christian Tominski [2021]. Respon-
sive Visualization Design for Mobile Devices. In: Mobile Data Visualization. Edited by Bongshin
Lee, Raimund Dachselt, Petra Isenberg, and Eun Kyoung Choe. CRC Press, 23 Dec 2021. Chapter 2,
pages 33–65. ISBN 0367534711. doi:10.1201/9781003090823-2. https://imld.de/cnt/uploads/Horak2021_Mo
bileDataVisBook_Chap02_Responsive.pdf (cited on page 31).

House, Chris [2021]. A Complete Guide to Grid. 09 Nov 2021. https://css-tricks.com/snippets/css/c
omplete-guide-grid/ (cited on page 7).

IDL [2021]. Vega – A Visualization Grammar. UW Interactive Data Lab. 2021. https://vega.github.io
/vega (cited on pages 1, 22, 91).

Inkscape [2022]. Inkscape. 2022. https://inkscape.org/ (cited on page 10).

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer, 01 Sep 2009. ISBN 9780470856185 (cited on page 35).

Jackson, Dean and Jeff Gilbert [2014]. WebGL Specification. Technical report. Version 1.0.3. Khronos
Group, 27 Oct 2014. https://khronos.org/registry/webgl/specs/1.0/ (cited on page 13).

Jackson, Dean and Jeff Gilbert [2017]. WebGL 2 Specification. Technical report. Version 2.0.0. Khronos
Group, 11 Apr 2017. https://khronos.org/registry/webgl/specs/2.0/ (cited on page 13).

JPEG [1994]. Overview of JPEG 1. ISO/IEC 10918. Joint Photographic Experts Group, Feb 1994.
https://jpeg.org/jpeg/ (cited on page 10).

Katz, Josh and Margot Sanger-Katz [2021]. ‘It’s Huge, It’s Historic, It’s Unheard-of’: Drug Overdose
Deaths Spike. The New York Times. 14 Jul 2021. https://nytimes.com/interactive/2021/07/14/upsho
t/drug-overdose-deaths.html (cited on page 34).

https://googleblog.blogspot.com/2008/09/fresh-take-on-browser.html
https://googleblog.blogspot.com/2008/09/fresh-take-on-browser.html
https://sass-lang.com/
https://v8.dev/
https://gulpjs.com/
https://library.harvard.edu/digital-collections
https://library.harvard.edu/digital-collections
https://w3.org/TR/2008/WD-html5-20080122/
https://w3.org/TR/2008/WD-html5-20080122/
https://html.spec.whatwg.org
https://highcharts.com/
http://amazon.co.uk/dp/1119067146/
https://devblogs.microsoft.com/typescript/announcing-typescript-0-8-1/
https://devblogs.microsoft.com/typescript/announcing-typescript-0-8-1/
https://doi.org/10.1145/3313831.3376777
https://idl.cs.washington.edu/files/2020-ResponsiveVis-CHI.pdf
https://idl.cs.washington.edu/files/2020-ResponsiveVis-CHI.pdf
http://amazon.co.uk/dp/0367534711/
https://doi.org/10.1201/9781003090823-2
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://css-tricks.com/snippets/css/complete-guide-grid/
https://css-tricks.com/snippets/css/complete-guide-grid/
https://vega.github.io/vega
https://vega.github.io/vega
https://inkscape.org/
http://amazon.co.uk/dp/9780470856185/
https://khronos.org/registry/webgl/specs/1.0/
https://khronos.org/registry/webgl/specs/2.0/
https://jpeg.org/jpeg/
https://nytimes.com/interactive/2021/07/14/upshot/drug-overdose-deaths.html
https://nytimes.com/interactive/2021/07/14/upshot/drug-overdose-deaths.html


100 Bibliography

Kesteren, Anne van, Aryeh Gregor, and Ms2ger [2021]. DOM Standard. Living Standard. WHATWG,
02 Aug 2021. https://dom.spec.whatwg.org/ (cited on page 8).

Kim, Hyeok, Dominik Moritz, and Jessica Hullman [2021a]. Design Patterns and Trade-Offs in Respon-
sive Visualization for Communication. Computer Graphics Forum 40.3 (Jun 2021), pages 459–470.
doi:10.1111/cgf.14321. https://arxiv.org/pdf/2104.07724.pdf (cited on pages 1, 31–33).

Kim, Hyeok, Dominik Moritz, and Jessica Hullman [2021b]. Responsive Visualization Gallery. 2021.
https://mucollective.github.io/responsive-vis-gallery/ (cited on pages 32–33).

