
The Multidimensional Visual Analyser
(MVA)

Ožbej Golob

The Multidimensional Visual Analyser (MVA)

Ožbej Golob

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Computer Science

submitted to

Graz University of Technology

Supervisors

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz University of Technology

Doc. Dr. Aleš Smrdel
University of Ljubljana

Graz, 17 Sep 2024

© Copyright 2024 by Ožbej Golob, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Abstract

The Multidimensional Visual Analyser (MVA) is an open-source web application for visually ex-
ploring and analyzing multidimensional datasets. MVA combines the best features from the reviewed
multidimensional visual analysis software and implements them as both a web and desktop application.
It provides four synchronized visualizations: scatterplot matrix, scatterplot, similarity map, and paral-
lel coordinates, together with labeled partitions (classes) and a table view. In particular, the parallel
coordinates implementation is highly interactive and also displays categorical dimensions.

The application is built with Node, TypeScript, Svelte, Flowbite, D3, and Three.js. By rendering
records with WebGL, MVA maintains its performance even when handling rather large datasets. MVA
can be built and deployed as a web application, and can also be built as a desktop application through
Tauri.

This thesis first reviews popular multidimensional visual analysis approaches and existing software
tools. It then surveys modern web technologies, before describing MVA in detail. Two appendices
provide a User Guide and Developer Guide.

Contents

Contents iv

List of Figures vi

List of Tables vii

List of Listings ix

Acknowledgements xi

Credits xiii

1 Introduction 1

2 Approaches to Multidimensional Visual Analysis 3

2.1 Scatterplots . 3

2.2 Scatterplot Matrices (SPLOM). 4

2.3 Star Coordinates . 5

2.4 RadViz . 6

2.5 Dust and Magnet (DnM) . 7

2.6 Similarity Maps . 8

2.6.1 Principal Component Analysis (PCA) 9

2.6.2 Multi-Dimensional Scaling (MDS) 9

2.6.3 t-Distributed Stochastic Neighbor Embedding (t-SNE) 9

2.6.4 Uniform Manifold Approximation and Projection (UMAP) 10

2.6.5 Comparison of Similarity Mapping Techniques 10

2.7 Parallel Coordinates . 11

2.8 Parallel Coordinates Matrix . 13

2.9 Brushing and Linking . 13

2.10 Grouping and Labeling . 14

3 Tools for Multidimensional Visual Analysis 15

3.1 XMDV . 15

i

3.2 Parallax . 16

3.3 GGobi . 17

3.4 InfoScope . 18

3.5 XDAT . 19

3.6 High-D . 20

3.7 TabuVis . 21

3.8 Improvise . 22

3.9 MyBrush . 23

3.10 mVis . 24

3.11 Comparison of Tools . 25

4 Modern Web Technologies 27

4.1 Web Applications . 27

4.1.1 Frontend . 27

4.1.2 Backend . 27

4.2 Frontend Development Frameworks . 28

4.2.1 Angular. 28

4.2.2 React . 29

4.2.3 Vue . 29

4.2.4 Svelte . 29

4.3 Web Graphics Rendering Technologies. 30

4.3.1 Canvas2D . 30

4.3.2 SVG-DOM . 30

4.3.3 WebGL . 31

4.3.4 WebGPU . 31

4.3.5 Offscreen Canvas . 31

4.4 Web Graphics Rendering Libraries . 32

4.4.1 SVG.js . 32

4.4.2 Konva.js . 32

4.4.3 Two.js . 32

4.4.4 Pixi.js . 32

4.4.5 Babylon.js . 33

4.4.6 D3.js. 33

4.4.7 Performance Comparison . 33

4.5 Desktop Development Libraries . 37

4.5.1 Electron.js . 37

4.5.2 Tauri . 37

ii

5 The Multidimensional Visual Analyser (MVA) 39

5.1 Build System . 40

5.2 Dependencies . 40

5.3 Components . 41

5.4 Icons . 41

5.5 Example Datasets . 41

6 Selected Details of the Implementation 43

6.1 Chosen Web Graphics Rendering Technology 43

6.2 Overlaying Canvases for Visualizations 45

6.3 Scatterplot Matrix Rendering . 45

6.4 Using Web Workers . 46

6.5 Hovering and Brushing . 49

6.6 Filtering . 49

6.7 Selection Tools . 51

6.8 SVG Exporter . 52

7 Outlook and Future Work 55

7.1 Window Management . 55

7.2 Rendering Records with Pixi.js . 55

7.3 Rendering the Scatterplot Matrix . 55

7.4 t-SNE Similarity Map . 55

7.5 Parallel Coordinates Matrix Panel . 56

7.6 Handling Missing Data . 56

7.7 Automated Classification. 56

7.8 Rule-Based Definitions for Classes . 56

8 Concluding Remarks 57

A User Guide 59

A.1 Installation . 59

A.2 Features . 59

A.3 User Interface . 59

A.3.1 Initial State . 59

A.3.2 Hovering and Brushing . 60

A.3.3 Navigation Bar . 60

A.3.4 Display Area . 62

iii

A.4 Example Datasets . 71

A.4.1 Cars 1993 . 71

A.4.2 Cereals . 71

A.4.3 Iris . 72

A.4.4 Premier League . 72

A.4.5 Student Marks . 72

A.5 Dataset Formats . 72

A.6 Example Use Case . 74

B Developer Guide 81
B.1 Quick Start . 81

B.2 Desktop Application . 81

B.3 Gulp Tasks . 82

B.4 Development Dependencies . 82

Bibliography 83

iv

List of Figures

2.1 Scatterplots . 4
2.2 Scatterplot Matrix . 5
2.3 Star Coordinates Plots . 6
2.4 RadViz Plots . 7
2.5 Dust and Magnet Plots . 8
2.6 Similarity Mapping . 11
2.7 Parallel Coordinates Diagram . 12
2.8 Parallel Coordinates on Iris Dataset. 12
2.9 Parallel Coordinates Missing Data . 12
2.10 Parallel Coordinates Matrix . 13
2.11 Brushing and Linking. 14

3.1 XMDV . 16
3.2 Parallax. 17
3.3 GGobi . 18
3.4 InfoScope . 19
3.5 XDAT . 20
3.6 High-D . 21
3.7 TabuVis . 22
3.8 Improvise . 23
3.9 MyBrush . 24
3.10 mVis. 25

4.1 Client-Server Model . 28
4.2 Slay Lines Application . 33
4.3 Performance of Web Graphics Rendering Libraries on Laptop 36
4.4 Performance of Web Graphics Rendering Libraries on Desktop. 36

5.1 MVA User Interface . 39

6.1 Lines Rendered with Pixi.js . 44
6.2 Lines Rendered with Three.js . 44
6.3 Scatterplot Matrix Panel . 46

v

6.4 MVA with Brushed and Hovered Records 49
6.5 Filtering Records in Parallel Coordinates Panel 50
6.6 Filtered Records are Inactive . 50
6.7 Example of Exported SVG Visualization 53

A.1 MVA User Interface . 60
A.2 The Initial State of MVA . 61
A.3 Hovered and Brushed Records . 61
A.4 Navigation Bar Dropdowns. 62
A.5 Import Dataset Modal . 62
A.6 Export Dataset Modal . 63
A.7 Invalid Rows Modal . 63
A.8 About Modal . 63
A.9 Panel Buttons . 64
A.10 Scatterplot Matrix Panel . 65
A.11 Scatterplot Panel . 65
A.12 Scatterplot Panel Controls . 65
A.13 Similarity Map Panel . 66
A.14 Similarity Map Panel Controls . 66
A.15 Partitions Panel . 67
A.16 Partition Controls . 67
A.17 Partition Context Menu . 68
A.18 Table Panel . 68
A.19 Table Panel Controls . 69
A.20 Parallel Coordinates Panel . 69
A.21 Parallel Coordinates Panel Controls. 70
A.22 Parallel Coordinates Panel with Histograms 70
A.23 Parallel Coordinates Axis Context Menu 70
A.24 Parallel Coordinates Axis Context Menu Modals 71
A.25 Student Marks Dataset Import. 74
A.26 MVA with Student Marks Dataset . 74
A.27 Scatterplot Matrix Panel . 75
A.28 Scatterplot Matrix and Scatterplot Panels 76
A.29 Reordered Parallel Coordinates Panel . 76
A.30 Adding Selected Records to Engineers Partition 77
A.31 Adding Records to Linguists Partition . 78
A.32 MVA Final Look of Student Marks Dataset 79

vi

List of Tables

2.1 Iris Dataset . 3

3.1 Overview of Reviewed Tools . 25
3.2 Comparison of Reviewed Tool Features 26

4.1 Performance of Web Graphics Rendering Libraries on Laptop 34
4.2 Performance of Web Graphics Rendering Libraries on Desktop. 34

vii

viii

List of Listings

4.1 Python Script to Measure Average FPS 35

5.1 MVA Components . 42

6.1 CSS z-index Property for Overlaying Canvases 45
6.2 Offscreen Canvas in Web Worker . 47
6.3 Distributing Calculating Tasks Between Calculating Workers 48
6.4 Code for Calculating Point-in-Polygon. 51
6.5 Code for Calculating Line-Line Intersection. 52
6.6 Example Exported Shortened SVG Code 54

A.1 Iris Dataset with Partitions (CSV Format) 73
A.2 Iris Dataset with Partitions (Small CSV Format) 73
A.3 Iris Dataset with Partitions (MVA Format) 73

ix

x

Acknowledgements

I want to express my gratitude to all my colleagues, especially my supervisor Keith Andrews, for providing
feedback, ideas, and all the other help with the thesis. I also want to thank my supervisor Aleš Smrdel
for the help with the thesis.

I also want to express my gratitude to the University of Ljubljana and Graz University of Technology,
for enabling me to take part in the double degree programme, in the scope of which this thesis was written.

Ožbej Golob

Ljubljana, Slovenia, 17 Sep 2024

xi

xii

Credits

I would like to thank the following individuals and organizations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2021].

xiii

xiv

Chapter 1

Introduction

Making sense of large multidimensional datasets can be hard, especially as such datasets are growing
ever larger. Data visualization provides visual tools to help humans explore and interpret large datasets
[Few 2021; Kirk 2019; Fry 2007; Andrews 2024a]. Data visualization techniques take advantage of
the characteristics of human visual perception, which can rapidly recognize visual patterns, trends, and
outliers without conscious cognitive effort [Ware 2021].

Multidimensional datasets are typically represented in tabular (spreadsheet) form, where each column
represents a dimension (variable) of the data, and each row represents a single record (data point).
Multidimensional visual analysis focuses on the use of visual representations to explore and analyze
multidimensional datasets. This approach provides a more intuitive and interactive way to understand
and extract insights from large and complex multidimensional datasets.

One of the main challenges in multidimensional visual analysis is the effective representation of high-
dimensional data in a way that is meaningful and intuitive for the user. To address this challenge, a wide
range of visual encodings and interaction techniques have been developed. One of the key benefits of
multidimensional visual analysis is its ability to reveal patterns and relationships in the data that may not
be apparent through traditional statistical analysis methods. This is particularly useful in the exploratory
phase of data analysis, where the aim is to gain a better understanding of the data, identify patterns, trends,
and outliers, and determine potential areas of interest for further investigation. Multidimensional visual
analysis also has a range of applications in areas such as data mining, machine learning, and business
intelligence [Dzemyda et al. 2012].

This thesis presents the Multidimensional Visual Analyser (MVA). MVA is an open-source web
application that allows users to explore large multidimensional datasets. MVA can display data in up to
six panels, namely: Scatterplot Matrix, Scatterplot, Similarity Map, Partitions, Table, and Parallel Coordinates.
The panels are synchronized, supporting brushing and linking, and highly interconnected analysis tasks.
MVA can also assist a user in grouping data records into labeled partitions. By rendering records with
hardware-accelerated WebGL, the application maintains performance even when handling quite large
datasets. MVA source code is available on GitHub [Golob and Andrews 2024b]. MVA is deployed as a
web application [Golob and Andrews 2024a] and can also be built as a desktop application for Windows.

The first part of the thesis describes work in related areas and provides an understanding of web
applications in the context of information visualization. Chapter 2 gives an overview of popular mul-
tidimensional visual analysis approaches. Chapter 3 presents some existing multidimensional visual
analysis software. Chapter 4 reviews web applications, frontend development frameworks, web graphics
rendering technologies, and desktop development libraries.

The second part of the thesis describes the development of MVA. Chapter 5 describes the MVA
application, including how to build it, its component structure, dependencies, icons, and example datasets.

1

2 1 Introduction

Chapter 6 describes the approaches implemented and the decisions that were taken. Chapter 7 describes
some potential future improvements. Chapter 8 concludes the thesis with an overview of the thesis and
final remarks. Appendix A serves as a User Guide for MVA, to help users use MVA effectively and
efficiently. Appendix B serves as a Developer Guide.

Chapter 2

Approaches to Multidimensional
Visual Analysis

Multidimensional visual analysis refers to methods and techniques used to analyze and understand
complex datasets using visual representations. These approaches typically involve the use of specialized
software or tools that allow analysts to create and manipulate graphical representations of the data to
discover patterns, trends, and relationships. This chapter reviews some popular multidimensional visual
analysis approaches, following the discussions in Dzemyda et al. [2012].

Most of the figures in this chapter were generated using Python with the help of the following librar-
ies: matplotlib, pandas, scikit-learn, and umap [Hunter 2007; McKinney 2010; Pedregosa et al. 2011;
McInnes, Healy, Saul et al. 2018]. The graphics use the Iris dataset as an example, since it is widely used
in the research community [Fisher 1936]. It is a dataset of Iris flower measurements with five dimensions:
species (setosa, versicolor, or virginica) which can be interpreted as a class, and four numerical dimen-
sions (sepal length, sepal width, petal length, and petal width) which are measured in centimeters. After
the header row, there are 150 rows of data records representing 150 instances of flowers. The dataset
consists of 50 samples from each of three species of Iris. Table 2.1 shows the first five records of the Iris
dataset.

2.1 Scatterplots
A scatterplot is a type of chart or graph used to display the relationship between two or three numerical
dimensions [Friendly and Denis 2005]. It can help identify potential trends, patterns, and outliers in
the data. It uses a dot or marker to represent each record, where the position of each dot on the graph
indicates the values of the record in each dimension. As such, a scatterplot is a classic 2d (𝑥, 𝑦) or 3d
(𝑥, 𝑦, 𝑧) plot. Figure 2.1 shows two examples of classic 2d scatterplots.

In 2d, the resulting graph displays a set of dots, where each dot represents a single record. If the

Sepal_Length Sepal_Width Petal_Length Petal_Width Species

5.1 3.5 1.4 0.2 setosa
4.9 3 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5 3.6 1.4 0.2 setosa

Table 2.1: The first five records of the Iris dataset.

3

4 Approaches to Multidimensional Visual Analysis

(a) Sepal width plotted against sepal length. (b) Petal width plotted against petal length.

Figure 2.1: Scatterplots of the Iris dataset. In (b), there is a clear positive correlation between petal
width and petal length, and the three classes are fairly well separated. [Drawn by Ožbej Golob using
Python.]

dots tend to form a diagonal line sloping upwards from left to right, that is an indication of a positive
relationship (correlation) between the two dimensions. If the dots tend to form a diagonal line sloping
downwards from left to right, that is an indication of a negative relationship (correlation) between them. If
the dots appear to be scattered randomly across the graph, there is no apparent linear relationship between
the two dimensions. Figure 2.1 shows two scatterplots of the Iris dataset. Figure 2.1a shows sepal
width plotted against sepal length, where there is no apparent relationship between the two dimensions.
Figure 2.1b shows petal width plotted against petal length, where there is an apparent positive correlation
between the two dimensions.

One of the key disadvantages of scatterplots is that they can only accommodate two (or three) dimensions
at a time. Thus, they are insufficient as a tool for multidimensional visual analysis on their own.

2.2 Scatterplot Matrices (SPLOM)
A scatterplot matrix (SPLOM) is used to explore the pairwise relationships between multiple dimensions
[Carr et al. 1986] in a single view. It consists of a grid of scatterplots, with each individual plot
displaying the relationship between two dimensions. The diagonal is sometimes used to display the name
of the corresponding dimension and/or a histogram of the distribution of the dimension. The matrix is
symmetric, in the sense that the bottom left triangle is a reflection of the top right triangle. Figure 2.2
shows an example of a scatterplot matrix for the four numerical dimensions of the Iris dataset.

One of the primary advantages of using scatterplot matrices is the ability to explore multiple relation-
ships simultaneously. Instead of creating multiple individual scatterplots to visualize each relationship,
a scatterplot matrix provides a comprehensive overview of all the pairwise relationships between dimen-
sions in a single visualization. Typically, an individual scatterplot can be selected and enlarged for closer
inspection. However, scatterplot matrices become unwieldy with a larger number (say 15 or more) of
dimensions.

When interpreting scatterplot matrices, it is important to look for patterns and trends that emerge across

Star Coordinates 5

Figure 2.2: A scatterplot matrix displaying all pairwise scatterplots of the four numerical dimen-
sions in the Iris dataset. The diagonal cells are used to display a histogram of the distribution of
that dimension. The color of the individual data points indicates the species. [Drawn by Ožbej Golob
using Python.]

the plots. For example, if the histograms on the diagonal show that one dimension has a highly skewed
distribution, it may be necessary to transform the dimension to improve the performance of a statistical
model. Similarly, if multiple plots show a strong linear relationship between two dimensions, it may be
worth exploring the use of linear regression models to further investigate the relationship.

2.3 Star Coordinates
Star Coordinates is a visualization technique that maps multidimensional data onto a two-dimensional
space using a radial layout [Kandogan 2001]. The basic idea behind Star Coordinates is to represent each
record as a set of coordinates on a star-shaped plot. The plot consists of a series of radial axes radiating
from a central point, with each axis representing a dimension in the data. Each record is mapped to its
position using a weighted average of its values in each of the dimensions. Figure 2.3 shows an example
of a Star Coordinates plot displaying the Iris dataset. In the plot, the data is separated by sepal and petal
features (length and width).

The end of each axis is adorned with a circular marker (anchor), which can be interactively moved
to relocate the corresponding axis in the plot. The records reposition themselves to follow the anchor’s
motion. In Star Coordinates, an anchor can be moved outside or inside the circle to emphasize or
deemphasize its influence respectively. The records too can reside either inside or outside the circle.

Star Coordinates plots can comfortably accommodate a larger number (say 10 or 20) dimensions, but
like other techniques, they can become cluttered if the number of records becomes too large.

6 Approaches to Multidimensional Visual Analysis

(a) Initial placement of records, with dimensions equally
spaced around the perimeter.

(b) Placement of records after repositioning the
dimension anchors.

Figure 2.3: Star Coordinates plots of the Iris dataset. [Drawn by Ožbej Golob using RPE [Neuhold et al.
2020].]

2.4 RadViz
RadViz (Radial Visualization) is similar to Star Coordinates, in that it maps multidimensional data onto
a two-dimensional space using a radial layout [Hoffman et al. 1997]. Dimensions are represented by
anchor points placed around the perimeter of a circle. Each record is represented by a point inside the
circle. The position of the record in the circle is determined by the weighted average of the dimension
values associated with that point. The weight of each dimension is determined by the user and can be
used to emphasize or de-emphasize certain dimensions in the visualization. Figure 2.4 shows an example
of a RadViz plot displaying the Iris dataset.

In the case of RadViz, the anchors can only be moved around the perimeter of the circle, and the
records always remain within the circle. A RadViz plot can comfortably accommodate a larger number
(say 10 or 20) of dimensions. Like other techniques, it can become cluttered if the number of records
becomes too large.

Dust and Magnet (DnM) 7

(a) Initial placement of records, with dimensions equally
spaced around the perimeter.

(b) Placement of records after repositioning the di-
mension anchors.

Figure 2.4: RadViz plots of the Iris dataset. [Drawn by Ožbej Golob using RPE [Neuhold et al. 2020].]

2.5 Dust and Magnet (DnM)
Dust and Magnet (DnM) is a visualization technique that maps multidimensional data onto a two-
dimensional space [Yi et al. 2005]. The basic idea behind DnM is to represent each record as a particle of
dust that is attracted to one or more magnets. The magnets represent different dimensions in the data, and
their strength determines the influence of each dimension on the records. The stronger the magnet, the
greater the influence of the corresponding dimension on the records. The user can increase the influence
of a particular dimension by clicking and/or shaking the magnet of the corresponding dimension. The
use of particles and magnets provides an intuitive and interactive way to explore and analyze the data.
Figure 2.5 shows an example of a DnM plot displaying the Iris dataset.

DnM can comfortably accommodate a larger number (say 10 or 20) of dimensions. Like other
techniques, it too can become cluttered if the number of records becomes too large. A particular
advantage of DnM is its flexibility. Users can adjust the strength of the magnets to emphasize or de-
emphasize different dimensions and can manipulate the position and size of the magnets to highlight
specific patterns in the data. However, a potential limitation of DnM is that the technique can be sensitive
to the initial configuration of the particles and magnets. This means that users may need to experiment
with different settings to create an informative layout.

