
The Harmony Information Landscape:

Interactive, Three-Dimensional Navigation

Through an Information Space

Diplomarbeit in Telematik

Martin Eyl

Technische Universit�at Graz

Institut f�ur Informationsverarbeitung

und Computergest�utzte neue Medien (IICM)

Fertigstellung: 18.10.1995

Pr�ufungsfach: Informationsverarbeitung

Betreuer: Dipl.-Ing. Keith Andrews

Begutachter: O. Univ.-Prof. Dr. Dr. h.c. Hermann A. Maurer

Ich versichere diese Arbeit selbst�andig verfa�t, andere als die angegebenen Quellen und

Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfsmittel bedient zu

haben.

Die Diplomarbeit ist in englischer Sprache verfa�t.

Acknowledgments

I would to thank a number of people at the IICM for their support during my work and

preparation of this thesis:

J�urgen Schip
inger
Dipl.-Ing. Michael Pichler

Dipl.-Ing. Keith Andrews
Univ.-Prof. Dr. Hermann A. Maurer

1

Abstract

Computer have made it possible to store and process larger and larger amounts of infor-

mation, but humans have problems to manage such large amounts of data. Hence user
interfaces have improved and the use of spatial metaphors and hyperlinks and the 3D rep-
resentation of information have gained in signi�cance. This thesis �rst discusses a number
of research projects which use spatial metaphors and then introduces you to hypertext

and the Harmony Information Landscape which visualizes the hierarchical structure of
information as an information landscape. This information is stored on a Hyper-G server
which is an Internet-based, large-scale hypermedia system. Blocks representing collections
of individual pieces of information are spread out on a plane and one can interactively
y
over this virtual landscape. Several di�erent navigation modes are provided.