Kim, Hyeok, Ryan Rossi, Fan Du, Eunyee Koh, Shunan Guo, Jessica Hullman, and Jane Hoffswell [2022].
Cicero: A Declarative Grammar for Responsive Visualization. Proc. Conference on Human Factors in
Computing Systems (CHI 2022) (New Orleans, USA). ACM, Apr 2022, pages 1–15. doi:10.1145/34911
02.3517455. https://arxiv.org/pdf/2203.08314.pdf (cited on pages 1, 25).

Körner, Christoph [2016]. Learning Responsive Data Visualization. Packt Publishing, 23 Mar 2016. ISBN
178588378X (cited on pages 1, 31).

Kunz, Gion [2021]. Chartist.js. 2021. https://gionkunz.github.io/chartist-js/ (cited on pages 26, 56).

Leach, P., M. Mealling, and R. Salz [2005]. RFC4122: A Universally Unique IDentifier (UUID) URN
Namespace. RFC. IETF, Jul 2005. https://ietf.org/rfc/rfc4122.txt (cited on page 62).

Lee, D. T. and Bruce J. Schachter [1980]. Two algorithms for constructing a Delaunay triangulation.
International Journal of Computer and Information Sciences 9.3 (Feb 1980), pages 219–242. https:
//personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/13_Two_algorithms_Delauney.pdf (cited on
page 91).

Li, Deqing, Honghui Mei, Yi Shen, Shuang Su, Wenli Zhang, Junting Wang, Ming Zu, and Wei Chen
[2018]. ECharts: A Declarative Framework for Rapid Construction of Web-Based Visualization. Visual
Informatics 2.2 (17 May 2018), pages 136–146. doi:10.1016/j.visinf.2018.04.011. https://chinavis.org/2
018/echarts.pdf (cited on page 26).

Lie, Håkon Wium [1994]. Cacading HTML Style Sheets: A Proposal. 1994. https://w3.org/People/howc
ome/p/cascade.html (cited on page 4).

Lie, Håkon Wium and Bert Bos [1996]. Cascading Style Sheets Level 1 (CSS 1) Specification. W3C
Recommendation. W3C, 17 Dec 1996. https://w3.org/TR/CSS1/ (cited on page 4).

Liu, Shanhong [2021]. Most used programming languages among developers worldwide. 05 Aug 2021.
https://statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/ (cited
on page 8).

Macrobius, Ambrosius Theodosius [0400]. Commentarii in Somnium Scipionis. 0400 (cited on page 17).

Macrofocus [2021]. High-D: High Dimensionality Analytics Using Parallel Coordinates. 2021. https:
//high-d.com/ (cited on pages 18–19, 35).

Marcotte, Ethan [2010]. Responsive Web Design. A List Apart. 25 May 2010. https://alistapart.com/a
rticle/responsive-web-design (cited on page 14).

Marcotte, Ethan [2011]. Responsive Web Design. 1st Edition. A Book Apart, 07 Jun 2011. ISBN 1937557189
(cited on page 14).

Marcotte, Ethan [2014]. Responsive Web Design. 2nd Edition. A Book Apart, 02 Dec 2014. ISBN 1937557189
(cited on page 14).

Meirelles, Isabel [2013]. Design for Information: An Introduction to the Histories, Theories, and Best
Practices Behind Effective Information Visualizations. Rockport, 01 Oct 2013. 224 pages. ISBN
1592538061 (cited on page 20).

https://dom.spec.whatwg.org/
https://doi.org/10.1111/cgf.14321
https://arxiv.org/pdf/2104.07724.pdf
https://mucollective.github.io/responsive-vis-gallery/
https://doi.org/10.1145/3491102.3517455
https://doi.org/10.1145/3491102.3517455
https://arxiv.org/pdf/2203.08314.pdf
http://amazon.co.uk/dp/178588378X/
https://gionkunz.github.io/chartist-js/
https://ietf.org/rfc/rfc4122.txt
https://personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/13_Two_algorithms_Delauney.pdf
https://personal.psu.edu/faculty/c/x/cxc11/AERSP560/DELAUNEY/13_Two_algorithms_Delauney.pdf
https://doi.org/10.1016/j.visinf.2018.04.011
https://chinavis.org/2018/echarts.pdf
https://chinavis.org/2018/echarts.pdf
https://w3.org/People/howcome/p/cascade.html
https://w3.org/People/howcome/p/cascade.html
https://w3.org/TR/CSS1/
https://statista.com/statistics/793628/worldwide-developer-survey-most-used-languages/
https://high-d.com/
https://high-d.com/
https://alistapart.com/article/responsive-web-design
https://alistapart.com/article/responsive-web-design
http://amazon.co.uk/dp/1937557189/
http://amazon.co.uk/dp/1937557189/
http://amazon.co.uk/dp/1592538061/


101

Meyer, Eric A. [2016]. Grid Layout in CSS: Interface Layout for the Web. O’Reilly Media, 18 Apr 2016.
ISBN 1491930217 (cited on page 7).