8 Approaches to Multidimensional Visual Analysis

(a) Initial placement of records in the center. (b) Placement of records after moving and shaking the mag-
nets.

Figure 2.5: DnM plots of the Iris dataset. [Drawn by Ožbej Golob using RPE [Neuhold et al. 2020].]

2.6 Similarity Maps
Similarity maps are projections of multidimensional datasets to two (or sometimes three) dimensions.
Multidimensional datasets, by definition, have a large number of dimensions (often hundreds or thou-
sands), which presents many computational and mathematical challenges. Projection techniques are used
to reduce the number of dimensions in the data while attempting to preserve distances between items
as much as possible. Items that are close in the multidimensional space should also be close in the
resulting two-dimensional projection space. One of the key advantages of similarity maps is that they
can accommodate any number of dimensions, which are then mapped into two (or three) dimensions.
Projections can further be split into linear and non-linear projections.

A linear projection is a transformation that can be represented by a linear function. This means that
the output of a linear projection is a linear combination of the input dimensions, where each dimension
is multiplied by a scaling factor and then added together. In other words, a linear projection involves
scaling and rotating the data without distorting it, and its output could be used to label the projected axes.
Linear projections are useful for reducing the dimensionality of data while preserving its structure and
relationships between dimensions. Common examples of linear projections include Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).

A non-linear projection, on the other hand, involves more complex transformations that cannot be
represented by a linear function. This means that the output of a non-linear projection is a complex
combination of the input dimensions that may involve multiplication, exponentiation, or other non-linear
operations. Non-linear projections can distort the data to reveal patterns and relationships that may not
be apparent in the original multidimensional space. Non-linear projections are particularly useful for
data that exhibits complex and non-linear relationships between dimensions. Examples of non-linear
projections include Multi-Dimensional Scaling (MDS), t-distributed Stochastic Neighbor Embedding
(t-SNE), and Uniform Manifold Approximation and Projection (UMAP).

Similarity Maps 9

2.6.1 Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a linear projection technique [Abdi and Williams 2010]. PCA
analyzes the covariance matrix of the original dataset, which describes the relationship between the
different dimensions. By calculating the eigenvectors and eigenvalues of the covariance matrix, PCA
identifies the directions in which the data varies the most, the principal components.

The principal components are ranked based on the amount of variance they account for. The first
principal component explains the largest amount of variance, followed by the second principal component,
and so on. By keeping only the principal components that explain the majority of the variance in the data,
the dimensionality of the dataset can be reduced, while still retaining the most important information.
Typically, the first two principal components are then mapped to the x and y axes of the similarity map.
Since PCA does not involve any randomization, it is deterministic and produces the same layout every
time it is run.

2.6.2 Multi-Dimensional Scaling (MDS)
Multi-Dimensional Scaling (MDS) is a non-linear projection technique [Morrison et al. 2003]. MDS is
used to visualize the similarity or dissimilarity between different objects or observations. The technique
transforms a multidimensional dataset to a lower-dimensional space, usually two or three dimensions,
while preserving the relationships between the records.

MDS works by first calculating the pairwise distances or dissimilarities between all the objects in the
dataset. These distances could be based on any metric, such as Euclidean distance, correlation distance,
or other similarity measures. Once the distance matrix is constructed, MDS tries to find a configuration
of points in a lower-dimensional space that best reproduces the distances or dissimilarities between the
original objects in the higher-dimensional space. This is done by minimizing a cost function, such as
stress or error, which measures the discrepancy between the original pairwise distances and the distances
between the projected points.

MDS can be classified into two main types: metric and non-metric. In metric MDS, the pairwise
distances between the objects are preserved exactly, while in non-metric MDS, only the rank order of the
distances is preserved. Non-metric MDS is often used when the underlying distance metric is unknown
or not easily quantifiable.

Depending on the implementation, MDS can be either deterministic or non-deterministic. Having the
technique be deterministic and thus produce the same layout every time it is run, is preferable in terms of
user experience.

2.6.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)
t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear projection technique [Van der
Maaten and Hinton 2008; Wattenberg et al. 2016]. t-SNE uses a probabilistic model to preserve the local
structure of the data in the multidimensional space and project the data onto a lower-dimensional space,
usually two or three dimensions.

The t-SNE algorithm works by first calculating the pairwise similarities between all the records in the
multidimensional space. This is typically done using a Gaussian kernel, which measures the similarity
between two points as a function of their Euclidean distance. The similarities are then used to construct
a probability distribution for each point that defines the likelihood of finding other points nearby. In the
low-dimensional space, t-SNE tries to find a configuration of points that preserves the pairwise similarities
between the multidimensional records as closely as possible. The algorithm does this by minimizing a
cost function that measures the divergence between the probability distributions in the high-dimensional
and low-dimensional spaces. The optimization is performed using gradient descent, which iteratively

10 Approaches to Multidimensional Visual Analysis

updates the position of each point in the low-dimensional space until the cost function is minimized. The
t-SNE algorithm has a number of tunable parameters, the most important of which is perplexity, which
steers the tightness of the resulting clusters.

One of the key features of t-SNE is that it uses a Student’s t-distribution to model the probability
distribution in the low-dimensional space. This allows t-SNE to emphasize the differences between
nearby records and de-emphasize the differences between distant records, which helps prevent crowding
and distortion in the final visualization. Again, depending on the implementation and the choice of initial
layout, t-SNE can be either deterministic or non-deterministic.

2.6.4 Uniform Manifold Approximation and Projection (UMAP)
Uniform Manifold Approximation and Projection (UMAP) is a non-linear projection technique [McInnes,
Healy and Melville 2018]. UMAP is based on manifold learning and topological data analysis. The
technique uses three assumptions about the data to construct a manifold with a fuzzy topological structure.
The embedding is set to a low-dimensional projection that best preserves the original fuzzy structure.

UMAP works by creating a low-dimensional representation of the data while preserving the global
structure of the data. This is achieved by modeling the data as a multidimensional manifold, which
is a mathematical object that represents the underlying structure of the data. UMAP then finds a low-
dimensional embedding of the manifold that preserves the local structure of the data. The UMAP
algorithm consists of several steps. First, a nearest-neighbor graph is constructed by connecting each
record to its nearest neighbors. This graph is then used to create a fuzzy simplicial set, which is
a mathematical object that captures the local structure of the data. The fuzzy simplicial set is then
transformed into a low-dimensional representation using a stochastic gradient descent algorithm.

UMAP has several advantages over other dimensionality reduction techniques. For example, UMAP
can preserve both the global and local structure of the data, which means that it can be used for both
exploratory data analysis and machine learning tasks. Traditional UMAP implementations use random
sampling to speed up the optimization, but the random seed can be fixed to produce a deterministic layout.

2.6.5 Comparison of Similarity Mapping Techniques
Figure 2.6 shows the four similarity mapping techniques applied to the Iris dataset. All four techniques
separate the Iris Setoca class from the other two classes, which cannot be clearly separated from each
other. t-SNE and UMAP generate dense clusters, while PCA and MDS clusters are more spread out.
The t-SNE example uses a perplexity value of 30; using a different value would result in a significantly
different result.

Parallel Coordinates 11

Figure 2.6: Comparison of four similarity mapping techniques on the Iris dataset. [Drawn by Ožbej
Golob using Python.]

2.7 Parallel Coordinates
Parallel coordinates are a type of chart used to visualize multidimensional data [Inselberg and Dimsdale
1990; Inselberg 2009]. Each dimension is represented by a vertical axis arranged in parallel. Each record
is represented by a horizontal polyline. The position where a polyline touches an axis indicates the value
of the record for that dimension. Parallel coordinates allow multiple dimensions to be compared and
analyzed simultaneously. Figure 2.7 shows an example of a generic parallel coordinates plot displaying
records with multiple dimensions. Figure 2.8 shows a parallel coordinates plot for the Iris dataset.

In a parallel coordinates plot, the correlation between two adjacent dimensions can be observed by the
general direction and pattern of the lines connecting the two axes. When two adjacent dimensions are
positively correlated, the lines connecting the points on these axes tend to move in the same direction.
That is, as one variable increases, the other variable also increases. This is visually represented by lines
that generally slope in the same direction between the two axes. When two adjacent dimensions are
negatively correlated, the lines connecting the points on these axes tend to move in opposite directions.
That is, as one variable increases, the other variable decreases. This is visually represented by lines that
generally cross each other or form an X pattern between the two axes.

One of the key advantages of a parallel coordinates plot is that it can comfortably accommodate a
larger number (say 10 or 20) of dimensions without scrolling, and considerably more (50 or 100 or more)
if horizontal scrolling is implemented. However, like other techniques, it can become cluttered if the
number of records becomes too large.

Several approaches for handling missing data have been proposed. Bäuerle et al. [2022] compared
three such approaches, shown in Figure 2.9. They performed a quantitative user study and concluded that
the best approaches for four representative tasks are: having a horizontal missing values axis for value
estimation, information removal for outlier detection, information removal or imputed (estimated) values
for trend estimation, and that no approach is significantly better than others for value retrieval.

12 Approaches to Multidimensional Visual Analysis

dim 1 dim 2 dim 3 dim N...

Figure 2.7: A parallel coordinates plot showing dimensions as vertical axes and records as horizontal
polylines. [Drawn by Ožbej Golob using Adobe Illustrator.]

Figure 2.8: A parallel coordinates plot displaying the Iris dataset. [Drawn by Ožbej Golob using Python.]

(a) Information removal. (b) Missing values axis. (c) Imputed values.

Figure 2.9: Three approaches for handling missing parallel coordinates data suggested by Bäuerle
et al. [2022]. [Drawn by Ožbej Golob using Adobe Illustrator.]

Parallel Coordinates Matrix 13

Figure 2.10: A parallel coordinates matrix (PCM) for the four numerical dimensions of the Iris
dataset. [Drawn by Ožbej Golob using Python.]

2.8 Parallel Coordinates Matrix
To visually analyze the relationship between two dimensions, the dimensions must be adjacent to one
another. A parallel coordinates matrix (PCM) is a counterpart to a SPLOM. It displays permutations of
parallel coordinates to show all pairwise adjacent dimensions [Heinrich et al. 2012]. A PCM allows users
to compare each pair of these dimensions across different parallel coordinates plots arranged in a matrix,
making it easier to detect how changes in one variable might relate to changes in another.

As discussed by Wegman [1990], the number of permutations needed to ensure that all possible
pairwise combinations are shown is 𝑛

2 (𝑛 even) or 𝑛+1
2 (𝑛 odd), or in other words ⌈𝑛2 ⌉, where 𝑛 is the

number of dimensions. For a dataset with six dimensions, numbered from one to six, the following three
permutations would suffice: [1 2 6 3 5 4], [2 3 1 4 6 5], and [3 4 2 5 1 6]. For a dataset with four
dimensions, two permutations would suffice: [1 2 4 3] and [2 3 1 4], as shown in Figure 2.10 for the four
numerical dimensions of the Iris dataset.

2.9 Brushing and Linking
Brushing refers to the process of selecting and highlighting one or more records in a visualization.
Linking refers to the process of synchronizing multiple visualizations, such that selections made in one
visualization are highlighted in the other visualizations too. This allows the user to explore the data
from different perspectives and understand how sets of records of interest are positioned in the various
visualizations. Figure 2.11 shows an example of brushing and linking. The user selected a single record
in the scatterplot, which is then also highlighted in the parallel coordinates plot and bar chart.

14 Approaches to Multidimensional Visual Analysis

(a) Record brushed in scatter-
plot.

(b) Highlighted in parallel coordinates. (c) Highlighted in bar chart.

Figure 2.11: An example of brushing and linking. The user selected a single record in the
scatterplot, which is then highlighted in red in all other visualizations. [Drawn by Ožbej Golob using
Adobe Illustrator.]

2.10 Grouping and Labeling
Grouping refers to the process of identifying and collecting similar records, while labeling refers to the
process of naming the groups. Grouping and labeling help organize and structure data records, allowing
for more accurate and meaningful analysis of the data, as similar records can be grouped together and
analyzed in relation to one another. It also allows a Machine Learning (ML) model to understand the
context of the data and make more accurate predictions with greater interpretability.

Manual grouping and labeling refers to the process of organizing data records manually by a human,
which can be time-consuming and labor-intensive. Automated clustering uses mathematical methods to
identify which objects in a given data set are similar. Similar records are automatically grouped into
clusters. This allows analysts to identify common patterns and trends within the data, and to gain a better
understanding of the relationships between the objects in the dataset [Romesburg 1984].

Chapter 3

Tools for Multidimensional
Visual Analysis

Multidimensional visual analysis software tools are designed to help analysts explore and analyze complex
datasets. These programs typically include a wide range of tools and features that allow users to create and
manipulate graphical representations of the data, such as scatterplots, parallel coordinates, and similarity
maps. Using these tools, analysts can quickly and easily explore the data and gain insights that might
not be immediately apparent from looking at the raw data. Multidimensional visual analysis software is
commonly used in fields such as business, finance, and scientific research to uncover hidden trends in the
data and help make data-driven decisions. In this chapter, some popular multidimensional visual analysis
software tools are reviewed.

3.1 XMDV
XMDV tool is a software package for the interactive visual exploration of multidimensional datasets
[Ward 1994; Lab 2024; Zhao 2021]. XMDV is written in Qt and Eclipse CDT and is available as free,
open-source software. It was initially released in 1994 and last updated on 24 Sept 2021. XMDV is
available for Windows, macOS, and Linux. XMDV can load datasets in .csv format and its own custom
.okc format. There is no option to export an uploaded dataset.

XMDV displays the data in the following visualizations: scatterplot matrix, parallel coordinates, star
glyphs, dimensional stacking, and tree maps. XDMV also supports many interaction modes and tools,
including brushing and linking. Figure 3.1 shows the XMDV tool. Visualizations can be exported in
.bmp, .jpg, and .png formats.

15

16 Tools for Multidimensional Visual Analysis

Figure 3.1: XMDV displaying the Iris dataset [Fisher 1936]. [Screenshot taken by Ožbej Golob using
XMDV software [Ward 1994].]

3.2 Parallax
Parallax is a tool for effectively analyzing multidimensional datasets and discovering patterns, properties,
and relations in data [T. Avidan and S. Avidan 1999; Inselberg 2009, Chapter 10]. Parallax was developed
by a small Israeli software company, MDG, in collaboration with Alfred Inselberg. It was initially released
in 1994 and was available as commercial, closed-source software. Parallax can load datasets in its own
custom .dat format. The uploaded dataset can be exported in the same format.

The main part of Parallax is a powerful parallel coordinates visualization, which enables queries. The
results of queries can be grouped and then shown separately or in combination with other queries. Parallax
provides the following visualizations: scatterplot, parallel coordinates, and distribution (histogram).
Parallax does not support brushing and linking. Figure 3.2 shows the Parallax tool. There is no option to
export visualizations.

Alone among the tools, Parallax provides sophisticated support for defining and manipulating sets of
records, in essence looking for formulaic rule-based definitions with which to specify particular classes
of records.

GGobi 17

Figure 3.2: Parallax displaying a financial dataset. [Screenshot taken by Ožbej Golob using Parallax software [T.
Avidan and S. Avidan 1999].]

3.3 GGobi
GGobi is a visualization program for exploring multidimensional data [Cook et al. 2007; GGobi 2024].
GGobi is written in C and is available as free, open-source software. It was initially released in 1999
and last updated on 10 Jun 2012. GGobi is available for Windows, macOS, and Linux. GGobi can load
a selection of pre-prepared datasets. It is also possible to load datasets in .csv and .xml formats. The
uploaded dataset can be exported to .csv and .xml formats.

GGobi provides dynamic and interactive graphics as tours, where data is displayed in an animation.
The following visualizations are available: scatterplot, scatterplot matrix, parallel coordinates, time
series, and distributions (histograms). GGobi supports limited brushing. The visualizations offer limited
interactivity and interpretability and are not closely connected. Figure 3.3 shows the GGobi tool. There
is no option to export visualizations.

18 Tools for Multidimensional Visual Analysis

Figure 3.3: GGobi displaying the Premier League dataset [Samariya 2020]. [Screenshot taken by Ožbej
Golob using GGobi software [Cook et al. 2007].]

3.4 InfoScope
InfoScope is an interactive visualization program designed for exploring and presenting large datasets
[Macrofocus 2015; Girardin and Brodbeck 2001; Brodbeck and Girardin 2003]. InfoScope is available as
free software, but is not open-source. It was initially released in 2001 and last updated on 19 Aug 2015.
InfoScope is available for Windows, macOS, and Linux.

InfoScope can load a selection of pre-prepared datasets, mainly from the finance sector. It is also
possible to load datasets, but only in the system’s custom .mis format. A dataset can be exported in .csv,
.csv.gz, .raw, .tab, .tsv, .tsv.gz, .txt, and .txt.gz formats.

InfoScope provides the following visualizations: carto plot, similarity map, parallel coordinates, and
table. InfoScope supports brushing and linking, so all visualizations are highly interactive and tightly
linked. Users can obtain exact record values by inspecting the records, and select a subset of records with
range sliders. InfoScope supports manual grouping of records by color. Figure 3.4 shows InfoScope.
It later evolved into the tool High-D. A screenshot of the whole user interface can be saved as .pdf or
directly printed, but individual visualizations can not be exported to .svg.

XDAT 19

Figure 3.4: InfoScope displaying the Prices and Earnings around the Globe 2012 dataset [UBS
2012]. [Screenshot taken by Ožbej Golob using InfoScope software [Macrofocus 2015].]

3.5 XDAT
XDAT is a multidimensional data analysis tool designed to help users quickly and easily extract valuable
insights from large, complex datasets with many dimensions [de Rochefort 2024; de Rochefort 2020].
XDAT is written in Java and is available as free software. It was initially released in May 2010 and last
updated on 26 Aug 2020. XDAT is available for Windows, macOS, and Linux. XDAT can load datasets
in .csv format. The current session can be saved to a custom .ses file and later re-imported with updated
visualizations.

The following visualizations are available: parallel coordinates, scatterplot, and table. All of the
visualizations are interconnected through standard brushing and linking so that any changes or selections
made in one visualization are reflected in all of the other visualizations. Figure 3.5 shows the XDAT tool.
Visualizations can be exported in .png format.

20 Tools for Multidimensional Visual Analysis

Figure 3.5: XDAT displaying the Premier League dataset [Samariya 2020]. [Screenshot taken by Ožbej
Golob using XDAT software [de Rochefort 2024].]

3.6 High-D
High-D is the successor to InfoScope [Macrofocus 2024]. It offers similar functionality with some
improvements and added visualizations. High-D is a powerful visualization program for identifying
trends, relationships, and anomalies in large and complex datasets. It is focused around an interactive
parallel coordinates plot. High-D is available as commercial software for US$ 199 and with a 30-day
free evaluation period. It was initially released in Sept 2013 and last updated on 08 Jul 2024. High-D is
available for Windows, macOS, and Linux.

High-D can load a selection of pre-prepared datasets, mainly from the finance sector. It is also possible
to load datasets in .csv, .json, .tab, .tsv, .txt, .xml, a number of database formats, and custom
Macrofocus formats. The uploaded dataset can be exported in the same formats.

High-D provides the following visualizations: parallel coordinates, parallel coordinates matrix, table
plot, distributions, scatterplot matrix, scatterplot, similarity map (Sammon, Spring, t-SNE, and PCA),
tree map, and carto plot. High-D supports manual grouping of data by color and automated clustering
with a k-means algorithm. High-D also supports brushing and linking, so all visualizations are highly
interactive and tightly linked. Users can obtain exact record values by inspecting the records, and can
select a subset of records with range sliders. Figure 3.6 shows the High-D tool. Visualizations can be
exported in .emf, .gif, .jpg, .png, .ps, .svg, .tiff, and .webp formats.

TabuVis 21

Figure 3.6: High-D displaying the Premier League dataset [Samariya 2020]. [Screenshot taken by Ožbej
Golob using High-D software [Macrofocus 2024].]

3.7 TabuVis
TabuVis is a flexible and customizable visual analytics system for multidimensional data [Nguyen et al.
2023; Nguyen 2024]. Visualizations can be customized by domain experts to suit the specific needs of
the data being analyzed. TabuVis is written in Java and is available as free software. It was initially
released in May 2013 and last updated on 03 May 2023. TabuVis is available for Windows, macOS, and
Linux. TabuVis can load a selection of pre-prepared datasets. It is also possible to load datasets in .csv
format. The current session can be saved to a custom file and later re-imported.

TabuVis displays data in separate visualizations. TabuVis includes various features for analyzing data,
such as the ability to process data, add automatic marks, create custom interactive visualizations, and
filter the data. These features are designed to support the entire data analysis process. TabuVis displays
the data in the following visualizations: scatterplot, parallel coordinates, and star plot. TabuVis does
not support brushing and linking. Figure 3.7 shows the TabuVis tool. There is no option to export
visualizations.