Contents

1 Introduction 5

2 Hypermedia and Information Systems 7

2.1 What is Hypertext / Hypermedia ? : 7

2.2 Application of Hypertext : 9

2.3 Navigation in Hypertext : 10

2.3.1 From Wandering to Searching : 10

2.3.2 Lost in Hyperspace : 11

2.3.3 Navigation Aids : 12

2.4 Information Systems : 14

2.4.1 The Internet : 14

2.4.2 WAIS : 15

2.4.3 Gopher : 15

2.4.4 World Wide Web : 15

3 Hyper-G and Harmony 17

3.1 Introduction : 17

3.2 Hyper-G : 18

3.2.1 Collection Hierarchy : 18

3.2.2 Architecture : 19

3.2.3 Searching : 22

3.2.4 Access Control : 22

3.2.5 Interoperability : 22

3.3 Harmony : 23

4 Spatial Metaphors in Information Systems 31

4.1 SemNet : 31

4.2 Multimedia Information System with 3D Objects : : : : : : : : : : : : : : 32

4.3 File System Navigator : 33

4.4 Information Visualizer : 33

4.5 Navigational Aids in Hypertext : 35

4.6 Bead by Rank Xerox EuroPARC : 35

4.7 LyberWorld : 36

4.8 Information Island : 36

4.9 Mapping from Spatial Cognition to Hypertext : : : : : : : : : : : : : : : : 37

4.10 Web World : 37

1

4.11 GopherVR : 38

5 The Harmony Information Landscape 41

5.1 Layout : 41

5.2 Hit, Select and Activate : 44

5.3 Overview Map : 45

5.4 Navigation : 46

5.4.1 Fly : 47

5.4.2 Point of Interest Movement : 48

5.4.3 Navigation using the Overview Map : : : : : : : : : : : : : : : : : : 48

5.4.4 Animation : 49

5.4.5 Searching and History List : 50

5.5 User Interface : 50

5.5.1 Font Chooser : 50

5.5.2 Colour Chooser : 52

5.5.3 Scale Dialog : 52

5.6 Lettering : 53

5.7 Coupling with Collection Browser : 54

5.8 Methods for Reducing the Cost of Drawing : : : : : : : : : : : : : : : : : : 57

6 Implementation 59

6.1 About the Implementation : 59

6.2 The Main Class - View3D : 60

6.2.1 Tree Layout : 63

6.2.2 Picking 3D Objects : 63

6.2.3 Movement : 65

6.3 Node : 65

6.4 The Overview, GlText and Camera Classes : : : : : : : : : : : : : : : : : : 66

6.5 Outlook : 67

7 User Guide 69

8 Concluding Remarks 73

A Colour plates 75

B X Resources 81

C The Hershey Fonts 85

D Graphics Engine 3D (GE3D) 89

D.1 Type De�nitions : 90

D.2 Functions : 91

D.2.1 Opening the Graphics Device : 91

D.2.2 Display Control : 91

D.3 Drawing Modes and Attributes : 93

D.3.1 The Transformation Matrix Stack : : : : : : : : : : : : : : : : : : : 94

2

D.3.2 Building Transformation Matrices : : : : : : : : : : : : : : : : : : : 96

D.3.3 Text : 97

D.3.4 Line Primitives : 97

D.3.5 Solid Primitives : 99

D.3.6 Camera De�nition : 103

D.3.7 Light Sources : 105

D.3.8 Closing the Graphics Device : 106

3

4

Chapter 1

Introduction

Nowadays it is possible to view pictures of Vienna, to access a database in Sydney or to

listen to the voice of the president of the USA without leaving one's chair in front of the

computer. Increasing computer performance and the increasing capacity of mass storages
(hard disk or CD-ROM) make storing and managing of large amounts of data possible.
In a network the capacity is multiplied by the number of computers which are connected
to one's computer. The Internet nearly covers the whole world and provides the largest
database mankind has ever had. The number of databases and information systems and
the net itself grow and grow. And so the problem is not that the desired information is

not available but the problem is to �nd this information. These large amounts of data
make tough demands on the interface between the computer and the user. The data will
be and are already available to many people who are not computer experts. The ultimate
goal is that everybody should be able to use an information system and to �nd the desired
information without any speci�c knowledge. On the other hand, the new and powerful

computers can also be used to build very powerful user interfaces and increasing computer
performance makes new aids for the user possible. The Harmony Information Landscape
has been developed to provide such a powerful interface.

Hypermedia is a possibility to organize large amounts of heterogeneous data like texts,

images, digital audio clips and video clips or 3-dimensional objects and scenes. The data

are divided in arbitrarily large pieces called documents or nodes (for example a picture
or a page of text) which are connected to each other by links. The links show readers a
relationship between the documents and links can be followed (e.g. by a mouse click) to

its destination document which could be for example more detailed information or an an-

imation which illustrates a text. The nodes and links form a web of information in which
one can freely move around and one can always access related information by activating

a link. But hypertext also presents new usability problems of its own. Comparable to
the web of streets in a town, the user can get lost and therefore several navigation aids

have been developed like backtracking, history list, searching, browsers, overview maps,

metaphors or a hierarchical structure.

Hyper-G is a general-purpose, large-scale, distributed, multi-user hypermedia informa-
tion system, which is based on the server-client model. It is the second generation of

Internet-based hypermedia systems and has been developed at IICM in Graz. Hyper-G

5

provides an additional structure beside links. Collections (of documents) and clusters

build up a hierarchical structure. Harmony is the Hyper-G client for X Windows on

UNIX platforms and it provides several di�erent navigation aids, among others the In-

formation Landscape. The Landscape is part of Harmony and presents the collection

hierarchy in an open 3-dimensional landscape.

Spatial metaphors can be used to present large amounts of information in a more compact

and natural way. We live in a 3-dimensional world and we are used to move in this world

and to handle with 3-dimensional objects. This existing knowledge and natural abilities

should and can be used for an interface. Screen space is limited and one can use 3D

visualization to maximize e�ective use of this screen space. This thesis introduces several

projects using spatial metaphors and 3D presentation.

The Harmony Information Landscape presents the collection hierarchy of the Internet-

based Hyper-G servers but it does not portray the links of the hypermedia system. The

collection hierarchy is an hierarchical structure and can be used to �nd one's way in the

web of links. Thus the Landscape is an additional navigation aid for the user.
The Landscape is a �rst attempt in Hyper-G to take advantage of a spatial metaphor.