Microsoft [1996]. Microsoft Internet Explorer 3.0 Beta Now Available. 29 May 1996. https://news.micr
osoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available/ (cited on page 8).

Microsoft [2020]. Microsoft 365 Apps Say Farewell to Internet Explorer 11 and Windows 10 Sunsets
Microsoft Edge Legacy. 17 Aug 2020. https://techcommunity.microsoft.com/t5/microsoft-365-blog
/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666 (cited on page 5).

Minczeski, Pat, Donato Paolo Mancini, Colleen McEnaney, and Jason French [2017]. France’s New
Political Class. The Wall Street Journal. 03 Jul 2017. https://wsj.com/graphics/french-assembly-201
7/ (cited on page 33).

Mogilevsky, Alex, Phil Cupp, Markus Mielke, and Daniel Glazman [2011]. Grid Layout. W3C Working
Draft. W3C, 07 Apr 2011. https://w3.org/TR/2011/WD-css3-grid-layout-20110407/ (cited on page 6).

Moseley, Ben and Peter Marks [2006]. Out of the Tar Pit. Software Practice Advancement (SPA 2006),
Workshop 11 (St. Neots, England). 06 Feb 2006. https://web.archive.org/web/20060505080302/http:
//ben.moseley.name/frp/paper-v1_01.pdf (cited on page 39).

Mozilla [2004]. Firefox 1.0 Release Notes. 09 Nov 2004. https://website-archive.mozilla.org/www.moz
illa.org/firefox_releasenotes/en-us/firefox/releases/1.0 (cited on page 8).

Munroe, Randall [2021]. Earth Temperature Timeline. xkcd. 21 Oct 2021. https://xkcd.com/1732/ (cited
on page 34).

NAVER [2021]. bilboard.js. 2021. https://naver.github.io/billboard.js/ (cited on page 26).

Netscape [1995]. Netscape and Sun Announce JavaScript, the Open, Cross-Platform Object Scripting
Language for Enterprise Networks and the Internet. Netscape Communications Corporation. 04 Dec
1995. https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease
67.html (cited on page 8).

Nightingale, Florence [1859]. A Contribution to the Sanitary History of the British Army During the Late
War with Russia. John W. Parker and Son, 1859 (cited on pages 18–19).

npm [2022]. npm. 24 Jan 2022. https://npmjs.com/ (cited on pages 42–43).

NYT [2018a]. What’s Going On in This Graph? Dec. 5, 2018. The New York Times. 06 Dec 2018.
https://nytimes.com/2018/11/29/learning/whats-going-on-in-this-graph-dec-5-2018.html (cited on
page 33).

NYT [2018b]. What’s Going On in This Graph? March 13, 2018. The New York Times. 15 Mar 2018.
https://nytimes.com/2018/03/08/learning/whats-going-on-in-this-graph-march-13-2018.html (cited
on page 34).

NYT [2018c]. What’s Going On in This Graph? Oct. 17, 2018. The New York Times. 18 Oct 2018.
https://nytimes.com/2018/10/16/learning/whats-going-on-in-this-graph-oct-17-2018.html (cited
on page 34).

NYT [2019a]. What’s Going On in This Graph? March 6, 2019. The New York Times. 09 Mar 2019.
https://nytimes.com/2019/09/12/learning/whats-going-on-in-this-graph-sept-18-2019.html (cited
on page 34).