22 Tools for Multidimensional Visual Analysis

Figure 3.7: TabuVis displaying the Premier League dataset [Samariya 2020]. [Screenshot taken by
Ožbej Golob using TabuVis software [Nguyen et al. 2023].]

3.8 Improvise
Improvise is a program that allows users to create and interact with visualizations that are linked together
in various ways [Weaver 2020]. Improvise is written in Java and is available as a free, open-source
software. It was initially released in 2014 and last updated on 28 Oct 2020. Improvise is available for
Windows, macOS, and Linux.

Improvise can load datasets in its own custom .viz format. There is no option to export the uploaded
dataset.

The program uses a shared-object coordination model and a declarative visual query language to
give users control over how data is displayed in multiple visualizations. This allows users to create
visualizations with a variety of coordination patterns. Improvise also has a user interface that allows
users to build and explore visualizations in a live environment, making it easy to modify visualizations
as needed. The goal of Improvise is to provide a high level of coordination flexibility while also being
easy to use. Figure 3.8 shows the Improvise tool. There is no option to export visualizations.

MyBrush 23

Figure 3.8: Improvise displaying a custom XRGB dataset. [Screenshot taken by Ožbej Golob using Improvise
software [Weaver 2020].]

3.9 MyBrush
MyBrush is an experimental application that allows users to customize and control the brushing and
linking process in their visualizations [Koytek et al. 2017; Koytek 2017]. It provides flexibility by
allowing users to specify the source, link, and target of multiple brushes, and supports a variety of
visualization types and multiple simultaneous brushes. Improvise is written in JavaScript and is available
as a free, open-source web application. It was initially released in Jun 2016 with the last update issued
on 22 Sept 2017.

MyBrush is experimental and offers limited functionality. Its purpose is to explore brushing and
linking functionality. There is no option to load a dataset, but the user can explore a predetermined set
of data with the following visualizations: scatterplot, parallel coordinates, and bar plot. Any changes or
selections made in one of the visualizations are reflected in all of the other visualizations because they
are all interconnected through standard brushing and linking. Figure 3.9 shows the MyBrush tool. There
is no option to export visualizations.

24 Tools for Multidimensional Visual Analysis

Figure 3.9: MyBrush displaying a custom football players dataset. [Screenshot taken by Ožbej Golob using
MyBrush software [Koytek et al. 2017].]

3.10 mVis
mVis is a visual analytics tool for visualizing multidimensional data [Chegini et al. 2019; Chegini 2021].
mVis is written in Java and is available as free, open-source software. It was initially released in Jul 2020
and last updated on 20 Jan 2021. mVis is available for Windows, macOS, and Linux. mVis can load
datasets in .csv format. There is no option to export the uploaded dataset.

mVis provides an overview of global relationships between objects by using multiple visualizations to
show different aspects of the data at the same time. mVis consists of four data visualization visualizations:
scatterplot matrix, scatterplot, similarity map (t-SNE, PCA, and MDS), and parallel coordinates. mVis
also has a component for controlling data partitions. All of the visualizations are interconnected through
standard brushing and linking so that any changes or selections made in one visualization are reflected in
all of the other visualizations. Additionally, the user can close, rearrange, or expand any visualization as
needed.

mVis supports the interactive visual labeling of records in a dataset, both manually with the linked
visualizations and by running built-in clustering and active learning methods. An analyst can take a
dataset and efficiently partition it into classes by labeling the records. Such a labeled dataset can then be
used as a training dataset for machine learning. Figure 3.10 shows the mVis tool. There is no option to
export visualizations.

Comparison of Tools 25

Figure 3.10: mVis displaying a custom football players dataset. [Screenshot taken by Ožbej Golob using
mVis software [Chegini et al. 2019].]

XMDV Parallax GGobi InfoScope XDAT High-D TabuVis Improvise MyBrush mVis

Initial Release: 1994 Mar
1999

1999 2001 May
2010

Sept
2013

May
2013

2014 Jun
2016

Jul 2020

Last Update: Sept
2021

? Jun
2012

Aug
2015

Aug
2020

Jul 2024 May
2023

Oct
2020

Sept
2017

Jan 2021

License: Free,
open-
source

Commer-
cial

Free,
open-
source

Free
demo

Free Commer-
cial

Free Free,
open-
source

Free,
open-
source

Free,
open-
source

Systems: Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Win,
MacOS,
Linux

Web
Browser

Win,
MacOS,
Linux

Language: Qt ? C Java Java Java Java Java JavaScript Java
Installation: Local Local Local Local Local Local Local Local Online Local

Table 3.1: Overview of reviewed tools.

3.11 Comparison of Tools
The software tools covered in this chapter are compared in two tables: Table 3.1 shows general information
for each tool, while Table 3.2 compared the features provided by each tool.

26 Tools for Multidimensional Visual Analysis

Feature XMDV Parallax GGobi InfoScope XDAT High-
D

TabuVis Improvise MyBrush mVis

Load Custom Datasets: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Export Dataset: ✓ ✓ ✓ ✓ ✓ ✓

Export Visualizations: ✓ ✓ ✓ ✓

Brushing: ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linking: ✓ ✓ ✓ ✓ ✓ ✓ ✓

Manual Grouping: ✓ ✓ ✓ ✓ ✓ ✓ ✓

Automated Clustering: ✓ ✓ ✓ ✓

Table View: ✓ ✓ ✓ ✓

Scatterplot: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scatterplot Matrix: ✓ ✓ ✓ ✓ ✓

Parallel Coordinates: ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Parallel Coordinates Matrix: ✓

Similarity Map: ✓ ✓ ✓ ✓ ✓

Time Series: ✓ ✓

Distributions: ✓ ✓ ✓ ✓ ✓

Table Plot: ✓ ✓

Tree Map: ✓ ✓ ✓

Carto Plot: ✓ ✓ ✓

Table 3.2: Comparison of reviewed tool features.

Chapter 4

Modern Web Technologies

Modern web technologies have revolutionized the way users interact with the internet, transforming
static web pages into dynamic and interactive experiences. With advancements in HTML5, CSS3, and
JavaScript frameworks, developers can create responsive, high-performance web applications that work
seamlessly across various devices and platforms. This chapter gives an overview of web applications, pop-
ular frontend development frameworks, web graphics rendering technologies, and desktop development
libraries.

4.1 Web Applications
A web application is an application that can be accessed over the internet through a web browser and does
not need to be downloaded or installed. Web applications offer several benefits, such as multiple user
access, no need to download the application, cross-platform access, and access through web browsers.
Additionally, web applications often have shorter development cycles and smaller development teams,
making them more cost-effective and efficient to build and maintain. Web applications usually follow the
client-server model, where the client is considered the frontend and the server is considered the backend
[Berson 1996]. This is illustrated in Figure 4.1.

4.1.1 Frontend
The frontend of a web application is responsible for the user interface and user experience [Ahmed
2024b]. It is the part of the application that the user interacts with directly, and its purpose is to provide a
visually appealing and intuitive interface that allows users to easily navigate and perform tasks. A well-
designed frontend is crucial for the success of an application, as it can greatly influence user satisfaction
and adoption rates. Frontend development involves the use of the three fundamental web technologies
HTML, CSS, and JavaScript to create the visual components of an application, including buttons, menus,
forms, and other graphical elements. It is important to consider factors such as accessibility, usability,
and responsiveness when designing a frontend, to ensure that the application can be used by a diverse
range of users on a variety of devices and platforms.

4.1.2 Backend
The backend of a web application is responsible for processing data and executing the logic of an
application [Ahmed 2024a]. It provides the underlying functionality that supports the frontend, enabling
it to interact with databases, servers, and other systems. Backend development involves the use of
programming languages such as Java, Python, Ruby, and PHP to create the logic and functionality that
drives an application. The backend also handles security and user authentication, ensuring that user

27

28 4 Modern Web Technologies

Internet

Clients / Frontend

Server / Backend

Figure 4.1: The client-server model for a web application. [Drawn by Ožbej Golob using Adobe Illustrator.]

data is protected from unauthorized access. Scalability and performance are key considerations when
designing a backend, as it must be able to handle large amounts of data and support a large number
of users. A well-designed backend is crucial for the success of an application, as it directly affects the
reliability, performance, and security of the application.

4.2 Frontend Development Frameworks
A frontend development framework is a collection of pre-written code and tools that developers can use
to build the user interface and functionality of a software application. These frameworks are typically
built using JavaScript, and provide a set of pre-designed components and functions that developers can
use to create an application’s frontend quickly and efficiently. Frontend development frameworks can
include a wide range of tools, such as user interface components like buttons, forms, and menus, as well
as more complex features like data visualization, animations, and dynamic content loading. This section
reviews several popular frontend development frameworks.

4.2.1 Angular
Angular is an open-source framework for building web applications using HTML, CSS, and JavaScript
or TypeScript [Google 2024; Murray et al. 2018]. It was developed and is maintained by Google.

Some of the advantages of using Angular include its comprehensive set of tools and features, which
can help developers build complex web applications quickly and efficiently. Angular also provides a
strong focus on code organization and architecture, making it easier to maintain and update applications
over time. Additionally, Angular offers a large community of developers and resources, making it easier
to find support and learn new skills.

However, some of the disadvantages of using Angular include a steep learning curve, as it requires
knowledge of multiple programming languages and concepts. Additionally, Angular can be more verbose
than other frameworks, which can lead to larger codebases and slower performance. Finally, Angular can
be more difficult to integrate with other technologies and frameworks, since it has a unique architecture
and approach to web development.

Frontend Development Frameworks 29

4.2.2 React
React is an open-source framework for building web and mobile applications using JSX (a syntax
extension for JavaScript), CSS, and JavaScript or TypeScript [Meta 2024; Accomazzo et al. 2017]. It was
developed and is maintained by Meta (formerly Facebook).

Some of the advantages of using React include its simplicity and flexibility, which make it easy to
learn and use, and its focus on reusability, which can save developers time and effort. React also offers
a virtual Document Object Model (DOM), which can improve application performance by reducing the
number of updates needed to the actual DOM. Additionally, React has a large and active community
of developers, with many resources and tools available to help developers learn and use the framework
effectively. React is highly customizable, allowing developers to use it in conjunction with other libraries
and frameworks to build complex, scalable applications.

However, some of the disadvantages of using React include the lack of built-in functionality, which
can require developers to use additional libraries or tools to add functionality to their applications. React
can also have a steep learning curve. Additionally, React’s reliance on JSX can be challenging for some
developers to learn and use effectively.

4.2.3 Vue
Vue is an open-source framework for building web applications using HTML, CSS, and JavaScript or
TypeScript [You 2024b; Filipova 2016]. It was developed by Evan You and is maintained by Vue’s core
team members.

Some of the advantages of using Vue include its simplicity, which makes it easy to learn and use for
developers of all skill levels, and its flexibility, which allows developers to use it with other libraries and
frameworks to build complex, scalable applications. Vue also offers a range of features, including reactive
data binding, computed properties, and built-in directives, that can help developers build applications
quickly and efficiently. Additionally, Vue has a growing and active community of developers, with many
resources and tools available to help developers learn and use the framework effectively. Vue also has a
relatively small learning curve compared to other popular frameworks, such as React and Angular.

However, some of the disadvantages of using Vue include its smaller community and ecosystem
compared to other frameworks, which can make it more difficult to find support and resources. Vue
also has fewer third-party plugins and tools available compared to other frameworks, which can limit its
functionality in some cases.

4.2.4 Svelte
Svelte is an open-source framework for building web applications using HTML, CSS, and JavaScript
[Harris 2024a; Holthausen 2022]. It was developed by Rich Harris and is maintained by Svelte’s core
team members. It takes a different approach to building web applications compared to other popular
frameworks, by moving much of the work of generating code from the browser to the build process.

One of the primary benefits of Svelte is its small file size and fast performance. Svelte compiles the
application code into highly optimized, plain JavaScript code that runs more efficiently in the browser,
resulting in faster load times and improved performance. Another advantage of Svelte is its simplicity
and ease of use. The framework has a small API surface area, and its syntax is intuitive and easy to
learn. Svelte also has a rich ecosystem of plugins and tools that make it easy to integrate with other
technologies.

However, one of the disadvantages of Svelte is its relatively new status, which means that it has a
smaller community and fewer resources compared to more established frameworks like Angular, React,
and Vue. This can make it more difficult to find support and resources for developers who are just starting

30 4 Modern Web Technologies

with Svelte. Another disadvantage of Svelte is its limited compatibility with older browsers. Since Svelte
relies on newer web technologies like JavaScript modules and the CSS Grid Layout, it may not work well
on older browsers that do not support these features.

SvelteKit is a framework for building web applications using Svelte [Harris 2024b]. It provides a
comprehensive toolkit that includes everything you need to build a fully-featured application, such as
server-side rendering (SSR), static site generation (SSG), and client-side rendering (CSR). SvelteKit
handles routing, data fetching, and other essential aspects of web application development, making it
easier to build scalable, high-performance applications. SvelteKit leverages the power of Svelte while
adding the necessary infrastructure and features to support complex, production-ready web applications.

4.3 Web Graphics Rendering Technologies
Web graphics rendering technologies are used to create and display graphics, images, and multimedia
content in the web browser. Modern web browsers support several ways to draw graphics, which are built
into the web browser. There are four built-in web graphics rendering technologies [Andrews 2024b]:

• Canvas2D: Raster-based graphics are created with the HTML <canvas> element and the 2d rendering
context [W3C 2015]. A JavaScript API is used to draw to the canvas.

• SVG-DOM: SVG nodes are injected dynamically into the DOM using JavaScript [Whitney 2013].

• WebGL: A 3d graphics API derived from OpenGL is used to construct and manipulate a scene graph
[Khronos Group 2024a]. The HTML <canvas> element is used with the webgl or webgl2 rendering
context. A JavaScript API is used to draw to the canvas. WebGL makes use of hardware acceleration
through a GPU, where available.

• WebGPU: The successor to WebGL, which is faster and non-blocking [W3C 2024d]. A JavaScript
API is used to draw to an HTML <canvas> element with webgpu rendering context.

In addition, the Offscreen Canvas API [MDN 2024a] helps improve performance for the those built-in
web graphics rendering technologies which use a <canvas> element (Canvas2D, WebGL, and WebGPU)
by offloading the rendering process to a separate thread.

4.3.1 Canvas2D
Raster-based 2d graphics can be created from JavaScript using the Canvas API and the HTML <canvas>
element with a 2d rendering context [W3C 2015]. This will be referred to as Canvas2D. Canvas2D
is used to create dynamic and interactive graphics on the web. Canvas2D graphics are created using
a raster-based approach, where pixels are directly manipulated to create the graphics. Canvas2D was
introduced in 2004 by Apple [Matthew 2021] and was the only option for manipulating web graphics
until SVG-DOM was introduced.

Canvas2D offers improved performance compared to SVG-DOM and can handle larger datasets and
more complex animations. Canvas2D graphics are highly dynamic and interactive, which means that
they can be manipulated and animated in real time using JavaScript. However, they are not naturally
scalable or responsive and have to be redrawn if the dimensions change. Canvas2D is supported by all
modern browsers, making it a reliable and cross-browser-compatible graphics technology.

4.3.2 SVG-DOM
Scalable Vector Graphics (SVG) is a standard markup language for 2d vector graphics [W3C 2001].
Based on XML, it contains elements such as lines, rectangles, circles, polygons, and text, out of which
more complex graphics can be constructed. SVG graphics are scalable, which means that they can be

Web Graphics Rendering Technologies 31

resized without losing quality. SVG graphics are also editable, which means that they can be easily
modified or updated. Modern browsers support SVG 1.1 and some elements of SVG 2.0. This means
that SVG elements can be intermingled with HTML elements in a web document, to provide embedded
vector graphics. The SVG elements can be styled with CSS.

JavaScript can be used to dynamically insert SVG nodes into the browser’s Document Object Model
(DOM) [W3C 2011] and later manipulate or remove them [Whitney 2013]. Thus, data-driven vector
graphics can be created on the fly with JavaScript. This technique will be referred to as SVG-DOM.
Performance issues can arise when rendering large datasets with SVG-DOM, since each data point or
shape requires its own SVG element to be inserted into the DOM.

4.3.3 WebGL
WebGL is a 3d web graphics rendering technology used to create high-performance graphics on the web
[Khronos Group 2024a]. As of now, there are two major versions of WebGL. WebGL 1.0 was released in
2011 and enabled developers to leverage the hardware of the Graphics Processing Unit (GPU) of a device
to render graphics in real-time, resulting in visually stunning and highly performant graphics [Khronos
Group 2024b]. WebGL 2.0 was released in 2017 and was built on top of WebGL 1.0 [Khronos Group
2024c]. It introduced several new features and improvements, such as multiple render targets, instanced
drawing, uniform buffer objects, and enhanced texturing capabilities. These enhancements allow for
more advanced graphics and performance optimizations in web applications.

WebGL graphics are drawn by constructing a scene graph through the WebGL API. WebGL also
enables users to manipulate and interact with the graphics in real time. Additionally, WebGL is supported
by all modern browsers, making it a reliable and cross-browser-compatible graphics technology. However,
WebGL has a steep learning curve that requires a high level of expertise and knowledge of both JavaScript
and computer graphics. There exist several WebGL libraries that simplify the development of web
applications with WebGL, some of which are described in Section 4.4.

4.3.4 WebGPU
WebGPU is the successor to WebGL [W3C 2024d]. It is designed to be closer to the architecture of
modern GPUs and is similar in style to low-level graphics APIs like Vulkan, DirectX 12, and Metal.
WebGPU aims to improve performance and efficiency by allowing developers to write code that can
take advantage of the latest hardware features, while still maintaining compatibility with a wide range
of devices and browsers. It provides a unified and standardized interface for accessing GPU resources,
including rendering, computing, and data transfer operations.

WebGPU is still in the early stages of development and is not yet supported by all major web browsers
(see [Deveria 2024]), but it has the potential to revolutionize web-based graphics and computing in the
future.

4.3.5 Offscreen Canvas
The Offscreen Canvas API is a relatively new feature in web development that allows for the creation
of a canvas rendering context that can be rendered in a separate thread from the main JavaScript thread
[MDN 2024a]. In traditional web development, all canvas rendering occurs on the main thread, which
can cause performance issues if the canvas is rendering complex graphics or animations. The Offscreen
Canvas API alleviates this issue by offloading the rendering process to a separate thread, thus freeing up
the main thread for other tasks. Using the Offscreen Canvas API, developers can create and manipulate a
canvas rendering context in a separate thread while still being able to transfer the rendered output to the
main thread for display on the web page. This can result in faster rendering times, smoother animations,
and a more responsive user experience.

32 4 Modern Web Technologies

The Offscreen Canvas API is supported by all modern web browsers. Canvas2D, WebGL, and WebGPU
can all make use of and benefit from Offscreen Canvas, since they all use a HTML <canvas> element
to draw. However, SVG-DOM cannot benefit from Offscreen Canvas, since it is rendered via the DOM
rather than a canvas.

4.4 Web Graphics Rendering Libraries
Web graphics rendering libraries have become increasingly popular in recent years, as they help developers
create visually appealing and interactive graphics on web pages. These libraries provide pre-built
functions and tools for creating and manipulating 2d and 3d graphics, animations, and visualizations,
allowing developers to construct a wide range of applications.

4.4.1 SVG.js
SVG.js is a lightweight 2d drawing library that uses SVG-DOM for rendering [Fierens 2024]. It provides
a simple API to create, animate, and manipulate various SVG elements.

4.4.2 Konva.js
Konva.js is a 2d drawing and animation library which builds upon Canvas2D [Lavrenov 2024]. In effect,
it extends the utility of Canvas2D with many extra features. With Konva.js, developers can easily create
and manipulate complex scenes composed of various shapes, images, text, and animations.

4.4.3 Two.js
Two.js is a 2d drawing library for the web that provides an intuitive and easy-to-use API for creating
complex vector graphics, animations, and interactive visualizations [Brandel 2024]. It was originally
spun off from the Three.js project to focus solely on 2d graphics. Two.js supports the WebGL, Canvas2D,
and SVG-DOM web rendering technologies. It has a wide range of shapes and primitives and allows
developers to apply various styles and effects to them, such as gradients, shadows, and opacity. It also
supports animation and interactivity, with features like tweening and easing functions, mouse and touch
events, and drag-and-drop functionality. Two.js is highly performant when WebGL is used for rendering
and has a modular architecture that allows developers to use only the parts of the library that they need.
It has a large community of contributors and users.