The collection hierarchy is presented as a tree in an arbitrarily large landscape. Collec-
tions, clusters and documents are represented by blocks. The document blocks are placed
upon the collection socles and cluster socles and titles are displayed in the front of the
blocks. The colour of a block shows the type of the document and the size of a document

is mapped to the height of the block. In the future one will also use other properties
(for example the shape) to represent an attribute. Users can open and close collections
and view documents by double-clicking with the left mouse button. A second window
provides an overview map of the current collection tree. The landscape can be explored
interactively. Interactive navigation gives the impression of moving in a real 3-dimensional

landscape and the drawings are made in real time. Several di�erent navigation modes
have been implemented. The system also provides smooth animation to take the user to
a desired object (for instance to an object which the user has chosen from the result list
of a search query or from the history list). A �sheye view means that only objects near
the viewpoint are displayed in great detail and it is used to avoid unnecessary drawing

(for example a very small title far away).

Chapter 7 should be read if the user wants to work with the Landscape the �rst time.

6

Chapter 2

Hypermedia and Information

Systems

In 1945 already Vannevar Bush published a manuscript about an information system
which he had developed in order to store and access information [8]. This system, which
was never implemented, was the �rst description of an hypertext system. At that time
the explosion of scienti�c information was already the main motivation for this system.
Today the situation becomes worse and worse and with the possibilities of a computer

network the amount of available information increases enormously. So hypertext is a very
important tool to manage this information and hypertext can now be implemented with
commercially used technology.

In the �rst part of this chapter, I am going to explain the facilities of hypertext,
problems, and possible solutions of these problems. In the second part I am going to

introduce you to distributed hypertext and information systems spreaded out over the
Internet. Distributed means that the system is not only located on a single computer
but on many computers in a network. The Internet covers nearly the whole world and it
supports access to thousand of databases and information systems.

2.1 What is Hypertext / Hypermedia ?

Till now we are used to read a text sequentially [21, 5, 22]. We start to read a book at

the beginning and we �nish at the end. Hypertext is non-sequential. There is no �xed
sequence but the user can decide where to read further (see Figure 2.1). The author of
the text arranges several di�erent possibilities in advance. Comparable to footnotes in a

printed text the reader determines to read it or not.

The nuclear elements of hypertext are nodes and links. The content of a node could

be a single word or a long text. A node could also contain other forms of data like a
picture, a sound, a video and so on. In that case hypertext is called hypermedia1. Nodes
are connected to each other by links. Normally a link is directed from a source anchor
to a destination anchor. The anchor of a link can be associated with a small part of

the node (for example a word) or with the whole node. The source anchor of a link is

1Hypertext systems have some advantages over a hypermedia system for example economy, ease of
development and ability to run on cheaper and less powerful computers.

7

Hypertext

sequential text

Figure 2.1: Sequential Text and Hypertext

8

displayed as an anchor icon for example a button or a word with a di�erent colour. Now

the user can activate a link (for example by a mouse-click) and the system will present the

destination anchor. Authors of a hypertext can place links to show readers a relationship

between a source and a target node or the hypertext system itself can generate links

automatically. In some systems the links is of a type to characterize a relationship, for

example a de�nition link or an author link. And so the nodes and the links make up an

information web in which the reader can freely move around.

For example the readers select an article about a particular bird. Then they can

determine to get more information about the propagation, the food or the appearance of

the bird. A click on the word \propagation" with the mouse opens another window which

shows a map of the world with coloured regions. The readers can also click on the word

\appearance" to look a video. Clicking on the bird in the video starts a song of this bird

and so on. The readers can explore the information corpus as they like and so the users

examine only the interesting parts.

The base of hypertext is a database with additional features. The items of this data-

base can be completely di�erent for example a picture, a text or a video. The links can
be embedded in the text (WWW) or they are also stored in the database. The database

can be local on a computer or it can be distributed in a network.