NYT [2019b]. What’s Going On in This Graph? Sept. 18, 2019. The New York Times. 19 Sep 2019.
https://nytimes.com/2019/09/12/learning/whats-going-on-in-this-graph-sept-18-2019.html (cited
on page 34).

http://amazon.co.uk/dp/1491930217/
https://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available/
https://news.microsoft.com/1996/05/29/microsoft-internet-explorer-3-0-beta-now-available/
https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666
https://techcommunity.microsoft.com/t5/microsoft-365-blog/microsoft-365-apps-say-farewell-to-internet-explorer-11-and/ba-p/1591666
https://wsj.com/graphics/french-assembly-2017/
https://wsj.com/graphics/french-assembly-2017/
https://w3.org/TR/2011/WD-css3-grid-layout-20110407/
https://web.archive.org/web/20060505080302/http://ben.moseley.name/frp/paper-v1_01.pdf
https://web.archive.org/web/20060505080302/http://ben.moseley.name/frp/paper-v1_01.pdf
https://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-us/firefox/releases/1.0
https://website-archive.mozilla.org/www.mozilla.org/firefox_releasenotes/en-us/firefox/releases/1.0
https://xkcd.com/1732/
https://naver.github.io/billboard.js/
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://web.archive.org/web/20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html
https://npmjs.com/
https://nytimes.com/2018/11/29/learning/whats-going-on-in-this-graph-dec-5-2018.html
https://nytimes.com/2018/03/08/learning/whats-going-on-in-this-graph-march-13-2018.html
https://nytimes.com/2018/10/16/learning/whats-going-on-in-this-graph-oct-17-2018.html
https://nytimes.com/2019/09/12/learning/whats-going-on-in-this-graph-sept-18-2019.html
https://nytimes.com/2019/09/12/learning/whats-going-on-in-this-graph-sept-18-2019.html


102 Bibliography

NYT [2020a]. What’s Going On in This Graph? North American Bird Populations. The New York Times.
28 Feb 2020. https://nytimes.com/2020/01/09/learning/whats-going-on-in-this-graph-north-ameri
can-bird-populations.html (cited on page 33).

NYT [2020b]. What’s Going On in This Graph? Voters by Age Group. The New York Times. 05 Mar 2020.
https://nytimes.com/2020/02/27/learning/whats-going-on-in-this-graph-voters-by-age-group.html

(cited on page 33).

Oberrauner, Peter [2022a]. RespVis. GitHub. 06 Jan 2022. https://github.com/almostbearded/respvis
(cited on pages 1, 37, 40).

Oberrauner, Peter [2022b]. RespVis. 04 May 2022. https://respvis.netlify.app/ (cited on page 37).

Observable [2021]. Observable: Explore, Analyze, and Explain Data. As a Team. 2021. https://observa
blehq.com/ (cited on page 20).

OpenJS [2021]. Node.js. OpenJS Foundation. 2021. https://nodejs.org/ (cited on pages 7, 40, 43).

OpenJS [2022a]. Electron. OpenJS Foundation. 2022. https://electronjs.org/ (cited on page 14).

OpenJS [2022b]. ESLint. OpenJS Foundation. 2022. https://eslint.org/ (cited on page 9).

Playfair, William [1786]. Commercial and Political Atlas: Representing, by Copper-Plate Charts, the
Progress of the Commerce, Revenues, Expenditure, and Debts of England, during the Whole of the
Eighteenth Century. Cambridge University Press, 1786. ISBN 0521855543 (cited on pages 17–19, 66).

Playfair, William [1801]. Statistical Breviary; Shewing, on a Principle Entirely New, the Resources of
Every State and Kingdom in Europe. Cambridge University Press, 1801. ISBN 0521855543 (cited on
page 17).

Plotly [2021]. Plotly. 2021. https://plotly.com/javascript (cited on page 26).

Poco, Jorge and Jeffrey Heer [2017]. Reverse-Engineering Visualizations: Recovering Visual Encodings
from Chart Images. Computer Graphics Forum (EuroVis 2017) (Barcelona, Spain). Volume 36. 3. Jun
2017, pages 353–363. doi:10.1111/cgf.13193. https://idl.cs.washington.edu/files/2017-ReverseEngin
eeringVis-EuroVis.pdf (cited on page 33).

Rabinowitz, Nick [2014]. Responsive Data Visualization. GitHub. 25 Sep 2014. https://nrabinowitz.gi
thub.io/rdv/ (cited on page 35).

Raggett, Dave [1997]. HTML 3.2 Reference Specification. W3C Recommendation. W3C, 14 Jan 1997.
https://w3.org/TR/2018/SPSD-html32-20180315 (cited on page 3).

Rendgen, Sandra [2019]. History of Information Graphics. Taschen, 26 Jun 2019. 462 pages. ISBN
3836567679 (cited on page 20).

Rendle, Robin [2017]. Does CSS Grid Replace Flexbox? 31 Mar 2017. https://css-tricks.com/css-gri
d-replace-flexbox/ (cited on page 7).