4.4.4 Pixi.js
Pixi.js is a powerful 2d drawing library for the web, which provides a fast and efficient way to create
high-performance interactive applications and games [Groves 2024]. Pixi.js supports the WebGL and
Canvas2D web rendering technologies, as well as Offscreen Canvas. Pixi.js provides an easy-to-use API
that allows developers to create complex graphics and animations with ease. Pixi.js supports a wide range
of features, including sprite sheets, filters, masking, and particle systems. It also has built-in support for
animations and interactivity, including keyboard and mouse events, touch events, and physics simulations.
Pixi.js is highly optimized for performance, which makes it suitable for creating complex graphics and
animations that run smoothly even on mobile devices. It has a large and active community of contributors
and users who continue to improve and extend its functionality.

4.4.4.1 Three.js

Three.js is a 3d drawing library for generating graphics and animations on the web [Cabello 2024a].
Three.js supports all four web rendering technologies, WebGL, WebGPU, Canvas2D, and SVG-DOM, as

Web Graphics Rendering Libraries 33

Figure 4.2: The Slay Lines benchmark web application displaying 500 rectangles, in this case with
Pixi.js. [Screenshot taken by Ožbej Golob using The Slay Lines application [Slay Lines 2024].]

well as Offscreen Canvas. Three.js provides an easy-to-use API for building complex 3d scenes, which
can include a wide variety of objects, materials, lights, and effects. Three.js also includes support for
advanced materials, physics simulations, and VR. With a large and active community of contributors,
Three.js is constantly evolving and improving, making it one of the most popular and widely used 3d
graphics libraries for the web.

4.4.5 Babylon.js
Babylon.js is a 3d drawing library for generating graphics and animations on the web, similar to Three.js
[Catuhe 2024]. Babylon.js supports the WebGL and WebGPU web rendering technologies, as well as
Offscreen Canvas. Babylon.js provides an easy-to-use API for building complex 3d scenes, which can
include a wide variety of objects, materials, lights, and effects. With a large and active community of
contributors, Babylon.js is also evolving and improving, and is widely used.

4.4.6 D3.js
D3.js is a lower-level 2d drawing library for manipulating and visualizing data based on SVG-DOM
rendering [Bostock 2024; Bostock et al. 2011]. D3.js allows developers to create dynamic, interactive,
and customizable data visualizations by composing a series of marks. It includes a powerful set of
examples and recipes for visualizations, such as bar charts, scatterplots, line charts, and more. In
addition, D3.js provides a wide range of utilities for working with data, including data binding, selection,
filtering, transformation, reading CSV files, and creating scales. These tools can be combined and
customized to create complex interactive visualizations that are tailored to specific data sets and use
cases.

One of the key strengths of D3.js is its flexibility. It does not impose a specific visualization style
or framework, but rather provides a set of building blocks that can be combined in creative ways. This
makes it suitable for a wide range of applications, from simple charts and graphs to complex data-driven
applications.

4.4.7 Performance Comparison
The company Slay Lines created a benchmark web application that compares several popular web graphics
rendering libraries [Slay Lines 2024]. The application consists of up to 32,000 different rectangles moving
on a canvas at various speeds. Figure 4.2 shows the Slay Lines application displaying 500 rectangles

34 4 Modern Web Technologies

500 R 1,000 R 2,000 R 4,000 R 8,000 R 16,000 R 32,000 R

SVG.js 52.2 26.2 13.4 8.3 4.4 1.5 0.7
Konva.js 64.5 57.0 31.6 16.0 9.2 6.9 3.5
Two.js 60.2 70.0 47.2 26.2 13.6 5.1 -
Pixi.js 60.1 60.2 60.3 60.5 56.4 31.8 17.0
Three.js 27.2 14.7 7.6 3.4 1.8 0.6 -

Table 4.1: Comparative performance of web graphics rendering libraries on a laptop (Setup A).
Columns indicate the number of animated rectangles in the benchmark. Cells show the average
FPS of a specific library. A dash (-) indicates that Chrome crashed.

500 R 1,000 R 2,000 R 4,000 R 8,000 R 16,000 R 32,000 R

SVG.js 76.0 75.2 76.8 41.9 19.8 9.8 4.8
Konva.js 75.5 75.1 75.0 63.2 50.3 14.7 5.1
Two.js 75.0 75.1 75.8 73.8 33.9 17.7 4.2
Pixi.js 75.0 75.4 75.3 75.4 75.1 65.5 29.7
Three.js 75.2 75.2 75.1 36.4 15.4 7.4 3.6

Table 4.2: Comparative performance of web graphics rendering libraries on a desktop (Setup B).
Columns indicate the number of animated rectangles in the benchmark. Cells show the average
FPS of a specific library. A slash (/) indicates that Chrome crashed.

with Pixi.js. The Slay Lines web application was used to compare the following web graphics rendering
libraries: SVG.js (SVG-DOM), Konva.js (Canvas2D), Two.js (WebGL), Pixi.js (WebGL), and Three.js
(WebGL).

The aforementioned libraries were benchmarked by their frame rate in frames per second (FPS), as
an average over ten seconds. The frame rate was measured using a custom Python script, shown in
Listing 4.1. The script uses Selenium WebDriver to programmatically open a Chrome web browser and
navigate to the Slay Lines application [Huggins 2024]. Then, Selenium executes a JavaScript function to
measure the average FPS over ten seconds and reports it into the console logs.

Two experimental setups were used: A) a laptop running Windows 11 Pro Version 23H2 with an
Nvidia GeForce MX150 GPU, and B) a desktop running Windows 11 Pro Version 23H2 with an Nvidia
GeForce RTX3060 GPU. The frame rate was measured using Chrome version 126.0.6478.126 and with
Python 3.12.4. Figures 4.3 and 4.4 show the resulting performance measurements in terms of average
FPS with respect to the number of animated rectangles. Tables 4.1 and 4.2 report the exact numbers. As
can be seen, Pixi.js consistently offered the highest performance in both setups.

Web Graphics Rendering Libraries 35

1 from selenium import webdriver
2 import time
3
4 # Create a new Chrome web driver
5 options = webdriver.ChromeOptions()
6 browser = webdriver.Chrome(options=options)
7
8 # Navigate to the webpage you want to measure the FPS for
9 browser.get("https://benchmarks.slaylines.io/")

10
11 # Wait for the page to load
12 time.sleep(10)
13
14 # Execute JavaScript to start measuring FPS
15 browser.execute_script("""
16 window.performance.mark(’start’);
17 let startTime = performance.now();
18 let lastTime = startTime;
19 let fps = 0;
20 let fpsArray = [];
21
22 function update() {
23 let currentTime = performance.now();
24 let timeElapsed = currentTime - lastTime;
25 lastTime = currentTime;
26 fps = 1000 / timeElapsed;
27 fpsArray.push(fps);
28
29 // End measurement at 10 seconds
30 if (currentTime - startTime > 10000) {
31 window.performance.mark(’end’);
32 window.performance.measure(’measure’, ’start’, ’end’);
33 let sum = fpsArray.reduce((a, b) => a + b, 0);
34 let average = sum / fpsArray.length;
35 window.averageFps = average; // Store the average FPS globally
36 }
37 else window.requestAnimationFrame(update);
38 }
39 window.requestAnimationFrame(update);
40 """)
41
42 # Wait for the measurement to complete
43 time.sleep(12)
44
45 # Retrieve the FPS data
46 average_fps = browser.execute_script("return window.averageFps;")
47 print("Average FPS:", average_fps)
48
49 # Close the browser
50 browser.quit()

Listing 4.1: Python code using Selenium WebDriver to measure average FPS.

36 4 Modern Web Technologies

Figure 4.3: Comparative performance of web graphics rendering libraries, measured using the Slay
Lines benchmark web application on a laptop (Setup A). [Drawn by Ožbej Golob using Python.]

Figure 4.4: Comparative performance of web graphics rendering libraries, measured using the Slay
Lines benchmark web application on a desktop (Setup B). [Drawn by Ožbej Golob using Python.]

Desktop Development Libraries 37

4.5 Desktop Development Libraries
Desktop development libraries are software libraries and frameworks that enable developers to create web
applications which also run on common desktop operating systems like Windows, macOS, and Linux.
These libraries provide developers with tools and APIs to build graphical user interfaces (GUIs), handle
user input and output, manage data, interact with system resources, and perform other tasks required for
building desktop applications. This section describes two popular desktop development libraries for web
applications: Electron and Tauri.

4.5.1 Electron.js
Electron.js (also known as Electron) is a longstanding desktop development library [OpenJS 2024a].
Electron works by combining two main components: Chromium and Node.js. Chromium is an open-
source web browser project that powers Google Chrome and other popular browsers. It provides Electron
with the ability to render web content and handle user interactions. The Chromium-based UI looks
the same on Windows, Linux, and macOS. Node.js is a JavaScript runtime for running JavaScript on
the desktop and accessing native APIs. In essence, Electron allows web applications to be packaged
as desktop applications by bundling Chromium, Node.js, and the web application itself into a single
executable package. This comes at the cost of rather large executable packages, often 100 MB or more.

In addition, Electron provides developers with a set of APIs for building desktop applications, including
APIs for handling file system operations, creating menus and dialogs, and managing window events.
However, using them means that the application can no longer be used as a web application.

4.5.2 Tauri
Tauri is a relatively new desktop development library [Tauri 2024a]. Tauri works by combining Rust,
JavaScript, and the desktop platform’s pre-installed local Webview (web browser) component. Rust is
a programming language recognized for its strong memory safety and high performance. Rather than
bundling a complete web browser, Tauri uses the local system’s Webview: Edge Webview2 (Chromium)
on Windows, WebKitGTK on Linux, and WebKit on macOS, making Tauri apps much lighter than
Electron apps. Tauri apps also typically have better performance, launch time, and memory consumption
than Electron apps.

38 4 Modern Web Technologies

Chapter 5

The Multidimensional Visual Analyser
(MVA)

MVA is a web application written with the SvelteKit framework. It is rendered entirely on the client-side,
meaning it has no backend. The user must first upload a dataset, and MVA then displays the data with
the help of several of the multidimensional visual analysis approaches described in Chapter 2. The MVA
user interface has two main parts: the Navigation Bar 1 and the Display Area. The Display Area consists of
six synchronized panels, which the user can hide/show, resize, or move: Scatterplot Matrix 2 , Scatterplot
3 , Similarity Map 4 , Partitions 5 , Table 6 , and Parallel Coordinates 7 . The MVA user interface is shown

in Figure 5.1.

Four of the panels contain visualizations. A single scatterplot can be selected in the Scatterplot Matrix
panel, which is then shown in the Scatterplot panel. The Similarity Map panel implements PCA and UMAP
similarity mapping techniques. The Parallel Coordinates panel can be used to filter records, making them
inactive, and the changes are reflected in all panels. All four of the visualization panels can be exported
individually as SVG files (.svg).

5 6 7

2

2

3 4

1

Figure 5.1: The Navigation Bar 1 and six synchronized panels of the Display Area: Scatterplot Matrix
2 , Scatterplot 3 , Similarity Map 4 , Partitions 5 , Table 6 , and Parallel Coordinates 7 .

39

40 5 The Multidimensional Visual Analyser (MVA)

The Table panel displays the dataset in tabular form, where rows are records and columns are dimensions.
The user can sort the table by any dimension, ascending or descending. The Partitions panel enables the
user to manually group and label records into partitions. The user can select a partition’s shape and color,
and can hide partitions. Partitions can be exported, and the user can re-import the dataset with existing
partitions, or use the exported partitions as input to a machine learning model.

MVA also implements brushing and linking. When a record is hovered over in one panel, the changes
are reflected in all panels. The user can select (brush) multiple records by clicking them or by selecting
them with specialized selection tools.

5.1 Build System
MVA is written with SvelteKit and TypeScript. The SvelteKit build system uses npm [npm 2024] and
Vite [You 2024a], which creates an optimized production build of the application. The build process
creates a static site that is ready to be deployed. The task runner Gulp is used to automate common tasks
during the build process [Bublitz and Schoffstall 2024].

Despite MVA primarily being a web application, it can also be built into a desktop application
for Windows. This is done with Tauri, which is a Rust-based framework for building native desktop
applications from a web application, described in Subsection 4.5.2.

5.2 Dependencies
MVA depends on the following npm packages, defined in the package.json file:

• d3-array: For array manipulation, sorting, and obtaining histogram data [Bostock 2023a].

• d3-axis: For drawing the scatterplot, similarity map, and parallel coordinates axes [Bostock 2023b].

• d3-drag: For handling dragging of parallel coordinate axes and scatterplot matrix overview map
[Bostock 2023c].

• d3-dsv: For parsing imported datasets [Bostock 2023d].

• d3-scale: For calculating x and y scales for all panels [Bostock 2023e].

• d3-selection: For selecting SVG elements by id and class [Bostock 2023f].

• d3-shape: For drawing lines in parallel coordinates SVG export and scatterplot matrix lines [Bostock
2023g].

• flowbite-svelte: A component library that uses Tailwind CSS [Themesberg 2024a]. MVA uses
several Flowbite components: buttons, checkboxes, toast, navigation, drop-down, form elements,
icons, etc.

• ml-pca: For calculating the PCA similarity map [Zakodium 2023].

• umap-js: For calculating the UMAP similarity map [People+AI Research (PAIR) Initiative 2024].

• svelte-awesome-color-picker: For partition color selection [Dupont 2024]. It is a highly customiz-
able color picker component library that supports HEX, HSV, and RGB color profiles.

• svelte-splitpanes: For resizing panels [Refalo 2024]. It is a responsive component that enables
resizable panels supporting several advanced features.

• tailwind-merge: A utility for Tailwind CSS, required by the Flowbite component library [Castillo
2024].

Components 41

• three: For drawing all user-visible data records [Cabello 2024a].

• xml-formatter: For formatting the exported SVG file [Bottin 2024]. It parses the SVG code and
indents it into a user-readable form.

5.3 Components
MVA is split into multiple components to improve organization, maintainability, readability, and scalab-
ility. Each component is presented as a SvelteKit file with a name like <Component>.svelte. Listing 5.1
shows the folder structure of the most important MVA application components. Some components also
have utility files (util.ts, draggingUtil.ts, or drawingUtil.ts) which contain helper functions, and types
files (types.ts) which contain TypeScript types and interfaces, but these are not shown in Listing 5.1 for
brevity.

5.4 Icons
MVA uses some icons from the flowbite-svelte-icons icon library [Themesberg 2024b], which is a
collection of more than 430 free and open-source SVG icons. MVA also requires some custom icons.
Custom icons are defined as SVG graphics in the src/static/icons/ folder. A gulp task then collects the
icons as TypeScript SVG string constants into the file src/util/icon-definitions.ts, from where they
can easily be imported and used.

5.5 Example Datasets
The folder example-datasets/ contains several example datasets, which the user can import into MVA.
They are further described in Section A.4.

42 5 The Multidimensional Visual Analyser (MVA)

components/
navbar/

Navbar.svelte
dataset/

DatasetPreview.svelte
ExampleDatasets.svelte
ExportDatasetModal.svelte
ImportDatasetModal.svelte

panels
Layout -[1-6].svelte
Panel.svelte

parcoord/
ParcoordComponent.svelte
ParcoordVisibleDimensions.svelte
SelectionShapePicker.svelte
axes/

Axes.svelte
context-menu/

ContextMenuAxes.svelte
histograms/

HistogramSettings.svelte
HistogramSettingsModal.svelte
Histograms.svelte

lines/
Lines.svelte

partitions/
AddPartitionModal.svelte
ColorPickerCustom.svelte
ColorPickerModal.svelte
ContextMenu.svelte
DeletePartitionModal.svelte
PartitionElement.svelte
PartitionsComponent.svelte

scatterplot/
DimensionPickers.svelte
ScatterplotComponent.svelte
SelectionShapePicker.svelte
axes/

Axes.svelte
points/

Points.svelte
simmap/

MethodPicker.svelte
SimmapComponent.svelte

splom/
OverviewSettings.svelte
SPLOMComponent.svelte
axes/

Axes.svelte
AxesOverview.svelte

points/
Points.svelte

svg-exporter/
SvgExportModal.svelte

table/
ContextMenu.svelte
TableComponent.svelte
TableVisibleDimensions.svelte

tooltip/
Tooltip.svelte

Listing 5.1: The folder structure of the most important MVA application components.

Chapter 6

Selected Details of the Implementation

The previous chapter provided a high-level overview of the MVA application. This chapter describes im-
plemented approaches in further detail, with emphasis on specific decisions taken during the development
of the application.

6.1 Chosen Web Graphics Rendering Technology
Section 4.4.7 compared different web graphics rendering technologies. Since Pixi.js produced the highest
average FPS, it was initially implemented as the selected technology. However, it was observed that
Pixi.js, despite its high performance, exhibited significant issues with line smoothness. This suggested
potential limitations in the library’s antialiasing algorithm or its implementation in handling certain
graphic elements. These findings are particularly relevant for applications like MVA, where the quality of
such graphic elements is of significant importance. This drove the need to consider alternative rendering
solutions.

Despite having a lower average FPS, the Three.js library was selected as a workable alternative, because
of its smooth lines, ease of implementation, extensive documentation, and online examples. Figures 6.1
and 6.2 show lines rendered with Pixi.js and Three.js respectively. Although hard to see in the screenshots,
lines produced with Three.js are visually much smoother.

43

44 6 Selected Details of the Implementation

Figure 6.1: Lines rendered with Pixi.js.

Figure 6.2: Lines rendered with Three.js.

Overlaying Canvases for Visualizations 45

1 .canvas-records {
2 background-color: rgba(255, 255, 255, 0);
3 position: absolute;
4 top: 0;
5 right: 0;
6 bottom: 0;
7 left: 0;
8 z-index: 2;
9 }

10
11 .canvas-axes {
12 background-color: rgba(255, 255, 255, 0);
13 position: absolute;
14 top: 0;
15 right: 0;
16 bottom: 0;
17 left: 0;
18 z-index: 3;
19 }

Listing 6.1: The CSS z-index property is used to overlay two canvases positioned one above the
other. Records are drawn on the background canvas with a z-index of 2. Axes are drawn on the
foreground canvas with a z-index of 3. This creates the illusion that both are drawn on the same
canvas.

6.2 Overlaying Canvases for Visualizations
Each of the four MVA visualization panels comprises two main components: axes and records (drawn
either as lines or points). There are three main options for drawing axes: SVG-DOM, Canvas2D, and
WebGL. Despite WebGL being much faster, it has very limited interactivity (such as dragging, hovering,
and swapping). Since axes do not represent the main rendering workload, they can be rendered as SVG
elements with the help of the D3 library. This ensures better interactivity in the form of axis dragging,
axis swapping, filter dragging, custom cursors, etc.

The main workload of the application is taken up rendering data records. Records are drawn using the
Three.js library with WebGL. It is not possible to use the same canvas for both D3 and WebGL. Thus,
the visualization panels render records with WebGL on one canvas and axes and other controls as SVG
elements on a second overlaid canvas. This is achieved using the CSS z-index property, as shown in
Listing 6.1. The user sees both canvases as one, since they are overlaid.

6.3 Scatterplot Matrix Rendering
Of the visualizations in MVA, the scatterplot matrix (SPLOM) presents the main rendering challenge,
since for 𝑛 dimensions a full SPLOM would comprise 𝑛2 individual scatterplots. Each record would need
to be rendered in every scatterplot. For example, a relatively small dataset with 20 dimensions and 100
records translates to 400 individual scatterplots in a 20×20 SPLOM, and 40,000 records being drawn
each time.

To reduce the number of records having to be drawn, MVA’s Scatterplot Matrix panel only shows a 5×5
matrix of scatterplots at any one time, and the user can pan around the larger (virtual) full SPLOM. For
a dataset with 20 dimensions and 100 records, the number of records having to be drawn at any one

46 6 Selected Details of the Implementation

Figure 6.3: The Scatterplot Matrix panel.

time is reduced from 40,000 to 2,500. Two tools are provided for the user to navigate around the full
SPLOM: scrollbars to the right and bottom, and an Overview Map, as shown in Figure 6.3. Once opened,
the Overview Map shows a 5×5 window into the full SPLOM, which the user can drag around with the
mouse. The scrollbars can also be used to pan around. To further increase performance, web workers are
used to perform calculations off the main thread, as described in Section 6.4.

6.4 Using Web Workers
Web workers allow JavaScript to run in the background, on a separate thread from the main execution
thread of a web application, freeing up the main thread to concentrate on responding quickly to user
interactions. Two types of web worker are used in MVA: drawing workers and calculating workers.

Drawing workers are used by MVA’s four visualization panels (Scatterplot Matrix, Scatterplot, Similarity
Map, and Parallel Coordinates) to offload the drawing of records to a separate thread in an Offscreen
Canvas. The Three.js library supports OffscreenCanvas. Each of these panels creates a drawing worker
and transfers a <canvas> element to it. The main thread then communicates with the worker by posting
and receiving messages. Listing 6.2 shows an example of how canvas control is transferred offscreen and
attached to a web worker and how the main thread and web worker communicate.