2.2 Application of Hypertext

Hypertext makes new demands on reader and authors. Hypertext readers must assume a
much more active role than readers of printed text. Hypertext authors must organize the
information into numerous fragments or nodes and connect them with meaningful links.
Not all information is divisible in fragments and therefore not all application are suitable

for hypertext. Here are few possible applications:

1. Documentation
A online documentation in hypertext form on a computer has some important ad-

vantages. The documentation is always available. When a problem occurs, one can
use it immediately without looking for a book. The user doesn't have to read the

whole documentation to solve the problem. One only needs a small part with the

respective explanation. Hypertext is a very usable tool to access a particular part
of a text and so the user can easily �nd the sections that interest him or her. Many

software packages have been delivered with online manuals in hypertext form. An
example is the documentation of Borland C++ compiler. Explanations of com-

mands are connected by links with program examples or with other commands and
each written word in the editor is an anchor of a link. If the written word is a

command, then the destination is the explanation. The destination of a link from a

unknown word is a list of similar commands. Another possible application besides

computer manuals is a repair manual which contains descriptions of how to repair

cars or bicycles linked to video clips. The documentation and the repair manual of
an aeroplane has millions of pages and �nding information about a small component

can be improved by hypertext.

9

2. Advertising

Hypertext with multimedia is an excellent possibility to introduce a product to a

customer. A hypermedia product catalog can provide not only text and pictures to

attract the attention of the people. For example a car catalog can contain a driving

simulation. One problem of printed catalogs is the right amount of information.

Some people feel bored with a long text. Other customers want more information

about a particular product. In a hypermedia catalog the customer can choose a

product and can access the information that interest him or her. The companies

can spread their trade shows or product catalogs with the help of the Internet, disks

or CD-ROMs.

3. Medicine

Hypertext is a kind of database and so it can be used to store di�erent types of

data. In a hospital a patient �le contains medical check-up results, diagnosis, X-ray

picture, cardiac sounds and the like [14]. At the present one part of the data is stored

on the computer and the other part exists on paper and �lm. The goal is to store
the whole patient �le on the computer and to use a hypermedia system. A patient
can be treated from several doctors and all doctors can access the information by

using a local network. There can be links inside the �le and between �les.

4. Education
The information stored in a hypertext system can also be knowledge and a student
can use hypertext for learning. A encyclopedia or a dictionary is a kind of printed
hypertext and can also be implemented on a computer. Every word in a text, which

is written in a foreign language, can be linked to a translation of the word. Hy-
pertext also enables user to view parallel the original version and the translation
of the text. Another possibility to learn a foreign language is to show �lm clips of
conversation. If the students do not understand the conversation, they can use the
hypertext facilities and link to a �lm where the people speak more slowly. Another

educational hypertext is the museum information system where the users can look
round and view the museums objects that interest them.

2.3 Navigation in Hypertext

Hypertext has much to o�er in terms of managing large amounts of information but it

may also present a new set of usability problems of its own. The main advantage of
hypertext is the possibility to travel about the web of information. This advantage is

simultaneously a new challenge for the readers. They must be able to �nd their way in
the hypertext. Most hypertext systems provide some navigation aids to help the users.

2.3.1 From Wandering to Searching

Browsing is to move from node to node by following links. The way to browse a hypertext
depends on the task or the intention of the reader. For instance one can look for a

particular chunk of information to solve an existing problem. Another possibility is that

10

a user wants to get information about a common topic. Or a user has only a vague

idea and scannes the hypertext to get a sense of other related concepts. Browsing can

range from curiosity about any or all elements to a constrained search. Smith el al [29]

distinguish between �ve methods of exploring or browsing a hypertext :

� scanning - covering a large area without depth to get an overview

� browsing - following a path, which is a train of thought, until goal achieved

� searching - striving to �nd a explicit goal

� exploring - �nding out the extent of the information given to get an overview

� wandering - purposeless and unstructured globe-trotting

Smith asserts that wandering has no place in hypertext but I think it can be quite amusing

and entertainment has its place in hypertext.