Rollup [2022]. Rollup. 24 Jan 2022. https://rollupjs.org/ (cited on pages 40, 45).

Routley, Nick [2020]. Internet Browser Market Share (1996–2019). 20 Jan 2020. https://visualcapital
ist.com/internet-browser-market-share/ (cited on page 8).

Satyanarayan, Arvind and Jeffrey Heer [2014]. Lyra: An Interactive Visualization Design Environment.
Computer Graphics Forum 33.3 (12 Jul 2014), pages 351–360. doi:10.1111/cgf.12391. http://vis.csai
l.mit.edu/pubs/lyra.pdf (cited on page 23).

Satyanarayan, Arvind, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer [2016]. Vega-Lite: A
Grammar of Interactive Graphics. IEEE Transactions on Visualization and Computer Graphics 23.1

https://nytimes.com/2020/01/09/learning/whats-going-on-in-this-graph-north-american-bird-populations.html
https://nytimes.com/2020/01/09/learning/whats-going-on-in-this-graph-north-american-bird-populations.html
https://nytimes.com/2020/02/27/learning/whats-going-on-in-this-graph-voters-by-age-group.html
https://github.com/almostbearded/respvis
https://respvis.netlify.app/
https://observablehq.com/
https://observablehq.com/
https://nodejs.org/
https://electronjs.org/
https://eslint.org/
http://amazon.co.uk/dp/0521855543/
http://amazon.co.uk/dp/0521855543/
https://plotly.com/javascript
https://doi.org/10.1111/cgf.13193
https://idl.cs.washington.edu/files/2017-ReverseEngineeringVis-EuroVis.pdf
https://idl.cs.washington.edu/files/2017-ReverseEngineeringVis-EuroVis.pdf
https://nrabinowitz.github.io/rdv/
https://nrabinowitz.github.io/rdv/
https://w3.org/TR/2018/SPSD-html32-20180315
http://amazon.co.uk/dp/3836567679/
https://css-tricks.com/css-grid-replace-flexbox/
https://css-tricks.com/css-grid-replace-flexbox/
https://rollupjs.org/
https://visualcapitalist.com/internet-browser-market-share/
https://visualcapitalist.com/internet-browser-market-share/
https://doi.org/10.1111/cgf.12391
http://vis.csail.mit.edu/pubs/lyra.pdf
http://vis.csail.mit.edu/pubs/lyra.pdf


103

(10 Aug 2016), pages 341–350. doi:10.1109/TVCG.2016.2599030. https://idl.cs.washington.edu/files
/2017-VegaLite-InfoVis.pdf (cited on page 23).

Satyanarayan, Arvind, Ryan Russell, Jane Hoffswell, and Jeffrey Heer [2015]. Reactive Vega: A Streaming
Dataflow Architecture for Declarative Interactive Visualization. IEEE Transactions on Visualization
and Computer Graphics 22.1 (12 Aug 2015), pages 659–668. doi:10.1109/TVCG.2015.2467091. https:
//idl.cs.washington.edu/files/2015-ReactiveVega-InfoVis.pdf (cited on page 23).

Scheiner, Christoph [1630]. Rosa Ursina sive Sol ex Admirando Facularum & Macularum Suarum
Phoenomeno Varius. 1630 (cited on page 17).

Scott Logic [2021]. D3FC. 2021. https://d3fc.io/ (cited on page 26).

Setlur, V. and H. Chung [2021]. Semantic Resizing of Charts Through Generalization: A Case Study with
Line Charts. Proc. 2021 IEEE Visualization Conference (VIS 2021) (Online). IEEE, 24 Oct 2021,
pages 1–5. doi:10.1109/VIS49827.2021.9623306. https://research.tableau.com/sites/default/files/Sem
antic_Resizing_of_Line_Charts_Through_Generalization_0.pdf (cited on page 31).

Sharvit, Yehonathan [2022a]. Data-Oriented Principle #1: Separate Code from Data. 15 Jan 2022.
https://blog.klipse.tech/databook/2020/10/02/separate-code-data.html (cited on page 39).

Sharvit, Yehonathan [2022b]. Data-Oriented Programming: Unlearning Objects. Manning, 24 May 2022.
325 pages. ISBN 1617298573. https://manning.com/books/data-oriented-programming (cited on page 39).

Shifflett, Shane [2016]. A Divided America. The Wall Street Journal. 09 Nov 2016. https://wsj.com/gra
phics/elections/2016/divided-america/ (cited on page 34).