Calculating workers are used to increase the performance and rendering speed of the Scatterplot Matrix
panel. The calculation of the x and y coordinates for the records of one individual scatterplot for the
SPLOM is considered to be an atomic calculating task, and these tasks are distributed amongst the
remaining available web workers. Listing 6.3 shows some example code to distribute tasks to available
calculating workers.

Using Web Workers 47

1 <script lang="ts">
2 let canvasEl: HTMLCanvasElement;
3 let offscreenCanvasEl: OffscreenCanvas;
4
5 onMount(() => {
6 offscreenCanvasEl = canvasEl.transferControlToOffscreen();
7 worker = new DrawingWorker();
8
9 // Send initialization message to worker

10 worker.postMessage(
11 {
12 function: ’init’,
13 canvas: offscreenCanvasEl ,
14 width,
15 height,
16 },
17 [offscreenCanvasEl]
18);
19
20 // Listen for received messages from worker
21 worker.onmessage = (message) => {
22 const data = message.data;
23 switch (data.function) {
24 case ’someFunction’:
25 // Handle some function
26 break;
27 default:
28 break;
29 }
30 };
31 });
32 <script/>
33
34 <canvas bind:this={canvasEl} />

Listing 6.2: Svelte code for transferring a canvas to an Offscreen Canvas and attaching it to a web
worker. The main thread sends an initialization message to the worker. A callback function
listens for received messages.

48 6 Selected Details of the Implementation

1 function drawPoints() {
2 points = [];
3
4 availableWorkers = navigator.hardwareConcurrency;
5 if (availableWorkers === 0) calculatePointData();
6 else calculateDistributePointData();
7 }
8
9 function calculatePointData() {

10 // Code to calculate records X and Y scale coordinates
11
12 drawingWorker.postMessage({
13 function: ’drawPoints’,
14 points
15 });
16 }
17
18 function calculateDistributePointData() {
19 completedWorkers = 0;
20 calculatingWorkers = [];
21
22 for (let i = 0; i < availableWorkers; i++) {
23 const worker = new CalculatingWorker();
24 calculatingWorkers.push(worker);
25 worker.onmessage = handleCalculatingWorkerResult;
26 }
27
28 const taskData: TaskType[] = [];
29 // Code to distribute data into tasks
30
31 // Distribute tasks among workers
32 const tasksPerWorker = Math.ceil(taskData.length / availableWorkers);
33 for (let i = 0; i < availableWorkers; i++) {
34 const tasks = taskData.slice(i * tasksPerWorker , (i + 1) * tasksPerWorker);
35 calculatingWorkers[i].postMessage({ tasks, spacing, margin });
36 }
37 }
38
39 function handleCalculatingWorkerResult(event: MessageEvent) {
40 points = points.concat(event.data.points);
41 completedWorkers++;
42 if (completedWorkers === availableWorkers) {
43 drawingWorker.postMessage({
44 function: ’drawPoints’,
45 points
46 });
47
48 calculatingWorkers.forEach((worker) => {
49 worker.terminate();
50 });
51 }
52 }

Listing 6.3: Code for distributing calculating tasks between available calculating workers.

Hovering and Brushing 49

Figure 6.4: The MVA application showing brushed (orange) and hovered (red) records.

6.5 Hovering and Brushing
Some web graphics rendering libraries handle hovering natively using events such as mouseover and
mouseout. Three.js does not support native hovering events. To detect whether a line is hovered, the
Three.js Raycaster is used [Cabello 2024b]. Raycasting is a computational technique used to determine
the path of rays through a 3D space to detect intersections with objects. It is often used in rendering,
collision detection, and visibility determination in computer graphics. In MVA, the Raycaster is given
the current mouse coordinates to determine intersections with any drawn (hovered) records. A Svelte
store is used to save hovered record indices as a set of numbers. When the hovered set is updated, all
panels receive a message to update the hovered items, which enables linking.

Brushing is achieved by detecting the pointerdown event. When a pointerdown event is triggered, one
of three possible scenarios occurs, depending on the modifier:

a) If the Shift key is pressed during selection, all hovered records are added into the selection
(brushed set).

b) If the Control key Ctrl is pressed during selection, all hovered records are toggled in the brushed
set (i.e. if the record is already in the brushed set, it is removed, otherwise it is added).

c) Otherwise, a new brushed set is created, containing only the currently hovered records.

As with hovered items, a Svelte store is used to save the set of selected (brushed) record indices as a set
of numbers. When the brushed set is updated, all panels receive a message to update the brushed items.
Figure 6.4 shows a screenshot of MVA with brushed (orange) and hovered (red) records.

6.6 Filtering
Filtering is implemented in the Parallel Coordinates panel in the form of a double-edged range slider, as
can be seen in Figure 6.5. Triangles at the top and bottom of the range slider can be dragged to adjust the
range. In addition, the range slider itself can be moved up or down. Records which are out of the range
are filtered out; they become inactive and are grayed out in every panel, as can be seen in Figure 6.6.

50 6 Selected Details of the Implementation

Figure 6.5: In the Parallel Coordinates panel, a double-edged range slider on each dimension (in pale
yellow) can be adjusted to filter out records and make them inactive.

Figure 6.6: Filtered out records are inactive and are greyed out in every panel.

Selection Tools 51

1 function isPointInPolygon(point: CoordinateType , polygon: CoordinateType[]) {
2 let inside = false;
3 const n = polygon.length;
4
5 for (let i = 0, j = n - 1; i < n; j = i++) {
6 const xi = polygon[i].x,
7 yi = polygon[i].y;
8 const xj = polygon[j].x,
9 yj = polygon[j].y;

10
11 const intersect = yi > point.y !== yj > point.y
12 && point.x < ((xj - xi) * (point.y - yi)) / (yj - yi) + xi;
13 if (intersect) inside = !inside;
14 }
15
16 return inside;
17 }

Listing 6.4: Code for calculating whether a point is contained within a polygon.

Filtering is computationally expensive, as calculations have to be performed for each adjustment of the
range slider to decide which records have become inactive. Initially, filtering was implemented using a
Raycaster to detect when the filter was dragged over the record. However, this approach caused perform-
ance issues and slow rendering of filtered records. For that reason, a new approach was implemented,
which handles filtering calculation in the offscreen drawing worker. Each line position is checked against
the current filter position. A message is then sent from the worker to the main thread that contains an
array of boolean values indicating whether a record is filtered or not. This approach and the fact that
calculations are performed offscreen significantly improves the smoothness and rendering performance
of filtering.

6.7 Selection Tools
The Scatterplot and Similarity Map panels have two additional selection tools for selecting records: lasso
selection and box selection. The Parallel Coordinates panel also has two additional selection tools: line
selection and box selection.

Lasso selection was implemented using the point-in-polygon algorithm [Shimrat 1962; Andrews 1991;
MacWright 2021]. Listing 6.4 shows the implemented code for the algorithm. Polygon points are
determined by the user’s mouse movement when pressing the mouse and dragging. Points are added with
a debounce timer of 500 milliseconds to reduce the complexity of calculations.

The Three.js official documentation provides an example of box selection [Herzog 2024], where the
user drags out a box with the mouse. However, in MVA, it was more efficient to use the same point-in-
polygon test for box selection too, where the box is simply a rectangular polygon from the starting point
where the mouse button was pressed down to the ending point at the current location.

In the Parallel Coordinates panel, line selection is implemented using a line-line intersection algorithm
[Weisstein 2002]. Each line segment from each record (polyline) is compared to the selection line to
determine whether the two lines intersect. Listing 6.5 shows the implemented code for the line intersection
algorithm.

52 6 Selected Details of the Implementation

1 function isLineIntersecting(line: THREE.Line, lassoLine: CoordinateType[]) {
2 const linePoints = getPointsFromLine(line);
3
4 for (let i = 0; i < linePoints.length - 1; i++) {
5 for (let j = 0; j < lassoLine.length - 1; j++) {
6 if (
7 doesIntersect(
8 linePoints[i].x,
9 linePoints[i].y,

10 linePoints[i + 1].x,
11 linePoints[i + 1].y,
12 lassoLine[j].x,
13 lassoLine[j].y,
14 lassoLine[j + 1].x,
15 lassoLine[j + 1].y
16)
17)
18 return true;
19 }
20 }
21
22 return false;
23 }
24
25 function doesIntersect(a: number, b: number, c: number, d: number,
26 p: number, q: number, r: number, s: number) {
27 const det = (c - a) * (s - q) - (r - p) * (d - b);
28 if (det === 0) return false;
29
30 const lambda = ((s - q) * (r - a) + (p - r) * (s - b)) / det;
31 const gamma = ((b - d) * (r - a) + (c - a) * (s - b)) / det;
32 return 0 < lambda && lambda < 1 && 0 < gamma && gamma < 1;
33 }

Listing 6.5: Code for calculating whether two lines intersect.

Box selection uses the same approach as line selection, where each line segment from each record is
compared to all four edges of the selection box to determine whether the line and the box intersect.

6.8 SVG Exporter
SVG export is a basic requirement for any information visualization application. It enables the user to
save the current visualization in a widely-used vector graphics format. In MVA, all visualization panel
axes are drawn in an <svg> element using D3, which enables a straightforward way to save the axes as
SVG. The XMLSerializer package [MDN 2024b] is used to serialize the <svg> element to a string in a
human-readable format.

All data records in MVA’s visualization panels are drawn using Three.js. Three.js does provide a way
to save the WebGL-drawn graphics into an SVG. However, the result is not human-readable, which is not
acceptable for MVA. To solve this issue, the data records are re-drawn using D3 as SVG. Records are drawn
to an invisible <svg> element as SVG shapes, and are then serialized to a string using XMLSerializer.
The invisible <svg> element is then deleted.

SVG Exporter 53

4.3

5.0

6.0

7.0

7.9

Sepal_Length

2.0

2.5

3.0

3.5

4.0

4.4

Sepal_Width

1.0

2.0

3.0

4.0

5.0

6.0

6.9

Petal_Length

0.1

0.5

1.0

1.5

2.0

2.5

Petal_Width

virginica

versicolor

setosa

Species

16/09/2024, 17:23 parcoord (7).svg

file:///C:/Users/ozbej/Downloads/parcoord (7).svg 1/1

Figure 6.7: Example of a visualization exported as SVG.

Parallel Coordinates records are drawn as SVG <line> elements [W3C 2024b]. Scatterplot Matrix, Scat-
terplot, and Similarity Map records are drawn using SVG <defs> elements [W3C 2024a] to define markers
and names. A <defs> element stores graphical objects which can later be reused with an SVG <use>
element [W3C 2024c]. Finally, the axes and records are concatenated into a final merged SVG file for
export. Figure 6.7 shows an example of a parallel coordinates visualization exported as SVG. Listing 6.6
shows some of the exported SVG code, shortened for brevity.

54 6 Selected Details of the Implementation

1 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 951 386">
2 <!-- Lines -->
3 <g>
4 <path fill="none" stroke="#4146cb" stroke-width="1" stroke-opacity="0.75"
5 d="M30,301.333L250.25,166L470.5,353.22L690.75,362L911,96"/>
6 <path fill="none" stroke="#4146cb" stroke-width="1" stroke-opacity="0.75"
7 d="M30,320L250.25,236L470.5,353.22L690.75,362L911,96"/>
8 </g>
9 <!-- Axes -->

10 <g>
11 <g class="parcoord -y-axis" transform="translate(30, 40)" fill="none"
12 font-size="10" font-family="sans-serif" text-anchor="end">
13 <path class="domain" stroke="currentColor" d="M-6,336.5H0.5V0.5H-6"/>
14 <g class="tick" transform="translate(0,336.5)">
15 <line stroke="currentColor" x2="-6"/>
16 <text fill="currentColor" x="-9">4.3</text>
17 </g>
18 </g>
19 <text class="parcoord -axis-title" transform="translate(30, 10)"
20 font-size="0.625rem" style="text-anchor: middle;">Sepal_Length </text>
21 <svg class="parcoord -axis-invert cursor-pointer" x="22" y="12" width="1rem"
22 height="1rem" stroke="#000" fill="#000">
23 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 16 16">
24 <rect fill="white" stroke="white" width="16" height="16"/>
25 <path d="m 8.119999,13.438806 -0.01,-9.850000 m 0,0 L 5.22,
26 7.238806 M 8.109999,3.588806 10.83,7.238806 H 5.2"
27 stroke-linecap="round" stroke-linejoin="round"/>
28 </svg>
29 </svg>
30 <svg class="parcoord -axis-filter-upper" x="22" y="24" width="1rem"
31 height="1rem" stroke="#000" fill="rgba(255, 255, 100, 0.5)">
32 <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 5.291666 5.291667">
33 <path stroke-width="0.259554"
34 d="M0.336363,2.522580H4.950769L2.646012,5.030853Z"/>
35 </svg>
36 </svg>
37 ...
38 <rect class="parcoord -axis-filter-rect" width="12" height="336" y="40"
39 fill="rgba(255, 255, 100, 0.2)" stroke="rgba(0, 0, 0, 0.25)"
40 transform="translate(24, 0)"/>
41 </g>
42 </svg>

Listing 6.6: Example of the exported shortened SVG code.

Chapter 7

Outlook and Future Work

MVA still has some limitations as well as room for potential future improvements. Some features could
not be implemented due to the limitations of external libraries, and some features were out of the scope
of the current thesis work.

7.1 Window Management
Currently, MVA does not have a comprehensive window management system for its panels. WinBox.js,
a popular, lightweight, and powerful JavaScript-based window manager [Nextapps 2023], was initially
used in MVA. However, WinBox.js does not support Svelte events and callbacks, upon which MVA relies
heavily, especially in the Parallel Coordinates panel. The svelte-window-system was also trialed [Luneckas
2021], but also did not meet the complex requirements of MVA. In the future, alternatives for window
management must be explored.

7.2 Rendering Records with Pixi.js
Subsection 4.4.7 compares different web graphics rendering libraries’ performance. Despite Pixi.js being
the top-performing library, it was not used for rendering records because of the insufficient quality of
rendered lines (as noted in Section 6.1). If and when this Pixi.js rendering problem is addressed, the
Pixi.js library could be used to render records. That would significantly improve the performance of
MVA.

7.3 Rendering the Scatterplot Matrix
In the current implementation of the Scatterplot Matrix (SPLOM), the fact that the matrix is symmetric
is not taken advantage of. It might be possible to speed up rendering of the SPLOM by having the web
worker calculating cell (𝑖, 𝑗) also be responsible for calculating cell (𝑗 , 𝑖), by simply switching the x and
y values.

7.4 t-SNE Similarity Map
Currently, the Similarity Map panel implements PCA and UMAP similarity mapping techniques. t-SNE
was initially implemented using the tsnejs [Karpathy 2016] and the tsne-js [science.ai 2016] libraries.
However, both of these libraries are implemented in JavaScript, and do not support TypeScript. They
have also not been maintained since 2015. In the future, in order to integrate t-SNE, one of the previously
mentioned libraries could be re-implemented in TypeScript.

55

56 7 Outlook and Future Work

7.5 Parallel Coordinates Matrix Panel
The parallel coordinates matrix is a multidimensional visual analysis approach described in Section 2.8.
Providing a Parallel Coordinates Matrix panel was out of the scope of this thesis. However, it could be
implemented in the future by re-using the Parallel Coordinates panel, thus adding another useful panel for
the user to interpret data.

7.6 Handling Missing Data
Currently, records with missing data for one or more dimensions are not displayed in any panel. However,
there are existing methods for handling missing data in parallel coordinates, as described in Section 2.7.
In the future, all three mentioned approaches could be implemented at least in the Parallel Coordinates
panel, and the user could select one based on the task at hand.

7.7 Automated Classification
Currently, MVA provides tools for an analyst to manually group and label records, placing them into
non-overlapping classes (partitions). In the future, it would be possible to integrate some automated
clustering and active learning approaches into MVA, to suggest possible classes for unlabeled records,
like the features built into mVis [Chegini et al. 2019; Chegini 2021].

7.8 Rule-Based Definitions for Classes
Parallax [T. Avidan and S. Avidan 1999] provides sophisticated tools for defining and manipulating sets
of records, in essence looking for formulaic rule-based definitions of particular classes of records to be
used as potential classifiers. A similar approach could be explored in MVA.

Chapter 8

Concluding Remarks

This thesis presented the Multidimensional Visual Analyser (MVA), a web application for exploring
and analysing multidimensional datasets. The first part of the thesis reviewed multidimensional visual
analysis approaches in Chapter 2, multidimensional visual analysis tools in Chapter 3, and modern web
technologies in Chapter 4. The second part of the thesis presented the MVA application. Chapter 5
described the overall architecture and implementation of MVA. Chapter 6 described some particularly
interesting or tricky details of the implementation. Chapter 7 looked at some potential future improve-
ments. The thesis has two appendices: Appendix A serves as a User Guide for end users of MVA, and
Appendix B serves as a Developer Guide for developers wishing to modify or extend MVA.

This thesis produced an open-source web application which allows users to explore large, multidi-
mensional datasets. MVA displays data in a scatterplot matrix, a scatterplot, a similarity map, parallel
coordinates, and a table. It enables the user to group data records into partitions and supports brushing
and linking, making the panels highly interconnected. By rendering records with WebGL, the application
maintains its performance even when handling rather large datasets. MVA combines the best features
from the reviewed multidimensional visual analysis software tools and implements them as both a web
application and a desktop application. The parallel coordinates implemented in MVA offer more inter-
activity than in the other reviewed software tools. They can also display categorical dimensions, unlike
the reviewed software. MVA source code is available on GitHub [Golob and Andrews 2024b]. MVA is
deployed as a web application [Golob and Andrews 2024a], and can be built into a desktop application
for Windows.

57

58 8 Concluding Remarks

Appendix A

User Guide

This appendix serves as a User Guide for the Multidimensional Visual Analyser (MVA). Its purpose is to
enable analysts to explore and analyze multidimensional datasets with MVA efficiently and effectively.
All screenshots in this User Guide show MVA with the Cereals dataset, except those in Section A.6,
which use the Student Marks dataset (example datasets are described in Section A.4).

A.1 Installation
The web application version of MVA is available online at https://tugraz-isds.github.io/mva/ [Golob
and Andrews 2024a]. The source code for MVA is available at https://github.com/tugraz-isds/mva/
[Golob and Andrews 2024b]. The desktop version of MVA for Windows can be downloaded from
https://github.com/tugraz-isds/mva/releases and then installed and used offline.

A.2 Features
MVA is a powerful visual analysis tool that enables users to explore, analyze, and label multidimensional
datasets. Once a dataset has been loaded into MVA, it is presented in up to six synchronized panels,
which can be moved, resized, or hidden. The panels are highly interactive and are interconnected through
brushing and linking. The user can filter data records via the Parallel Coordinates panel and group records
into partitions via the Partitions panel. The datasets and created partitions can be exported and later
re-imported. MVA saves the previously used dataset, partitions, visible dimensions, and panel sizes,
making them available when re-opening the application. The current view of any visualization panel can
be exported as SVG.

A.3 User Interface
The MVA user interface has two main parts, as shown in Figure A.1: the Navigation Bar 1 and the Display
Area. The Display Area consists of up to six panels: Scatterplot Matrix 2 , Scatterplot 3 , Similarity Map 4 ,
Partitions 5 , Table 6 , and Parallel Coordinates 7 .

A.3.1 Initial State
The initial state of MVA, shown in Figure A.2, is presented once MVA is started. The application
is initialized without a dataset, but gives the user the option to load the previously used dataset or to
upload a new one. The user can upload a dataset from the Navigation Bar, or from the Import a Dataset
section. The Example Datasets dropdown allows the user to import one of the example datasets described

59

https://tugraz-isds.github.io/mva/
https://github.com/tugraz-isds/mva/
https://github.com/tugraz-isds/mva/releases

60 A User Guide

5 6 7

2

2

3 4

1

Figure A.1: The Navigation Bar 1 and six synchronized panels of the Display Area: Scatterplot Matrix
2 , Scatterplot 3 , Similarity Map 4 , Partitions 5 , Table 6 , and Parallel Coordinates 7 .

in Section A.4. The Import Dataset... button opens the Import Dataset modal, shown in Figure A.5. The
Import Previous button opens the previously used dataset with any saved partitions, and is shown only if a
dataset was previously used.

A.3.2 Hovering and Brushing
Hovered records are drawn in red and brushed (selected) records are drawn in orange, as shown in
Figure A.3. A tooltip showing the labels of all hovered records is displayed near the mouse pointer. The
dimension to be used to provide labels can be chosen from the Table panel. Records are added to the
brushed set by left-clicking them, or by selecting them with one of the selection tools. Selection tools
are activated by pressing the mouse down and drawing the shape. When adding to the brushed set, one
of three possible scenarios occur, depending on the modifier:

a) If the Shift key is pressed during selection, all hovered records are added to the brushed set.

b) If the Control key Ctrl is pressed during selection, all hovered records are toggled in the brushed
set (i.e. if the record is already in brushed set, it is removed, otherwise it is added).

c) Otherwise, a new brushed set is created, containing only the currently hovered records.