2.3.2 Lost in Hyperspace

The most commonly cited problem in the hypertext literature is that of disorientation or
becoming \lost in hyperspace" during browsing. This problem grows with the size of the
hypertext comparable to a town. In a small village one can easily maintain orientation
but in a big town it is almost impossible without navigation aids. The web of nodes
connected by links can be very complicated and confusing. Here are some possible user
statements:

� I don't know where I am in the information space.

� I don't know how to access something I belive exists there.

� I don't know how to get back to where I came from.

� I am not able to �nd something again across which I stumbled.

� I forget which nodes I have been visited.

� I neglect to return from a digression.

� I �nd interesting sidetracks which distracts my attention from the main task.

� I am not able to form a coherent understanding of what I have been read.

� Is there more or any information that interest me ?

The origin of such problems is often the unfamiliarity with the structure or organization

of the network. The users don't know the extent of the network or all relevant nodes.
Perhaps some parts of the network are never explored. Another group of problems is

called cognitive overhead. The users have to �nd their way through the hypertext and
they can lose track of the main task because there is interesting information on the way.

But this information can also help to concretize or rede�ne the goal.

11

An origin can also be inexperience of the reader. Hypertext is a new information

medium and people are only used to read books. And so they must learn to work with a

hypertext system and to �nd their way. The author is often responsible for some problems.

Ill-organized and unkempt writing in a book is very confusing [6]. In a hypertext system

such authors produce obscure, confusing and frustrating information webs. The correct

partition of the information and a meaningful linkage is an important and very di�cult

task for the author. Not only new documents but also existing documents have to be

transformed into a good hypertext.

2.3.3 Navigation Aids

Several possible aids and solutions to these problems have been developed. A very simple

kind of help for the user is the guided tour which leads the reader through the hypertext.

Hypertext systems can provide di�erent guided tours with particular topics and can also

suggest additional nodes with already visited topics. It can be very helpful for beginners.

But guided tours are like a sequential linear form of information and the advantage of
hypertext, which is the open exploratory information space, is not used.

Backtracking is a very e�cient solution to the problem of getting lost in hyperspace.
The backtrack feature allows the reader to get back step by step to the starting point.
Users can dare to go out to unexplored places because they can �nd their way back to
a familiar territory by backtracking. If the readers stumble about interesting nodes they
can easily �nd it later. A comfortable form of backtracking is the history list, which allows

the user to access any previously visited node immediately. But a history list grows with
time and can become very complex and di�cult. Another similar tool for the user is a
bookmark which is a special form of a history list. The users can decide which nodes are
stored in a list and they can revisit them immediately by selecting them from the list.
The list and its size is in control of the user.

Indexes are often used in books and can also be implemented in hypertext systems.
Users, who are interested in looking up or �nding a speci�c item, can use a index. Indexes
can be implemented as a list of links.

Browser and Overview Map

There are parallels between the real world and hypertext. And so the results of spatial
cognition research can be applied to hypertext, for example research on mental or cognitive
map [28]. A cognitive map is an \orienting schema" or a mental representation of the

information web and it is very important for maintaining the orientation. Users develop a

cognitive map by interacting with the hypertext as well as via using maps or browsers of
the network. A 2- or 3-dimensional browser should possess some properties helping users

to acquire a cognitive map. Inhabitants sketched maps of cities, which reveal some of the
content of cognitive maps consist of landmarks, paths, nodes, districts and boundaries.

The possibilities of districts and boundaries are often not used in browsers. Shum [28]

described another important property: \It is important for a node's location to carry
information about the content, or spatial organization is meaningless." For example

system-readable attributes can be mapped to an absolute location in space. Nodes can
be arranged in space in terms of general and detailed information or simple and advanced

12

information. It is also important that the position of the node doesn't change, for instance

if new views are computed. We would be confused if things constantly change.

The information web is normally too large for showing all nodes and links on a single

map. There is not enough space on the computer screen to show all details. A solution

is to show di�erent maps with di�erent levels of detail. Another possibility is the �sheye

view [10, 12] which means that parts of the information nearby the current position of

the user are shown with great detail. The parts further away, which are not so interesting

for the user, are displayed with less detail. A �sheye view is only suitable for highly

structured hypertext.