Shneiderman, Ben [1996]. The Eyes Have It: A Task by Data Type Taxonomy for Information Visual-
izations. Proc. 1996 IEEE Symposium on Visual Languages (VL ’96) (Boulder, USA). 03 Sep 1996,
pages 336–336. doi:10.1109/vl.1996.545307. https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf
(cited on page 17).

Sikorski, Robert and Richard Peters [1999]. Netscape’s Gecko and You. Science 283.5409 (19 Mar 1999),
pages 1871–1872. doi:10.1126/science.283.5409.1871b. https://science.org/doi/full/10.1126/science.2
83.5409.1871b (cited on page 13).

Sjölander, Emil [2016]. Yoga: A Cross-Platform Layout Engine. Facebook Engineering. 07 Dec 2016.
https://engineering.fb.com/2016/12/07/android/yoga-a-cross-platform-layout-engine (cited on
page 14).

Sober, Elliott [1979]. The Principle of Parsimony. The British Journal for the Philosophy of Science 32.2
(10 Dec 1979), pages 145–156. doi:10.1093/bjps/32.2.145 (cited on page 20).

StatCounter [2021]. Desktop Browser Market Share Worldwide. 2021. https://gs.statcounter.com/brow
ser-market-share/desktop/worldwide/#yearly-2009-2021 (cited on pages xiii, 8).

Tanaka, Masayuki [2020]. C3.js. 08 Aug 2020. https://c3js.org/ (cited on page 26).

TechTerms [2022a]. camelCase. 24 Jan 2022. https://techterms.com/definition/camelcase (cited on
page 40).

TechTerms [2022b]. PascalCase. 24 Jan 2022. https://techterms.com/definition/pascalcase (cited on
page 40).

Totic, Aleks and Greg Whitworth [2020]. Resize Observer. W3C Working Draft. W3C, 11 Feb 2020.
https://w3.org/TR/2020/WD-resize-observer-1-20200211/ (cited on page 9).

Treisman, Anne [1985]. Preattentive Processing in Vision. Computer Vision, Graphics, and Image Pro-
cessing 31.2 (Aug 1985), pages 156–177. doi:10.1016/S0734-189X(85)80004-9 (cited on page 15).

https://doi.org/10.1109/TVCG.2016.2599030
https://idl.cs.washington.edu/files/2017-VegaLite-InfoVis.pdf
https://idl.cs.washington.edu/files/2017-VegaLite-InfoVis.pdf
https://doi.org/10.1109/TVCG.2015.2467091
https://idl.cs.washington.edu/files/2015-ReactiveVega-InfoVis.pdf
https://idl.cs.washington.edu/files/2015-ReactiveVega-InfoVis.pdf
https://d3fc.io/
https://doi.org/10.1109/VIS49827.2021.9623306
https://research.tableau.com/sites/default/files/Semantic_Resizing_of_Line_Charts_Through_Generalization_0.pdf
https://research.tableau.com/sites/default/files/Semantic_Resizing_of_Line_Charts_Through_Generalization_0.pdf
https://blog.klipse.tech/databook/2020/10/02/separate-code-data.html
http://amazon.co.uk/dp/1617298573/
https://manning.com/books/data-oriented-programming
https://wsj.com/graphics/elections/2016/divided-america/
https://wsj.com/graphics/elections/2016/divided-america/
https://doi.org/10.1109/vl.1996.545307
https://cs.umd.edu/~ben/papers/Shneiderman1996eyes.pdf
https://doi.org/10.1126/science.283.5409.1871b
https://science.org/doi/full/10.1126/science.283.5409.1871b
https://science.org/doi/full/10.1126/science.283.5409.1871b
https://engineering.fb.com/2016/12/07/android/yoga-a-cross-platform-layout-engine
https://doi.org/10.1093/bjps/32.2.145
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#yearly-2009-2021
https://gs.statcounter.com/browser-market-share/desktop/worldwide/#yearly-2009-2021
https://c3js.org/
https://techterms.com/definition/camelcase
https://techterms.com/definition/pascalcase
https://w3.org/TR/2020/WD-resize-observer-1-20200211/
https://doi.org/10.1016/S0734-189X(85)80004-9


104 Bibliography

Tufte, Edward Rolf [1983]. The Visual Display of Quantitative Information. 1st Edition. Graphics Press,
1983. ISBN 1930824130 (cited on page 17).

Tufte, Edward Rolf [1997]. Visual Explanations. Graphics Press, 14 Jan 1997. ISBN 1930824157 (cited on
page 17).