A.3.3 Navigation Bar
The Navigation Bar contains global functions and settings for MVA. It comprises three dropdown menus:
File, Panels, and Settings, and the About button.

The File dropdown is shown in Figure A.4a and consists of the following subitems: Example Datasets,
Import Dataset..., and Export Dataset.... The Example Datasets menu item gives access to some example
datasets that the user can easily import, described in Section A.4. The Import Dataset... menu item opens
a modal to import a dataset from a local file and choose a cell and decimal separator. A dataset preview
is shown, and the user can select whether each dimension is numerical or categorical. Figure A.5 shows
the Import Dataset modal and the Dataset Preview table. The Export Dataset... menu item opens the Export
Dataset modal, which allows the user to export the current dataset. The user can choose the dataset format

User Interface 61

Figure A.2: The initial state of MVA.

Figure A.3: MVA showing hovered records in red and brushed (selected) records in orange. The
mouse pointer is hovering over two records located at the same position in the Scatterplot panel. A
tooltip showing the labels of hovered records (here 100%_Bran and All-Bran) is displayed near
the mouse pointer.

62 A User Guide

(a) File dropdown.

(b) Panels dropdown.

(c) Settings dropdown.

Figure A.4: Navigation Bar dropdowns.

Figure A.5: Import Dataset modal.

(described in Section A.5), cell and decimal separators, and whether to export the data from inactive
dimensions and partitions. Figure A.6 shows the Export Dataset modal.

The Panels dropdown allows the user to show or hide entire panels and is shown in Figure A.4b. The
Settings dropdown is shown in Figure A.4c and consists of the following subitems: View Invalid Rows...,
Reset Panel Sizes, and Clear Dataset. It is visible only if a dataset is loaded. The View Invalid Rows... menu
item is visible only if the dataset contains one or more invalid rows, i.e. rows containing null or empty
cell values. It opens the Invalid Rows modal, shown in Figure A.7, which shows all invalid rows. The
Reset Panel Sizes menu item resets all panel sizes. The Clear Dataset menu item resets MVA to its initial
state with no dataset loaded.

Finally, the About... button opens the About modal, shown in Figure A.8. It displays a short description
of MVA, a link to the source code, and the current MVA version.

A.3.4 Display Area
The Display Area comprises up to six synchronized panels: the four visualization panels Scatterplot Matrix,
Scatterplot, Similarity Map, and Parallel Coordinates, as well as the Partitions panel and the Table panel, laid
out by default as shown previously in Figure A.1. In the top right corner of each visualization panel,
there are three buttons, as can be seen in the Parallel Coordinates panel in Figure A.9. The Refresh button

User Interface 63

Figure A.6: Export Dataset modal.

Figure A.7: Invalid Rows modal.

Figure A.8: About modal.

64 A User Guide

Figure A.9: The Refresh, Swap, and Save SVG can be found in the top right of every visualization
panel, seen here in the Parallel Coordinates panel.

is used to manually refresh a panel in case of a bug. The Swap button is used for swapping panels.
The Save SVG button is used to save the current view of the visualization panel as an .svg file. The
Partitions panel and the Table panel only have the Swap button .

A.3.4.1 Scatterplot Matrix Panel

The Scatterplot Matrix panel displays a matrix of individual scatterplots, showing every numerical dimen-
sion plotted against every other numerical dimension in the dataset. If there are more than 5 numerical
dimensions, only 5×5 scatterplots are visible at any one time and the scatterplot matrix becomes scrol-
lable, as shown in Figure A.10, The analyst can use the scrollbars to the right and bottom of the panel
to move around the full scatterplot matrix. In addition, the Overview Map can be activated by setting
the corresponding Show Overview Map checkbox. It provides an overview of the 5×5 scatterplot range
currently visible, and can be used to pan around the full scatterplot matrix.

The Scatterplot Matrix panel is connected to the Scatterplot panel. A scatterplot can be selected in the
Scatterplot Matrix panel, which is then highlighted in red. This scatterplot is then loaded into the Scatterplot
panel, so it can be examined in more detail. In the other direction, changing the scatterplot in the Scatterplot
panel, by selecting new x or y dimensions, selects the corresponding scatterplot in the Scatterplot Matrix
panel.

A.3.4.2 Scatterplot Panel

The Scatterplot panel is shown in Figure A.11. A scatterplot plots any two numerical dimensions against
each other. The user can select the dimension to be plotted on the x and y axes with the corresponding
Dimension dropdown, shown in Figure A.12a. In order to select (brush) records in the Scatterplot panel,
the user can click on records, or choose a selection tool from the Selection Tool dropdown, shown in
Figure A.12b.

A.3.4.3 Similarity Map Panel

The Similarity Map panel is shown in Figure A.13. A similarity map projects data points from a higher
dimensional space to 2d space. The Similarity Map panel currently supports two similarity mapping
techniques: PCA and UMAP. The user can select the desired similarity mapping technique from the
Method dropdown, shown in Figure A.14a. In order to select (brush) records in the Similarity Map panel,

User Interface 65

Figure A.10: The Scatterplot Matrix panel.

Figure A.11: Scatterplot panel.

(a) Dimension dropdown.

(b) Selection Tool drop-
down.

Figure A.12: Scatterplot panel controls.

66 A User Guide

Figure A.13: Similarity Map panel.

(a) Method dropdown.

(b) Selection Tool drop-
down.

Figure A.14: Similarity Map panel controls.

the user can click on records, or can choose one of the selection tools in the Selection Tool dropdown,
shown in Figure A.14b.

A.3.4.4 Partitions Panel

The Partitions panel displays a list of currently defined partitions. It is shown in Figure A.15. Partitions
are non-overlapping groups (or classes) of data records that are labeled with the partition name. Each
record may only belong to one partition. A new partition can be created from the New Partition text field,
either by clicking the Add button or by pressing Enter . The Default partition initially contains all records
and cannot be deleted. It serves as a fallback partition if other partitions are deleted.

Each partition has five properties: name, size, shape, color, and visibility. A partition can be renamed
by clicking its Partition Name field, editing the name, and pressing the Enter key or clicking outside of
the current partition element. Pressing Esc cancels renaming. The partition size shows the number of
records in the current partition. The Delete Partition button deletes the current partition and assigns its
records to the Default partition. The Add Selected Records button adds any currently brushed (selected)
records to the partition.

The shape assigned to the records of a partition can be changed by clicking on the partition’s shape
icon to open the Partition Shape dropdown, shown in Figure A.16a. The color assigned to the records
of a partition can be changed by clicking on the partition’s color palette icon to open the Partition Color
modal, shown in Figure A.16b. It contains 12 predefined colors, and has the option to add custom colors

User Interface 67

Figure A.15: The Partitions panel shows a list of currently defined partitions. The currently selected
partition is indicated by a thicker border.

(a) Partition
Shape
dropdown.

(b) Partition Color
modal.

(c) Partition Color picker.

Figure A.16: Partition controls.

with a color picker [Dupont 2024]. Pressing OK closes the Partition Color modal and pressing Cancel
closes the modal and reverts the color selection. Pressing Add Custom Color opens the custom color picker
component shown in Figure A.16c. The user can also delete custom colors. The records of a partition
can be hidden (or shown again) in all visualization panels by clicking the partition’s eye icon.

Brushed (selected) and hovered records can also be added to a partition using the Partition Context
Menu, shown in Figure A.17a. The Partition Context Menu can be opened by right-clicking anywhere in
the Scatterplot, Similarity Map, Parallel Coordinates, or Table panels. The Move to Default Partition menu item
moves the currently selected records into the Default partition. The Add to Selected Partition menu item
moves the currently selected records into the currently selected partition. The currently selected partition
is indicated by a thicker border (see Figure A.15). The Add to Partition dropdown opens a list of all current
partitions to move selected records to. Finally, the Add to New Partition... menu item opens the Add New
Partition modal, shown in Figure A.17b, which creates a new partition and moves the selected records to
it.

68 A User Guide

(a) Partition Context Menu.

(b) Add New Partition modal.

Figure A.17: The Partition Context Menu and its modal.

Figure A.18: The Table panel.

A.3.4.5 Table Panel

The Table panel displays the dataset in tabular form, with records as rows and dimensions as columns,
as shown in Figure A.18. The user can select which dimensions (columns) are shown in the table from
the Table Dimensions dropdown, shown in Figure A.19a. The Table panel displays all dataset dimensions
and two dimensions used internally by MVA: _i and _partition. The _i dimension displays the index
of each record (its internal numbering). The _partition displays the name of each record’s partition.
All dimensions can be sorted in ascending or descending order by left-clicking the column header cell.
When sorting, categorical dimensions are ordered alphabetically, and numerical dimensions are ordered
numerically.

The user can open the Table Context Menu by right-clicking a cell in the table header row. It is shown
in Figure A.19b and contains the following items: Use as Label and Set as Active/Inactive. Use as Label
sets the dimension as the label dimension, used to label records in the visualizations. Set as Active/Inactive
makes the corresponding dimension inactive, removing the dimension from all visualizations. Beneath
the table, a status bar indicates the number of records, number of dimensions, and number of selected
records.

A.3.4.6 Parallel Coordinates Panel

The Parallel Coordinates panel shows the entire dataset in a parallel coordinates visualization, as is shown
in Figure A.20. In parallel coordinates, each dimension is shown as a vertical parallel line (axis) and each
record is represented as a polyline touching each axis once.

The user can select which dimensions are shown from the Dimensions dropdown, shown in Figure A.21a.

User Interface 69

(a) Table Dimensions drop-
down.

(b) Table Context
Menu.

Figure A.19: Table panel controls.

Figure A.20: The Parallel Coordinates panel.

The user can also toggle the display of histograms on every axis using the Show Histograms checkbox.
Figure A.22 shows the Parallel Coordinates panel with histograms enabled. Histogram settings can be
changed from the Histogram Settings modal, shown in Figure A.21b. To select (brush) records in the
dataset, the user can click on records, or can choose a selection tool from the Selection Tool dropdown,
shown in Figure A.21c. Line selection is the default.

Parallel coordinates axes can be repositioned by dragging and dropping the axis title with the left
mouse button. Each axis can be inverted by pressing its Invert Axis icon . Filtering can be applied to an
axis using its double-edged range slider, by dragging the Upper Limit or Lower Limit icon . The Filter
Rectangle (rectangle between the Upper Limit and Lower Limit icons) can also be moved up or down. When
filtering a numerical dimension, the current filter limits are displayed.

The Axis Context Menu, shown in Figure A.23, is opened by right-clicking the axis title. Hide Dimension
hides the current dimension and Invert Dimension inverts it. The Show dropdown contains the following
items which can be checked or unchecked: Labels (axis labels are shown/hidden), Histogram (axis histogram
is shown/hidden, shown only when histograms are enabled), Filter (axis filter is shown/hidden), and Filter
Values (axis filter values are shown/hidden).

The Set Range... menu item opens the Set Range modal, shown in Figure A.24a. It can be used to
specify a custom range for the dimension. The Reset Range menu item resets the custom range back
to the original range and is shown only when a custom range has been set. The Set Filter... menu item

70 A User Guide

(a) Parallel Coordinates
Dimensions drop-
down.

(b) Histograms Settings modal.

(c) Selection
Tool drop-
down.

Figure A.21: Parallel Coordinates panel controls.

Figure A.22: Parallel Coordinates panel with histograms enabled.

Figure A.23: Axis Context Menu.

Example Datasets 71

(a) Set Range modal.

(b) Set Filter modal.

(c) Set Bins modal.

Figure A.24: Parallel Coordinates Axis Context Menu modals.

opens the Set Filter modal, shown in Figure A.24b. It enables the user to specify exact filter values for the
dimension. Filter values cannot be set lower than the range minimum or higher than the range maximum.
The Reset Filter menu item is shown only when filters are set and resets any filters. The Set Bins... menu
item is shown only when histograms are enabled. It opens the Set Bins modal, shown in Figure A.24c,
which is used to set the number of histogram bins for the current axis.

A.4 Example Datasets
Five example datasets are included with MVA.

A.4.1 Cars 1993
Cars 1993 is a dataset of car information from 1993 [Lock 1993]. There are 27 dimensions: make and 26
different features (manufacturer, model, type, min. price, price, max. price, MPG city, MPG highway,
airbags, drive train, cylinders, engine size, horsepower, RPM, rev. per mile, man. trans. avail., fuel
tank capacity, passengers, length, wheelbase, width, turn. circle, rear seat room, luggage room, weight,
origin). After the header row, there are 93 data records representing 93 car makes. The 26 features in
the dataset offer sufficient variety to illustrate a broad range of statistical techniques typically found in
introductory courses.

A.4.2 Cereals
Cereals is a dataset of different brands of cereals [DASL 2005]. There are 15 dimensions: cereal name
and 14 different features (manufacturer, type, calories, protein, fat, sodium, fibre, carbo, sugar, shelf life,
potassium, vitamins, weight, and cups). After the header row, there are 77 data records representing 77
different types of cereal.

72 A User Guide

A.4.3 Iris
Iris is a dataset of Iris flower measurements [Fisher 1936]. There are 5 dimensions: the Iris species
(Setosa, Versicolor, or Virginica) and 4 feature measurements in centimeters (sepal length, sepal width,
petal length, and petal width). After the header row, there are 150 data records representing 150 flowers.
The data set consists of 50 samples from each of the three species of Iris.

A.4.4 Premier League
Premier League is a dataset of football player stats from Premier League in the 2019/2020 season
[Samariya 2020]. There are 9 dimensions: the name of each player, their team, and their season stats in
7 categories (games played, games started, minutes, goals, assists, shots, and shots on goal). After the
header row, there are 540 data records representing 540 players.

A.4.5 Student Marks
Student Marks is a fictitious dataset of student marks [Drescher et al. 2023]. There are 9 dimensions:
the name of each student and their marks from 0 to 100 in each of 8 subjects (Maths, English, PE, Art,
History, IT, Biology, and German). After the header row, there are 30 data records representing 30
students. The dataset has been carefully curated to contain some outliers and some interesting patterns.
For example, try to check the hypothesis that students who are good in one language will also be good in
another language.

A.5 Dataset Formats
MVA accepts two data formats: CSV files with the .csv extension and MVA files with the .mva extension.
The data is parsed according to a user-defined separator (comma, semicolon, tab, space, or other). A
dataset can be imported with or without predefined partitions. Partitions are defined with the following
special columns: _partition (partition name), _partition_color, _partition_shape, and _partition_o
rder. All of these columns must be present for partitions to be parsed correctly. Listing A.1 shows an
example of the first few rows of the Iris dataset with partitions in standard CSV format.

To reduce the need for unnecessary duplication of partition data, partition data is only read from the
first instance of the partition record, leading to an alternative format called Small CSV. An example of
the first few rows of the Iris dataset with partitions in Small CSV format is shown in Listing A.2.

The MVA dataset format defines partition data at the start of the file, with one row per partition, each
row starting with the character #. Listing A.3 shows an example of the first few rows of the Iris dataset
with partitions in MVA format. The use of MVA format is recommended, as it is the most space-efficient,
especially with larger datasets.

Dataset Formats 73

1 Sepal_Length ,Sepal_Width ,Petal_Length ,Petal_Width ,Species,_partition ,
_partition_color ,_partition_shape ,_partition_order

2 5.1,3.5,1.4,0.2,setosa,Setosa ,#0fb5ae,triangle ,1
3 4.9,3,1.4,0.2,setosa,Setosa ,#0fb5ae,triangle ,1
4 4.7,3.2,1.3,0.2,setosa,Setosa ,#0fb5ae,triangle ,1
5 4.6,3.1,1.5,0.2,setosa,Setosa ,#0fb5ae,triangle ,1
6 5,3.6,1.4,0.2,setosa,Setosa ,#0fb5ae,triangle ,1

Listing A.1: The first five records of the Iris dataset with partitions in standard CSV format.

1 Sepal_Length ,Sepal_Width ,Petal_Length ,Petal_Width ,Species,_partition ,
_partition_color ,_partition_shape ,_partition_order

2 5.1,3.5,1.4,0.2,setosa,Setosa ,#0fb5ae,triangle ,1
3 4.9,3,1.4,0.2,setosa,Setosa,,,
4 4.7,3.2,1.3,0.2,setosa,Setosa,,,
5 4.6,3.1,1.5,0.2,setosa,Setosa,,,
6 5,3.6,1.4,0.2,setosa,Setosa,,,

Listing A.2: The first five records of the Iris dataset with partitions in Small CSV format.

1 #Default ,#4146cb,circle
2 #Setosa ,#0fb5ae,triangle
3 Sepal_Length ,Sepal_Width ,Petal_Length ,Petal_Width ,Species,_partition
4 5.1,3.5,1.4,0.2,setosa,Setosa
5 4.9,3,1.4,0.2,setosa,Setosa
6 4.7,3.2,1.3,0.2,setosa,Setosa
7 4.6,3.1,1.5,0.2,setosa,Setosa
8 5,3.6,1.4,0.2,setosa,Setosa

Listing A.3: The first five records of the Iris dataset with partitions in MVA format.

74 A User Guide

Figure A.25: Importing the Student Marks dataset into MVA.

Figure A.26: MVA with the Student Marks dataset.

A.6 Example Use Case
This section provides a step-by-step guide to using MVA by demonstrating its application with an example.
The task involves exploring the Student Marks dataset, identifying correlations, and grouping the records
into partitions.

First, the user must import the Student Marks dataset by opening the Example Datasets dropdown and
clicking on Student Marks, as shown in Figure A.25. Once the dataset is imported, all panels become
visible and MVA is ready to use, as shown in Figure A.26.

The Scatterplot Matrix panel displays pairwise scatterplots between all dimensions, and can help identify
any potential correlations, clustering, or outliers. The initial layout, shown in Figure A.27a, does not
show any promising relationships. The user can scroll through the Scatterplot Matrix panel, as shown in
Figure A.27b. It can be observed that there is now a potential relationship between IT and Maths, as well
as between German and English, since the dots appear to form a rough diagonal line sloping upwards from
left to right. If the user clicks on the IT and Maths scatterplot in the Scatterplot Matrix panel, the Scatterplot
panel displays a scatterplot with Maths on the x axis and IT on the y axis, as shown in Figure A.28.

Further analysis can now be performed in the Parallel Coordinates panel by positioning the dimensions

Example Use Case 75

(a) Initial Scatterplot Matrix.

(b) Scrolled Scatterplot Matrix.

Figure A.27: Scatterplot Matrix panel.

76 A User Guide

Figure A.28: Scatterplot Matrix and Scatterplot panels.

Figure A.29: Reordered dimensions in the Parallel Coordinates panel.

of interest next to each other. This can be achieved by dragging a dimension’s title with the left mouse
button and dropping it in the desired position. Figure A.29 shows reordered dimensions in the Parallel
Coordinates panel, with Maths and IT, as well as English and German, now being adjacent to one another.
It can be observed that the lines between Maths and IT, as well as the lines between English and German,
are moving more or less in the same direction, indicating a possible positive correlation. It can be further
observed that the lines between IT and English are moving more or less in opposite directions, forming a
diagonal cross pattern, indicating a possible negative correlation.

Once the relationships are apparent, the records can be arranged into partitions. In this example, two
partitions will be created: Engineers (for students who excel in Maths and IT) and Linguists (for students
who excel in English and German). The first step is selecting (brushing) the records of interest. Engineers
will be selected by applying filtering to the Parallel Coordinates panel and brushing with the Line Selection
tool, as shown in Figure A.30a. The selected records can be added to a new partition by right-clicking to
open the Partition Context Menu, clicking Add to New Partition, and adding the Engineers partition through
the Add New Partition modal, as shown in Figure A.30b.

Linguists will be selected from the Scatterplot panel using the Lasso Selection tool, as shown in Fig-

Example Use Case 77

(a) After filtering, using the Line Selection tool.

(b) Brushed (selected) records.

Figure A.30: In the Parallel Coordinates panel, selecting records and adding them to a new Engineers
partition.

ure A.31a. The selected records can be added to a new partition by opening the Partition Context Menu,
clicking Add to New Partition, and creating the new Linguists partition through the Add New Partition modal,
as shown in Figure A.31b.

Finally, MVA displays the Student Marks records in three visually distinct partitions, as shown in
Figure A.32. The partitioned dataset can now be saved in CSV or MVA format.

78 A User Guide

(a) Using the Lasso Selection tool.

(b) Brushed (selected) records.

Figure A.31: In the Scatterplot panel, selecting records and adding them to a new Linguists partition.

Example Use Case 79

Figure A.32: The final look of the Student Marks dataset in MVA, after partitions have been added.

80 A User Guide

Appendix B

Developer Guide

This appendix serves as a Developer Guide for the Multidimensional Visual Analyser (MVA). MVA is
an open-source web application licensed under an MIT license. The source code is available on GitHub
[Golob and Andrews 2024b] at https://tugraz-isds.github.io/mva/.