An advantage of 3-dimensional browsers or maps is a simplifying the network structure

by eliminating intersection links. The user's position and movement, the size and kind of

the information or the number of visits can also be displayed in the overview map.

Searching

Normally an unfamiliar hypertext is too large to �nd a particular topic by browsing.

Many hypertext systems provide a searching feature. A query in a full text search �nds
occurrences of words speci�ed by the user in all nodes. These nodes can be displayed in
a list and the user can immediately jump to a node by selecting it from the list. The

list can be sorted by title, author and so on. The search result can also be displayed in
an overview map where the matching documents change their colour. The search can be
limited to particular parts of the hypertext.

Metaphors

The advantage of a metaphor is that user's existing knowledge and natural abilities are
used. The computer user, who wanted to use a database, used to have to be an expert

prior but today people should be able to use a hypertext system without any speci�c
knowledge. All people are very familiar with navigation in a 3-dimensional space, a
house with certain rooms, objects and so on. An interface can use such everyday spatial
environments. And so users instinctively know what they have to do and they can draw
on existing world knowledge to act on the electronic domain. Several interfaces using a

metaphor have been developed.

Cornell University's InteractiveMultimediaGroup developed the Bughouse [13], which
contains information on the subject of art, history, entomology and so on. They imple-
mented an interactive touch-screen and the readers can just point to the place where

they want to go and in this way they can examine the whole house. General themes are

organized by rooms. For example, the topic music is placed in the music room. The user
can touch objects on the screen to get more information for example a cookbook in the

kitchen for the topic food.
A very similar project is an academic department, which was developed by Smith and

Wilson [29]. Information about this department is placed in a 3-dimensional model of

the building. Information about members and their research interests is assigned to their
individual o�ces, information about facilities is placed in a laboratory and so on. Users

can also use a map of the building to �nd their way.
Waterworth and Singh [32] used islands as metaphor. Archipelagoes, islands and

buildings represent a hierarchical information system. An archipelago contains a major

13

class of information and an island a subclass of information and a building contains a

topic. Users can explore this world with a vehicle which provide a public and private view

and they can decide what they want to see in the window with the private view.

The natural hierarchy of an object (an element is a composition of other elements) is

used in a hypermedia system, which was developed by Serra et al[27]. The system can

especially be used to provide information about 3-dimensional objects. The base of the

hypermedia system is a 3D model. The users can get detailed information by clicking on

the part of the 3D model which interest them. Text, image and video nodes have been

used and realistic animations have been implemented. Possible applications range from

technical objects (for instance an engine or an aeroplane) to an human body.

Hierarchical Structure

As was mentioned before, some hypertext systems use a hierarchical structure. Very large

hypertext systems need an additional structure beside hyperlinks otherwise it is almost

impossible to get an overview and to �nd one's way. Gopher and Hyper-G use a kind of

hierarchical structure.
Parts of the information web which stand for a class of information can be collect

together (in Hyper-G the parts are called collections and in Gopher menus). Several
classes can build up another class of information and so on. This hierarchical structure

is also a kind of �sheye view. The users can move along the hierarchy to get a detailed
view of a part of the information corpus. Simultaneously they have also an overview of
the rest.

2.4 Information Systems

In this section I am going to introduce some information systems, which make large
amounts of information on the Internet available to every Internet user. Gopher, WAIS,

WWW, and Hyper-G are the most prominent. All this systems are based on the client
server model. The server manages the documents and the client makes the documents
available for the user.

2.4.1 The Internet

The Internet has been developed in the past 20 years [16]. It is growing continuously

and it covers nearly the whole world. The net has not been built by only one company

or university, it has grown out of many local networks (LAN) which are inter-connected.