University of Pennsylvania [2022]. Schoenberg Center for Electronic Text & Image. 28 Apr 2022. https:
//sceti.library.upenn.edu/ (cited on pages xiii, 18–19).

UUID [2022]. UUID. 24 Jan 2022. https://github.com/uuidjs/uuid (cited on page 62).

Wan, Zhanyong, Walid Taha, and Paul Hudak [2001]. Event-Driven FRP. Proc. 4th International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2001) (Las Vegas, USA). Springer, 20 Dec
2001, pages 155–172. ISBN 354043092X. doi:10.1007/3-540-45587-6_11. https://github.com/maroneal/ww
w/blob/master/publications/conference/padl02.pdf (cited on page 23).

Ware, Colin [2020]. Information Visualization: Perception for Design. 4th Edition. Morgan Kaufmann,
11 Mar 2020. 560 pages. ISBN 0128128755 (cited on page 15).

Wattenberger, Amelia [2019]. Fullstack D3 and Data Visualization. Fullstack.io, 29 Jul 2019. ISBN
0991344650. https://newline.co/fullstack-d3 (cited on page 20).

WHATWG [2021]. HTML Living Standard. The canvas element. Technical report. Web Hypertext Ap-
plication Technology Working Group (WHATWG), 08 Dec 2021. https://html.spec.whatwg.org/#th
e-canvas-element (cited on page 12).

Wilkinson, Leland [2005]. The Grammar of Graphics. 2nd Edition. Springer, 15 Jul 2005. ISBN 0387245448.
doi:10.1007/0-387-28695-0 (cited on pages 17, 22–23).

Wongsuphasawat, Kanit, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey
Heer [2015]. Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations.
IEEE Transactions on Visualization and Computer Graphics 22.1 (12 Aug 2015), pages 649–658.
doi:10.1109/TVCG.2015.2467191. https://domoritz.de/papers/2015- Voyager- InfoVis.pdf (cited on
page 23).

Wongsuphasawat, Kanit, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer
[2016]. Towards a General-Purpose Query Language for Visualization Recommendation. Proc. 2016
Workshop on Human-In-the-Loop Data Analytics (HILDA ’16) (San Francisco, USA). ACM, 26 Jun
2016, pages 1–6. doi:10.1145/2939502.2939506. https://idl.cs.washington.edu/files/2016-CompassQL-
HILDA.pdf (cited on page 23).

Wood, Lauren, Arnaud Le Hors, Andrew Watson, Bill Smith, Chris Lovett, David Singer, Gavin Nicol,
James Clark, Jared Sorensen, Mike Champion, Paul Grosso, Peter Sharpe, Phil Karlton, Rick Gessner,
Robert Sutor, Scott Isaacs, Sharon Adler, Steve Byrne, Tim Bray, and Vidur Apparao [1997]. Document
Object Model Specification. W3C Working Draft. W3C, 09 Oct 1997. https://w3.org/TR/WD-DOM-971
009/ (cited on page 8).

WSJ [2017]. October’s Not as Bleak as Its Reputation for Stock Markets. The Wall Street Journal. 07 Oct
2017. https://wsj.com/articles/octobers-not-as-bleak-as-its-reputation-for-stock-markets-1507
384342 (cited on pages 33–34).

Wu, Aoyu, Wai Tong, Tim Dwyer, Bongshin Lee, Petra Isenberg, and Huamin Qu [2021]. MobileVisFixer:
Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning
Framework. IEEE Transactions on Visualization and Computer Graphics 27.2 (Feb 2021), pages 464–
474. doi:10.1109/TVCG.2020.3030423. https://hal.inria.fr/hal-03001709/ (cited on page 31).

http://amazon.co.uk/dp/1930824130/
http://amazon.co.uk/dp/1930824157/
https://sceti.library.upenn.edu/
https://sceti.library.upenn.edu/
https://github.com/uuidjs/uuid
http://amazon.co.uk/dp/354043092X/
https://doi.org/10.1007/3-540-45587-6_11
https://github.com/maroneal/www/blob/master/publications/conference/padl02.pdf
https://github.com/maroneal/www/blob/master/publications/conference/padl02.pdf
http://amazon.co.uk/dp/0128128755/
http://amazon.co.uk/dp/0991344650/
https://newline.co/fullstack-d3
https://html.spec.whatwg.org/#the-canvas-element
https://html.spec.whatwg.org/#the-canvas-element
http://amazon.co.uk/dp/0387245448/
https://doi.org/10.1007/0-387-28695-0
https://doi.org/10.1109/TVCG.2015.2467191
https://domoritz.de/papers/2015-Voyager-InfoVis.pdf
https://doi.org/10.1145/2939502.2939506
https://idl.cs.washington.edu/files/2016-CompassQL-HILDA.pdf
https://idl.cs.washington.edu/files/2016-CompassQL-HILDA.pdf
https://w3.org/TR/WD-DOM-971009/
https://w3.org/TR/WD-DOM-971009/
https://wsj.com/articles/octobers-not-as-bleak-as-its-reputation-for-stock-markets-1507384342
https://wsj.com/articles/octobers-not-as-bleak-as-its-reputation-for-stock-markets-1507384342
https://doi.org/10.1109/TVCG.2020.3030423
https://hal.inria.fr/hal-03001709/