B.1 Quick Start
First, clone the MVA source code repository into a local folder and install Node [OpenJS 2024b] and npm
[npm 2024].

To install all of the necessary dependencies, run the following command in the root folder:
npm install

To start a development server, run the following command:
npm run dev

To create a production-ready version of the application, run the following command:
npm run build

This creates a build/ folder that can be deployed.

To preview the production build, run the following command:
npm run preview

This command previews the production build on localhost. However, it also introduces some strange UI
bugs that are currently not reproducible in the development and production setup.

B.2 Desktop Application
To create a desktop application package, the Tauri prerequisites have to be installed [Tauri 2024b]. Once
the prerequisites are installed, install any fresh dependencies with:

npm install

and start a development server with:
npm run dev-tauri

To create a production-ready version of the application, run the following command:

81

https://tugraz-isds.github.io/mva/

82 B Developer Guide

npm run build-tauri

On Windows, this creates a folder build-tauri/windows/ containing executable and installable packages.
The desktop application is currently only supported on Windows, since the Linux and Mac versions are
not built correctly.

B.3 Gulp Tasks
The repository provides the following Gulp tasks:

• clean: Removes the existing build/, build-tauri/, and src-tauri/target/ folders to enable a clean
rebuild of the project. Run with npx gulp clean.

• cleanAll: Removes the existing .svelte-kit/, build/, build-tauri/, node_modules/, and src-tauri
/target/ folders to enable a clean reinitialization of the project. Run with npx gulp cleanAll.

• optimizeIcons: Reads the src/static/icons/ folder recursively and exports *.svg files into a
TypeScript constants file that is saved in src/util/icon-definitions.ts. This task should be run
when new icons are added or existing ones are updated. Run with npx gulp optimizeIcons.
The task is automatically run each time npm run dev or npm run build are executed.

B.4 Development Dependencies
MVA has the following development dependencies, defined in the package.json file:

• @sveltejs/adapter-auto, @sveltejs/adapter-static, @sveltejs/kit, @sveltejs/vite-plugin-svelte,
svelte, svelte-check, vite: SvelteKit dependencies.

• @tauri-apps/cli: Used for running frequent Tauri tasks.

• @types/d3-array, @types/d3-axis, @types/d3-drag, @types/d3-dsv, @types/d3-scale, @types/d3-sel
ection, @types/d3-shape: TypeScript definitions for D3 submodules.

• @types/three: TypeScript definitions for Three.js.

• @typescript-eslint/eslint-plugin, @typescript-eslint/parser, eslint, eslint-config-prettier,
eslint-plugin-svelte, prettier, prettier-plugin-svelte: Plugins for linting and formatting code.

• autoprefixer, postcss, postcss-load-config, tailwindcss: Tailwind CSS plugins, required by the
Flowbite component library.

• del: Used for deleting files and folders.

• flowbite-svelte-icons: Free and open-source icon library.

• gulp: Task runner for automating development workflow.

• tslib, typescript: Plugins for TypeScript.

Bibliography

Abdi, Hervé and Lynne J. Williams [2010]. Principal Component Analysis. Wiley Interdisciplinary
Reviews: Computational Statistics 2.4 (15 Jul 2010), pages 433–459. ISSN 1939-0068. doi:10.1002/wics.1
01. https://personal.utdallas.edu/~herve/abdi-awPCA2010.pdf (cited on page 9).

Accomazzo, Anthony, Ari Lerner, Nate Murray, Clay Allsopp, David Guttman, and Tyler McGinnis
[2017]. Fullstack React. Fullstack.io, 12 Sep 2017. ISBN 0991344626 (cited on page 29).

Ahmed, Kamran [2024a]. Backend Developer Roadmap. 05 Sep 2024. https://roadmap.sh/backend (cited
on page 27).

Ahmed, Kamran [2024b]. Frontend Developer Roadmap. 05 Sep 2024. https://roadmap.sh/frontend
(cited on page 27).

Andrews, Keith [1991]. Bounding Box and Hit Detection Algorithms for 2D Graphic Objects. Proc.
Conference on Intelligent Systems (CIS’91) (Veszprém, Hungary). Edited by A. György. John von
Neumann Society for Computing Sciences (NJSZT). Sep 1991, pages 95–105. ISBN 9638431741. https
://ftp.isds.tugraz.at/pub/papers/andrews-cis91-bbhit.pdf (cited on page 51).

Andrews, Keith [2021]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. 03 Dec 2021. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on page xiii).

Andrews, Keith [2024a]. Information Visualisation: Course Notes. 08 Mar 2024. https://courses.isds
.tugraz.at/ivis/ivis.pdf (cited on page 1).

Andrews, Keith [2024b]. Introduction to Information Visualisation. Tutorial at Interact 2023, York, UK.
30 Aug 2024. https://keithandrews.com/talks/2023/2023- 08- 30- interact- infovis/ (cited on
page 30).

Avidan, Tova and Shlomo Avidan [1999]. ParallAX – A Data Mining Tool Based on Parallel Coordinates.
Computational Statistics 14.1 (05 Sep 1999), pages 79–89. ISSN 0943-4062. doi:10.1007/PL00022707.
https://proquest.com/docview/2299676854?sourcetype=Scholarly%20Journals (cited on pages 16–17,
56).

Bäuerle, Alex, Christian van Onzenoodt, Simon der Kinderen, J. Johansson Westberg, Daniel Jönsson,
and Timo Ropinski [2022]. Where Did My Lines Go? Visualizing Missing Data in Parallel Coordinates.
Computer Graphics Forum 41.3 (29 Jul 2022), pages 235–246. doi:10.1111/cgf.14536. https://viscom
.publications.uni-ulm.de/api/uploads/236/pc_missing_data.pdf (cited on pages 11–12).

Berson, Alex [1996]. Client/Server Architecture. McGraw-Hill, 29 Mar 1996. ISBN 0070056641 (cited on
page 27).

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17.12 (23 Oct 2011), pages 2301–2309. doi:10
.1109/TVCG.2011.185. https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf (cited on page 33).

Bostock, Mike [2023a]. d3-array. 06 Oct 2023. https://github.com/d3/d3-array (cited on page 40).

83

http://worldcatlibraries.org/wcpa/issn/1939-0068
https://doi.org/10.1002/wics.101
https://doi.org/10.1002/wics.101
https://personal.utdallas.edu/~herve/abdi-awPCA2010.pdf
http://amazon.co.uk/dp/0991344626/
https://roadmap.sh/backend
https://roadmap.sh/frontend
http://amazon.co.uk/dp/9638431741/
https://ftp.isds.tugraz.at/pub/papers/andrews-cis91-bbhit.pdf
https://ftp.isds.tugraz.at/pub/papers/andrews-cis91-bbhit.pdf
https://ftp.isds.tugraz.at/pub/keith/thesis/
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://keithandrews.com/talks/2023/2023-08-30-interact-infovis/
http://worldcatlibraries.org/wcpa/issn/0943-4062
https://doi.org/10.1007/PL00022707
https://proquest.com/docview/2299676854?sourcetype=Scholarly%20Journals
https://doi.org/10.1111/cgf.14536
https://viscom.publications.uni-ulm.de/api/uploads/236/pc_missing_data.pdf
https://viscom.publications.uni-ulm.de/api/uploads/236/pc_missing_data.pdf
http://amazon.co.uk/dp/0070056641/
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf
https://github.com/d3/d3-array

84 Bibliography

Bostock, Mike [2023b]. d3-axis. 06 Oct 2023. https://github.com/d3/d3-axis (cited on page 40).

Bostock, Mike [2023c]. d3-drag. 06 Oct 2023. https://github.com/d3/d3-drag (cited on page 40).

Bostock, Mike [2023d]. d3-dsv. 06 Oct 2023. https://github.com/d3/d3-dsv (cited on page 40).

Bostock, Mike [2023e]. d3-scale. 06 Oct 2023. https://github.com/d3/d3-scale (cited on page 40).

Bostock, Mike [2023f]. d3-selection. 06 Oct 2023. https://github.com/d3/d3- selection (cited on
page 40).

Bostock, Mike [2023g]. d3-shape. 06 Oct 2023. https://github.com/d3/d3-shape (cited on page 40).

Bostock, Mike [2024]. D3.js. 05 Sep 2024. https://d3js.org/ (cited on page 33).

Bottin, Chris [2024]. xml-formatter. 07 Jul 2024. https://github.com/chrisbottin/xml-formatter (cited
on page 41).

Brandel, Jono [2024]. Two.js. 09 Jul 2024. https://github.com/jonobr1/two.js (cited on page 32).

Brodbeck, Dominique and Luc Girardin [2003]. Using Multiple Coordinated Views to Analyze Geo-
Referenced High-Dimensional Datasets. Proc. International Conference on Coordinated and Multiple
Views in Exploratory Visualization (CMV 2003). 15 Jul 2003, pages 104–111. doi:10.1109/CMV.2003
.1215008. http://download.macrofocus.com/publications/cmv2003.pdf (cited on page 18).

Bublitz, Blaine and Eric Schoffstall [2024]. Gulp. 08 Apr 2024. https://github.com/gulpjs/gulp (cited
on page 40).

Cabello, Ricardo [2024a]. Three.js. 05 Sep 2024. https://threejs.org/ (cited on pages 32, 41).

Cabello, Ricardo [2024b]. Three.js Raycaster. 05 Sep 2024. https://threejs.org/docs/#api/en/core/Ra
ycaster (cited on page 49).

Carr, Daniel B., Richard J. Littlefield, W. L. Nicholson, and J. S. Littlefield [1986]. Scatterplot Ma-
trix Techniques for Large N. Journal of the American Statistical Association 82.398 (01 Jul 1986),
pages 424–436. doi:10 .1080 /01621459 .1987 .10478445. https://jstor.org/stable/2289444 (cited on
page 4).

Castillo, Dany [2024]. tailwind-merge. 02 Sep 2024. https://github.com/dcastil/tailwind-merge (cited
on page 40).

Catuhe, David [2024]. Babylon.js. 05 Sep 2024. https://babylonjs.com/ (cited on page 33).

Chegini, Mohammad [2021]. mVis Github. 20 Jan 2021. https://github.com/chegini91/mVis (cited on
pages 24, 56).

Chegini, Mohammad, Jürgen Bernard, Philip Berger, Alexei Sourin, Keith Andrews, and Tobias Schreck
[2019]. Interactive Labelling of a Multivariate Dataset for Supervised Machine Learning using Linked
Visualisations, Clustering, and Active Learning. Visual Informatics 3.1 (Mar 2019), pages 9–17. doi:10
.1016/j.visinf.2019.03.002. https://ftp.isds.tugraz.at/pub/papers/chegini-pvast2019-ix-labelling.pdf
(cited on pages 24–25, 56).

Cook, Dianne, Deborah F. Swayne, and Andreas Buja [2007]. Interactive and Dynamic Graphics for
Data Analysis with R and GGobi. Springer, 05 Sep 2007. ISBN 0387717617 (cited on pages 17–18).

DASL [2005]. Cereals. 04 Apr 2005. http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html (cited on
page 71).

De Rochefort, Enguerrand [2020]. XDAT Github. 26 Aug 2020. https://github.com/enguerrand/xdat
(cited on page 19).

https://github.com/d3/d3-axis
https://github.com/d3/d3-drag
https://github.com/d3/d3-dsv
https://github.com/d3/d3-scale
https://github.com/d3/d3-selection
https://github.com/d3/d3-shape
https://d3js.org/
https://github.com/chrisbottin/xml-formatter
https://github.com/jonobr1/two.js
https://doi.org/10.1109/CMV.2003.1215008
https://doi.org/10.1109/CMV.2003.1215008
http://download.macrofocus.com/publications/cmv2003.pdf
https://github.com/gulpjs/gulp
https://threejs.org/
https://threejs.org/docs/#api/en/core/Raycaster
https://threejs.org/docs/#api/en/core/Raycaster
https://doi.org/10.1080/01621459.1987.10478445
https://jstor.org/stable/2289444
https://github.com/dcastil/tailwind-merge
https://babylonjs.com/
https://github.com/chegini91/mVis
https://doi.org/10.1016/j.visinf.2019.03.002
https://doi.org/10.1016/j.visinf.2019.03.002
https://ftp.isds.tugraz.at/pub/papers/chegini-pvast2019-ix-labelling.pdf
http://amazon.co.uk/dp/0387717617/
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
https://github.com/enguerrand/xdat

85

De Rochefort, Enguerrand [2024]. XDAT Home Page. 05 Sep 2024. https://xdat.org/ (cited on pages 19–
20).

Deveria, Alexis [2024]. Can I Use: WebGPU. 05 Sep 2024. https://caniuse.com/webgpu (cited on
page 31).

Drescher, Philipp, Jeremias Kleinschuster, Sebastian Schreiner, and Burim Vrella [2023]. Steerable
Parallel Coordinates in JavaScript. Project Report. Graz University of Technology, 16 Jun 2023. https
://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1-project-steerable-parcoords.pdf

(cited on page 72).

Dupont, Maxime [2024]. svelte-awesome-color-picker. 13 Aug 2024. https://github.com/Ennoriel/svel
te-awesome-color-picker (cited on pages 40, 67).

Dzemyda, Gintautas, Olga Kurasova, and Julius Žilinskas [2012]. Multidimensional Data Visualization:
Methods and Applications. Springer, 09 Nov 2012. ISBN 144190235X (cited on pages 1, 3).

Few, Stephen [2021]. Now You See It: An Introduction to Visual Data Sensemaking. 2nd Edition. Analytics
Press, 15 Apr 2021. 301 pages. ISBN 1938377125 (cited on page 1).

Fierens, Wout [2024]. SVG.js. 16 Sep 2024. https://svgjs.dev/docs/3.2/ (cited on page 32).

Filipova, Olga [2016]. Learning Vue.js 2. Packt Publishing, 13 Dec 2016. ISBN 1786469944 (cited on
page 29).

Fisher, Ronald A [1936]. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics
7.2 (1936), pages 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x. https://lgross.utk.edu/Math589Fall
2020/RAFisher1936measurementsFlowerTaxa.pdf (cited on pages 3, 16, 72).

Friendly, Michael and Daniel Denis [2005]. The Early Origins and Development of the Scatterplot.
Journal of the History of the Behavioral Sciences 41.2 (2005), pages 103–130. doi:10.1002/jhbs.20078.
https://datavis.ca/papers/friendly-scat.pdf (cited on page 3).

Fry, Ben [2007]. Visualizing Data: Exploring and Explaining Data with the Processing Environment.
O’Reilly, 18 Dec 2007. ISBN 0596514557 (cited on page 1).

GGobi [2024]. GGobi Home Page. 05 Sep 2024. http://ggobi.org/ (cited on page 17).

Girardin, Luc and Dominique Brodbeck [2001]. Interactive Visualization of Prices and Earnings Around
the Globe. Proc. IEEE Symposium on Information Visualization (InfoVis 2001) (San Diego, California,
USA). 21 Oct 2001. http : / / download . macrofocus . com / publications / infovis2001 . pdf (cited on
page 18).

Golob, Ožbej and Keith Andrews [2024a]. MVA Live Demo. 14 Sep 2024. https://tugraz-isds.github
.io/mva/ (cited on pages 1, 57, 59).

Golob, Ožbej and Keith Andrews [2024b]. MVA Repository. 03 Sep 2024. https://github.com/tugraz-i
sds/mva (cited on pages 1, 57, 59, 81).

Google [2024]. Angular. 05 Sep 2024. https://angular.io/ (cited on page 28).

Groves, Matt [2024]. Pixi.js. 05 Sep 2024. https://pixijs.com/ (cited on page 32).

Harris, Rich [2024a]. Svelte. 05 Sep 2024. https://svelte.dev/ (cited on page 29).

Harris, Rich [2024b]. SvelteKit. 05 Sep 2024. https://kit.svelte.dev/ (cited on page 30).

Heinrich, Julian, John Stasko, and Daniel Weiskopf [2012]. The Parallel Coordinates Matrix. Proc.
Eurographics Conference on Visualization (EuroVis 2012). Eurographics, 2012. doi:10.2312/PE/Eur
oVisShort/EuroVisShort2012/037- 041. https://joules.de/files/heinrich_parallel_2012.pdf (cited on
page 13).

https://xdat.org/
https://caniuse.com/webgpu
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1-project-steerable-parcoords.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1-project-steerable-parcoords.pdf
https://github.com/Ennoriel/svelte-awesome-color-picker
https://github.com/Ennoriel/svelte-awesome-color-picker
http://amazon.co.uk/dp/144190235X/
http://amazon.co.uk/dp/1938377125/
https://svgjs.dev/docs/3.2/
http://amazon.co.uk/dp/1786469944/
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://lgross.utk.edu/Math589Fall2020/RAFisher1936measurementsFlowerTaxa.pdf
https://lgross.utk.edu/Math589Fall2020/RAFisher1936measurementsFlowerTaxa.pdf
https://doi.org/10.1002/jhbs.20078
https://datavis.ca/papers/friendly-scat.pdf
http://amazon.co.uk/dp/0596514557/
http://ggobi.org/
http://download.macrofocus.com/publications/infovis2001.pdf
https://tugraz-isds.github.io/mva/
https://tugraz-isds.github.io/mva/
https://github.com/tugraz-isds/mva
https://github.com/tugraz-isds/mva
https://angular.io/
https://pixijs.com/
https://svelte.dev/
https://kit.svelte.dev/
https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/037-041
https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/037-041
https://joules.de/files/heinrich_parallel_2012.pdf

86 Bibliography

Herzog, Michael [2024]. Three.js Box Selection. 30 Apr 2024. https://threejs.org/examples/?q=box%20
se#misc_boxselection (cited on page 51).

Hoffman, Patrick, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene Stanley [1997]. DNA Visual
and Analytic Data Mining. Proc. 8th IEEE Conference on Visualization (Vis ’97) (Phoenix, Arizona,
USA). 24 Oct 1997, pages 437–441. doi:10.1109/VISUAL.1997.663916. https://dl.acm.org/doi/pdf/10
.5555/266989.267116 (cited on page 6).

Holthausen, Simon [2022]. Svelte: A Beginner’s Guide. SitePoint, 10 Feb 2022. ISBN 1925836487 (cited on
page 29).

Huggins, Jason [2024]. Selenium. 05 Sep 2024. https://selenium.dev/ (cited on page 34).

Hunter, John D. [2007]. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering
9.3 (2007), pages 90–95. doi:10.1109/MCSE.2007.55. https://ieeexplore.ieee.org/document/4160265
(cited on page 3).

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer, 01 Sep 2009. 554 pages. ISBN 0387215077 (cited on pages 11, 16).

Inselberg, Alfred and Bernard Dimsdale [1990]. Parallel Coordinates: A Tool for Visualizing Multi-
Dimensional Geometry. Proc. 1st IEEE Conference on Visualization (Vis ’90) (San Francisco, Califor-
nia, USA). 23 Oct 1990, pages 361–378. doi:10.1109/VISUAL.1990.146402. https://ifs.tuwien.ac.at
/~mlanzenberger/teaching/ps/ws07/stuff/00146402.pdf (cited on page 11).

Kandogan, Eser [2001]. Visualizing Multi-Dimensional Clusters, Trends, and Outliers Using Star Coor-
dinates. Proc. 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2001) (San Francisco, California, USA). 26 Aug 2001, pages 107–116. doi:10.1145/502512.502530
(cited on page 5).

Karpathy, Andrej [2016]. tsnejs. 24 Oct 2016. https://github.com/karpathy/tsnejs (cited on page 55).

Khronos Group [2024a]. WebGL. 05 Sep 2024. https://webgl.org/ (cited on pages 30–31).

Khronos Group [2024b]. WebGL 1.0. 19 Apr 2024. https://registry.khronos.org/webgl/specs/latest
/1.0/ (cited on page 31).

Khronos Group [2024c]. WebGL 2.0. 25 Jul 2024. https://registry.khronos.org/webgl/specs/latest/2
.0/ (cited on page 31).

Kirk, Andy [2019]. Data Visualisation: A Handbook for Data Driven Design. 2nd Edition. SAGE Publi-
cations, 08 Jul 2019. 328 pages. ISBN 1526468921 (cited on page 1).

Koytek, Philipp [2017]. MyBrush Github. 22 Sep 2017. https://github.com/philippkoytek/mybrush
(cited on page 23).

Koytek, Philipp, Charles Perin, Jo Vermeulen, Elisabeth André, and Sheelagh Carpendale [2017]. My-
Brush: Brushing and Linking with Personal Agency. IEEE Transactions on Visualization and Computer
Graphics 24.1 (29 Aug 2017), pages 605–615. ISSN 1077-2626. doi:10.1109/TVCG.2017.2743859. https:
//openaccess.city.ac.uk/id/eprint/18383/1/2018_VIS_mybrush.pdf (cited on pages 23–24).

Lab, DAISY [2024]. XmdvTool Home Page. 05 Sep 2024. https://davis.wpi.edu/~xmdv/ (cited on
page 15).

Lavrenov, Anton [2024]. Konva.js. 05 Sep 2024. https://konvajs.org/ (cited on page 32).

Lock, Robin H. [1993]. 1993 New Car Data. Journal of Statistics Education 1.1 (1993). doi:10.1080/1069
1898.1993.11910459. https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Cars93.html (cited on
page 71).

https://threejs.org/examples/?q=box%20se#misc_boxselection
https://threejs.org/examples/?q=box%20se#misc_boxselection
https://doi.org/10.1109/VISUAL.1997.663916
https://dl.acm.org/doi/pdf/10.5555/266989.267116
https://dl.acm.org/doi/pdf/10.5555/266989.267116
http://amazon.co.uk/dp/1925836487/
https://selenium.dev/
https://doi.org/10.1109/MCSE.2007.55
https://ieeexplore.ieee.org/document/4160265
http://amazon.co.uk/dp/0387215077/
https://doi.org/10.1109/VISUAL.1990.146402
https://ifs.tuwien.ac.at/~mlanzenberger/teaching/ps/ws07/stuff/00146402.pdf
https://ifs.tuwien.ac.at/~mlanzenberger/teaching/ps/ws07/stuff/00146402.pdf
https://doi.org/10.1145/502512.502530
https://github.com/karpathy/tsnejs
https://webgl.org/
https://registry.khronos.org/webgl/specs/latest/1.0/
https://registry.khronos.org/webgl/specs/latest/1.0/
https://registry.khronos.org/webgl/specs/latest/2.0/
https://registry.khronos.org/webgl/specs/latest/2.0/
http://amazon.co.uk/dp/1526468921/
https://github.com/philippkoytek/mybrush
http://worldcatlibraries.org/wcpa/issn/1077-2626
https://doi.org/10.1109/TVCG.2017.2743859
https://openaccess.city.ac.uk/id/eprint/18383/1/2018_VIS_mybrush.pdf
https://openaccess.city.ac.uk/id/eprint/18383/1/2018_VIS_mybrush.pdf
https://davis.wpi.edu/~xmdv/
https://konvajs.org/
https://doi.org/10.1080/10691898.1993.11910459
https://doi.org/10.1080/10691898.1993.11910459
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/Cars93.html

87

Luneckas, Vidmantas [2021]. svelte-window-system. 29 Jul 2021. https://github.com/DonutLaser/svelt
e-window-system (cited on page 55).

Macrofocus [2015]. InfoScope. 19 Aug 2015. https://web.archive.org/web/20160429015130/http://www
.macrofocus.com/public/products/infoscope/ (cited on pages 18–19).

Macrofocus [2024]. High-D. 30 Aug 2024. https://www.high-d.com/ (cited on pages 20–21).

MacWright, Tom [2021]. Understanding Point-in-Polygon. 12 Feb 2021. https://observablehq.com/@tm
cw/understanding-point-in-polygon (cited on page 51).

Matthew, David [2021]. The Canvas API, Part 1: The Background. 27 Jan 2021. https://davidmatthew.i
e/the-canvas-api-part-1-the-background/ (cited on page 30).

McInnes, Leland, John Healy, and James Melville [2018]. UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction. arXiv (09 Feb 2018). ISSN 2331-8422. doi:10.48550/arXiv.1802.03426
(cited on page 10).

McInnes, Leland, John Healy, Nathaniel Saul, and Lukas Grossberger [2018]. UMAP: Uniform Manifold
Approximation and Projection. The Journal of Open Source Software 3.29 (02 Sep 2018), page 861.
doi:10.21105/joss.00861. https://umap-learn.readthedocs.io/ (cited on page 3).

McKinney, Wes [2010]. Data Structures for Statistical Computing in Python. Proc. 9th Python in Science
Conference (SciPy 2010) (Austin, Texas, USA). Volume 445. 28 Jun 2010, pages 51–56. doi:10.25080
/Majora-92bf1922-00a. http://conference.scipy.org.s3.amazonaws.com/proceedings/scipy2010/pdfs/mck
inney.pdf (cited on page 3).

MDN [2024a]. Offscreen Canvas. MDN Web Docs, 05 Aug 2024. https://developer.mozilla.org/en-
US/docs/Web/API/OffscreenCanvas (cited on pages 30–31).

MDN [2024b]. XMLSerializer. MDN Web Docs, 05 Sep 2024. https://developer.mozilla.org/en-US/d
ocs/Web/API/XMLSerializer (cited on page 52).

Meta [2024]. React. 05 Sep 2024. https://react.dev/ (cited on page 29).

Morrison, Alistair, Greg Ross, and Matthew Chalmers [2003]. Fast Multidimensional Scaling Through
Sampling, Springs and Interpolation. Information Visualization 2.1 (01 Mar 2003), pages 68–77.
doi:10 .1057 / palgrave . ivs . 9500040. https://dcs.gla.ac.uk/~matthew/papers/JInfoVis.pdf (cited on
page 9).

Murray, Nate, Felipe Coury, Ari Lerner, and Carlos Taborda [2018]. ng-book: The Complete Guide to
Angular 5th Edition. CreateSpace Independent Publishing Platform, 06 Feb 2018. ISBN 1985170280
(cited on page 28).

Neuhold, Lukas, Ridvan Aydin, and Georg Regitnig [2020]. The Radial Projection Explorer. Project
Report. Graz University of Technology, 29 Jun 2020. https://courses.isds.tugraz.at/ivis/projects
/ss2020/ivis-ss2020-g4-project-radial-projection-explorer.pdf (cited on pages 6–8).

Nextapps [2023]. WinBox.js. 21 Dec 2023. https://github.com/nextapps-de/winbox (cited on page 55).

Nguyen, Quang Vinh [2024]. TabuVis Home Page. 05 Sep 2024. https://staff.cdms.westernsydney.edu
.au/~vinh/projects_TabuVis.php (cited on page 21).

Nguyen, Quang Vinh, Yu Qian, MaoLin Huang, and JiaWan Zhang [2023]. TabuVis: A Tool for Vi-
sual Analytics Multidimensional Datasets. Science China Information Sciences 56.5 (03 May 2023),
pages 1–12. ISSN 1869-1919. doi:10.1007/s11432-013-4870-1. https://researchgate.net/publication/2576
86743_TabuVis_A_tool_for_visual_analytics_multidimensional_datasets (cited on pages 21–22).

npm [2024]. npm. 05 Sep 2024. https://npmjs.com/ (cited on pages 40, 81).

https://github.com/DonutLaser/svelte-window-system
https://github.com/DonutLaser/svelte-window-system
https://web.archive.org/web/20160429015130/http://www.macrofocus.com/public/products/infoscope/
https://web.archive.org/web/20160429015130/http://www.macrofocus.com/public/products/infoscope/
https://www.high-d.com/
https://observablehq.com/@tmcw/understanding-point-in-polygon
https://observablehq.com/@tmcw/understanding-point-in-polygon
https://davidmatthew.ie/the-canvas-api-part-1-the-background/
https://davidmatthew.ie/the-canvas-api-part-1-the-background/
http://worldcatlibraries.org/wcpa/issn/2331-8422
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.21105/joss.00861
https://umap-learn.readthedocs.io/
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
http://conference.scipy.org.s3.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf
http://conference.scipy.org.s3.amazonaws.com/proceedings/scipy2010/pdfs/mckinney.pdf
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas
https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
https://react.dev/
https://doi.org/10.1057/palgrave.ivs.9500040
https://dcs.gla.ac.uk/~matthew/papers/JInfoVis.pdf
http://amazon.co.uk/dp/1985170280/
https://courses.isds.tugraz.at/ivis/projects/ss2020/ivis-ss2020-g4-project-radial-projection-explorer.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2020/ivis-ss2020-g4-project-radial-projection-explorer.pdf
https://github.com/nextapps-de/winbox
https://staff.cdms.westernsydney.edu.au/~vinh/projects_TabuVis.php
https://staff.cdms.westernsydney.edu.au/~vinh/projects_TabuVis.php
http://worldcatlibraries.org/wcpa/issn/1869-1919
https://doi.org/10.1007/s11432-013-4870-1
https://researchgate.net/publication/257686743_TabuVis_A_tool_for_visual_analytics_multidimensional_datasets
https://researchgate.net/publication/257686743_TabuVis_A_tool_for_visual_analytics_multidimensional_datasets
https://npmjs.com/

88 Bibliography

OpenJS [2024a]. Electron.js. OpenJS Foundation, 05 Sep 2024. https://electronjs.org/ (cited on
page 37).

OpenJS [2024b]. Node.js. OpenJS Foundation, 04 Sep 2024. https://nodejs.org/ (cited on page 81).

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay [2011]. Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011), pages 2825–
2830. https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html (cited on page 3).

People+AI Research (PAIR) Initiative [2024]. umap-js. 04 Jun 2024. https://github.com/PAIR-code/uma
p-js (cited on page 40).

Refalo, Olivier [2024]. svelte-splitpanes. 28 Jun 2024. https://github.com/orefalo/svelte-splitpanes
(cited on page 40).

Romesburg, H. Charles [1984]. Cluster Analysis for Researchers. Lifetime Learning Publications, 01 Jan
1984. ISBN 0534032486 (cited on page 14).

Samariya, Durgesh [2020]. Premier League Data. 27 Jul 2020. https://kaggle.com/datasets/themlphds
tudent/premier-league-player-stats-data (cited on pages 18, 20–22, 72).

science.ai [2016]. tsne-js. 22 Feb 2016. https://github.com/scienceai/tsne-js/ (cited on page 55).

Shimrat, Moshe [1962]. Algorithm 112: Position of Point Relative to Polygon. Communications of the
ACM 5.8 (1962), page 434. doi:10.1145/368637.368653 (cited on page 51).

Slay Lines [2024]. Canvas Engines Comparison. 20 Apr 2024. https://github.com/slaylines/canvas-e
ngines-comparison (cited on page 33).

Tauri [2024a]. Tauri. 05 Sep 2024. https://tauri.app/ (cited on page 37).

Tauri [2024b]. Tauri Prerequisites. 04 Sep 2024. https://tauri.app/v1/guides/getting-started/prereq
uisites/ (cited on page 81).

Themesberg [2024a]. Flowbite Svelte. 04 Sep 2024. https://flowbite-svelte.com/ (cited on page 40).

Themesberg [2024b]. flowbite-svelte-icons. 12 May 2024. https://github.com/themesberg/flowbite-sve
lte-icons (cited on page 41).

UBS [2012]. UBS Prices and Earnings 2012. Union Bank of Switzerland, 14 Sep 2012. https://ubs.co
m/global/en/media/display-page-ndp/en-20120914-20120914a.html (cited on page 19).

Van der Maaten, Laurens and Geoffrey Hinton [2008]. Visualizing Data using t-SNE. Journal of Machine
Learning Research 9.11 (Nov 2008), pages 2579–2605. ISSN 1532-4435. https://jmlr.csail.mit.edu/p
apers/v9/vandermaaten08a.html (cited on page 9).

W3C [2001]. SVG. World Wide Web Consortium, 04 Sep 2001. https://w3.org/Graphics/SVG/ (cited on
page 30).

W3C [2011]. SVG Document Object Model (DOM). World Wide Web Consortium, 16 Aug 2011. https:
//w3.org/TR/SVG11/svgdom.html (cited on page 31).

W3C [2015]. HTML Canvas 2D Context. W3C Recommendation. World Wide Web Consortium, 19 Nov
2015. https://w3.org/TR/2015/REC-2dcontext-20151119/ (cited on page 30).

W3C [2024a]. SVG Defs. World Wide Web Consortium, 05 Sep 2024. https://w3.org/TR/SVG2/struct.h
tml#DefsElement (cited on page 53).

https://electronjs.org/
https://nodejs.org/
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://github.com/PAIR-code/umap-js
https://github.com/PAIR-code/umap-js
https://github.com/orefalo/svelte-splitpanes
http://amazon.co.uk/dp/0534032486/
https://kaggle.com/datasets/themlphdstudent/premier-league-player-stats-data
https://kaggle.com/datasets/themlphdstudent/premier-league-player-stats-data
https://github.com/scienceai/tsne-js/
https://doi.org/10.1145/368637.368653
https://github.com/slaylines/canvas-engines-comparison
https://github.com/slaylines/canvas-engines-comparison
https://tauri.app/
https://tauri.app/v1/guides/getting-started/prerequisites/
https://tauri.app/v1/guides/getting-started/prerequisites/
https://flowbite-svelte.com/
https://github.com/themesberg/flowbite-svelte-icons
https://github.com/themesberg/flowbite-svelte-icons
https://ubs.com/global/en/media/display-page-ndp/en-20120914-20120914a.html
https://ubs.com/global/en/media/display-page-ndp/en-20120914-20120914a.html
http://worldcatlibraries.org/wcpa/issn/1532-4435
https://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html
https://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html
https://w3.org/Graphics/SVG/
https://w3.org/TR/SVG11/svgdom.html
https://w3.org/TR/SVG11/svgdom.html
https://w3.org/TR/2015/REC-2dcontext-20151119/
https://w3.org/TR/SVG2/struct.html#DefsElement
https://w3.org/TR/SVG2/struct.html#DefsElement

89

W3C [2024b]. SVG Line. World Wide Web Consortium, 05 Sep 2024. https://w3.org/TR/2000/CR-SVG-2
0001102/shapes.html#LineElement (cited on page 53).

W3C [2024c]. SVG Use. World Wide Web Consortium, 05 Sep 2024. https://w3.org/TR/SVG2/struct.h
tml#UseElement (cited on page 53).

W3C [2024d]. WebGPU. World Wide Web Consortium, 05 Sep 2024. https://w3.org/TR/webgpu/ (cited
on pages 30–31).

Ward, Matthew O. [1994]. Xmdvtool: Integrating Multiple Methods for Visualizing Multivariate Data.
Proc. 5th IEEE Conference on Visualization (Vis ’94) (Washington, DC, USA). 1994, pages 326–333.
doi:10.1109/VISUAL.1994.346302. https://davis.wpi.edu/~xmdv/docs/vis94.pdf (cited on pages 15–16).

Ware, Colin [2021]. Visual Thinking for Information Design. 2nd Edition. Morgan Kaufmann, 14 Jul
2021. 224 pages. ISBN 0128235675 (cited on page 1).

Wattenberg, Martin, Fernanda Viégas, and Ian Johnson [2016]. How to Use t-SNE Effectively. Distill
(18 Oct 2016). doi:10.23915/distill.00002. http://distill.pub/2016/misread-tsne (cited on page 9).

Weaver, Chris [2020]. Improvise. 28 Oct 2020. https://cs.ou.edu/~weaver/improvise/ (cited on pages 22–
23).

Wegman, Edward J. [1990]. Hyperdimensional Data Analysis Using Parallel Coordinates. Journal of the
American Statistical Association 85.411 (1990), pages 664–675. doi:10.1080/01621459.1990.10474926.
https://jstor.org/stable/2290001 (cited on page 13).

Weisstein, Eric W. [2002]. Line-Line Intersection. 2002. https://mathworld.wolfram.com/Line-LineInte
rsection.html (cited on page 51).

Whitney, Justin [2013]. Surviving the Zombie Apocalypse: Manipulating SVG with JavaScript. 24 Jun
2013. https://sitepoint.com/surviving-the-zombie-apocalypse-manipulating-svg-with-javascript/
(cited on pages 30–31).

Yi, Ji Soo, Rachel Melton, John Stasko, and Julie A. Jacko [2005]. Dust & Magnet: Multivariate Informa-
tion Visualization Using a Magnet Metaphor. Information Visualization 4.4 (11 Apr 2005), pages 239–
256. doi:10.1057/palgrave.ivs.9500099. https://faculty.cc.gatech.edu/~stasko/papers/iv05-dnm.pdf
(cited on page 7).

You, Evan [2024a]. Vite. 04 Sep 2024. https://vitejs.dev/ (cited on page 40).

You, Evan [2024b]. Vue. 05 Sep 2024. https://vuejs.org/ (cited on page 29).

Zakodium [2023]. ml-pca. 23 Nov 2023. https://github.com/mljs/pca (cited on page 40).

Zhao, Kaiyu [2021]. XmdvTool Github. 24 Sep 2021. https://github.com/kaiyuzhao/XmdvTool (cited on
page 15).

https://w3.org/TR/2000/CR-SVG-20001102/shapes.html#LineElement
https://w3.org/TR/2000/CR-SVG-20001102/shapes.html#LineElement
https://w3.org/TR/SVG2/struct.html#UseElement
https://w3.org/TR/SVG2/struct.html#UseElement
https://w3.org/TR/webgpu/
https://doi.org/10.1109/VISUAL.1994.346302
https://davis.wpi.edu/~xmdv/docs/vis94.pdf
http://amazon.co.uk/dp/0128235675/
https://doi.org/10.23915/distill.00002
http://distill.pub/2016/misread-tsne
https://cs.ou.edu/~weaver/improvise/
https://doi.org/10.1080/01621459.1990.10474926
https://jstor.org/stable/2290001
https://mathworld.wolfram.com/Line-LineIntersection.html
https://mathworld.wolfram.com/Line-LineIntersection.html
https://sitepoint.com/surviving-the-zombie-apocalypse-manipulating-svg-with-javascript/
https://doi.org/10.1057/palgrave.ivs.9500099
https://faculty.cc.gatech.edu/~stasko/papers/iv05-dnm.pdf
https://vitejs.dev/
https://vuejs.org/
https://github.com/mljs/pca
https://github.com/kaiyuzhao/XmdvTool

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Approaches to Multidimensional Visual Analysis
	2.1 Scatterplots
	2.2 Scatterplot Matrices (SPLOM)
	2.3 Star Coordinates
	2.4 RadViz
	2.5 Dust and Magnet (DnM)
	2.6 Similarity Maps
	2.6.1 Principal Component Analysis (PCA)
	2.6.2 Multi-Dimensional Scaling (MDS)
	2.6.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)
	2.6.4 Uniform Manifold Approximation and Projection (UMAP)
	2.6.5 Comparison of Similarity Mapping Techniques

	2.7 Parallel Coordinates
	2.8 Parallel Coordinates Matrix
	2.9 Brushing and Linking
	2.10 Grouping and Labeling

	3 Tools for Multidimensional Visual Analysis
	3.1 XMDV
	3.2 Parallax
	3.3 GGobi
	3.4 InfoScope
	3.5 XDAT
	3.6 High-D
	3.7 TabuVis
	3.8 Improvise
	3.9 MyBrush
	3.10 mVis
	3.11 Comparison of Tools

	4 Modern Web Technologies
	4.1 Web Applications
	4.1.1 Frontend
	4.1.2 Backend

	4.2 Frontend Development Frameworks
	4.2.1 Angular
	4.2.2 React
	4.2.3 Vue
	4.2.4 Svelte

	4.3 Web Graphics Rendering Technologies
	4.3.1 Canvas2D
	4.3.2 SVG-DOM
	4.3.3 WebGL
	4.3.4 WebGPU
	4.3.5 Offscreen Canvas

	4.4 Web Graphics Rendering Libraries
	4.4.1 SVG.js
	4.4.2 Konva.js
	4.4.3 Two.js
	4.4.4 Pixi.js
	4.4.5 Babylon.js
	4.4.6 D3.js
	4.4.7 Performance Comparison

	4.5 Desktop Development Libraries
	4.5.1 Electron.js
	4.5.2 Tauri

	5 The Multidimensional Visual Analyser (MVA)
	5.1 Build System
	5.2 Dependencies
	5.3 Components
	5.4 Icons
	5.5 Example Datasets

	6 Selected Details of the Implementation
	6.1 Chosen Web Graphics Rendering Technology
	6.2 Overlaying Canvases for Visualizations
	6.3 Scatterplot Matrix Rendering
	6.4 Using Web Workers
	6.5 Hovering and Brushing
	6.6 Filtering
	6.7 Selection Tools
	6.8 SVG Exporter

	7 Outlook and Future Work
	7.1 Window Management
	7.2 Rendering Records with Pixi.js
	7.3 Rendering the Scatterplot Matrix
	7.4 t-SNE Similarity Map
	7.5 Parallel Coordinates Matrix Panel
	7.6 Handling Missing Data
	7.7 Automated Classification
	7.8 Rule-Based Definitions for Classes

	8 Concluding Remarks
	A User Guide
	A.1 Installation
	A.2 Features
	A.3 User Interface
	A.3.1 Initial State
	A.3.2 Hovering and Brushing
	A.3.3 Navigation Bar
	A.3.4 Display Area

	A.4 Example Datasets
	A.4.1 Cars 1993
	A.4.2 Cereals
	A.4.3 Iris
	A.4.4 Premier League
	A.4.5 Student Marks

	A.5 Dataset Formats
	A.6 Example Use Case

	B Developer Guide
	B.1 Quick Start
	B.2 Desktop Application
	B.3 Gulp Tasks
	B.4 Development Dependencies

	Bibliography