105

Wu, Yingcai, Xiaotong Liu, Shixia Liu, and Kwan-Liu Ma [2013]. ViSizer: A Visualization Resizing
Framework. IEEE Transactions on Visualization and Computer Graphics 19.2 (Feb 2013), pages 278–
290. doi:10.1109/TVCG.2012.114. http://www.ycwu.org/Files/tvcg_visizer.pdf (cited on page 31).

Yi, Ji Soo, Youn ah Kang, John Stasko, and Julie A Jacko [2007]. Toward a Deeper Understanding of the
Role of Interaction in Information Visualization. IEEE Transactions on Visualization and Computer
Graphics 13.6 (05 Nov 2007), pages 1224–1231. doi:10.1109/TVCG.2007.70515. https://faculty.cc.ga
tech.edu/~john.stasko/papers/infovis07-interaction.pdf (cited on page 17).

https://doi.org/10.1109/TVCG.2012.114
http://www.ycwu.org/Files/tvcg_visizer.pdf
https://doi.org/10.1109/TVCG.2007.70515
https://faculty.cc.gatech.edu/~john.stasko/papers/infovis07-interaction.pdf
https://faculty.cc.gatech.edu/~john.stasko/papers/infovis07-interaction.pdf

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Web Technologies
	2.1 HyperText Markup Language (HTML)
	2.2 Cascading Style Sheets (CSS)
	2.2.1 CSS Box Model
	2.2.2 CSS Flexbox Layout
	2.2.3 CSS Grid Layout

	2.3 JavaScript (JS)
	2.4 TypeScript (TS)
	2.5 Web Graphics
	2.5.1 Raster Images
	2.5.2 Scalable Vector Graphics (SVG)
	2.5.3 Canvas (2D)
	2.5.4 Canvas (WebGL)

	2.6 Layout Engines
	2.6.1 Browser Engines
	2.6.2 Yoga
	2.6.3 FaberJS

	2.7 Responsive Web Design

	3 Information Visualization
	3.1 History of Information Visualization
	3.2 Information Visualization Libraries for the Web
	3.2.1 Data-Driven Documents (D3)
	3.2.2 Grammar-Based Visualization Libraries
	3.2.3 Template-Based Visualization Libraries


	4 Responsive Information Visualization
	4.1 Responsive Visualization Patterns
	4.2 Responsive Visualization Examples
	4.2.1 Bar Charts
	4.2.2 Line Charts
	4.2.3 Point Charts
	4.2.4 Parallel Coordinates


	5 The RespVis Library
	5.1 Design
	5.1.1 Style and Layout via CSS
	5.1.2 Pure and Complete SVG Documents
	5.1.3 Extend D3
	5.1.4 Separate Data and Code
	5.1.5 Strong Static Type-Checking with TypeScript
	5.1.6 Layered Component Hierarchy

	5.2 Naming Conventions
	5.3 Project Structure
	5.4 NodeJS
	5.5 Rollup
	5.6 Gulp

	6 RespVis Packages and Modules
	6.1 Core Package
	6.1.1 Utility Modules
	6.1.2 Layouter Module
	6.1.3 Axis Module
	6.1.4 Chart Module
	6.1.5 Chart Window Module

	6.2 Legend Package
	6.3 Tooltip Package
	6.4 Bar Package
	6.4.1 Single-Series Bar Modules
	6.4.2 Grouped Bar Modules
	6.4.3 Stacked Bar Modules

	6.5 Line Package
	6.6 Point Package

	7 RespVis Usage
	7.1 Axes
	7.2 Legends
	7.3 Bar Charts
	7.4 Line Charts
	7.5 Point Charts

	8 Outlook and Future Work
	9 Concluding Remarks
	Bibliography