Each company or university is responsible for their own net. All computers which are
connected to the Internet must use the same protocol (IP/TCP) otherwise they can not

understand one another. The data are divided in small parts and then the parts are sent
to the destination computer where they are put together again. The transport-way be-

tween two computers can di�er for example if a part of the net is broken then the data are

sent another way. And so each computer can communicate with each computer and for
instance information systems and databases in Japan can also be used in Europe. These

are the basic services provided by the Internet:

14

� E-MAIL - send and receive electronic mail

� FTP - send and receive data (�les)

� TELNET - use a remote computer

� NEWS - discussion-groups with particular topics

� access to information systems and databases

2.4.2 WAIS

WAIS stands for Wide Area Information Servers and is used for information retrieval.

There are more than 500 WAIS databases on the Internet and one can search for informa-

tion (articles) in these databases. The main database contains the addresses of all other

databases with keywords and is the starting point of a search. The user determines some

keywords and WAIS �nds matching databases. Then the user can continue the search in
those databases. WAIS is based on a full text search and the search result are sorted by a
number, whereby the best matching document gets the largest score. There are no links
connecting documents.

2.4.3 Gopher

Gopher was originally developed on the University of Minnesota and provides a hierarchi-
cal structure (menus) to access data which are stored on servers on the Internet. When

the user starts gopher, the main- menu of the home server is displayed on the screen.
Gopher manages di�erent types of menu items: sub-menus, text �les (or binary �les),
search services or TELNET. The user can choose a menu item which can be located on
the home server or on any other remote server. That makes no di�erence for the user.
So one can search for a particular piece of information in the whole Internet by browsing

the menus or using the search facilities. Gopher uses existing services like telnet or FTP,
but is not a real hypermedia system because there are no links in the text �les.

2.4.4 World Wide Web

The World Wide Web (WWW, W3 or the Web) is a real hypermedia system and links
connect documents, which are spread all over the world. WWW was originally developed
at CERN in Geneva and it is the �rst hypermedia system whose component servers are ac-

cessible via the Internet. Information is structured in documents and it manages di�erent

types of documents: text, image, and audio and �lm clips and so on. A text document is
stored in so-called HTML format and links are an integral part of the document. Several

di�erent clients are available on all major platforms: Lynx (a text-only client), Mosaic
and Netscape. This clients provide some aids to �nd one's way in this large information

web (for example history list, bookmarks or backtracking). Mosaic or Netscape can also
access other Internet services: FTP, TELNET, Gopher, search facilities, and news groups.

15

16

Chapter 3

Hyper-G and Harmony

Hyper-G [1] is a distributed hypermedia information system, which combines the best

of Gopher, WAIS, and the World Wide Web (WWW) and provides additional features.

Harmony is the Hyper-G client for UNIX / X11. In this chapter I am going to introduce
you to Hyper-G and Harmony.

3.1 Introduction

The Internet provides the largest information and communication resource mankind has
ever had. The databases stored on the computers in this network comprise the largest
database in the world. Several Internet information systems have been developed like
WAIS, WWW, and Gopher whereby WWW is the most famous. However, these systems
have some drawbacks and weaknesses. So Graz University of Technology developed a

new hypermedia system: Hyper-G, a second generation hypermedia system [3, 2, 19, 15].
Di�erent clients are available to present the information stored on a Hyper-G server:

� Text only clients (hgtv)

� Amadeus is the native Hyper-G client for MS-Windows on PCs.

� Harmony is the native Hyper-G client for X Windows on UNIX platforms.

The problems typically associated with large hypermedia systems and the weaknesses of

other systems have been considered during the design of this system. As was mentioned

before disorientation grows with the size of the hypertext. Hypertext systems (containing
millions of documents) must provide several di�erent navigation aids and retrieval facilities

and the Landscape is one of them. Harmony and Hyper-G relies not only on one kind of
aid. The navigation aid used depends on the task or intention of the user.

Another important point is authoring. A single person can not write and maintain

a large database. If several authors work in a hypertext system, access rights become a
necessity (similar to the UNIX directory). The author should also be able to link comfort-

ably documents even if the author has no write access to the document. The consistency
and integrity of data must be guaranteed in a large hypertext (for example avoiding dan-

gling links when document is deleted). The system must be able to access other databases

17

using the Internet or a local network and the system should be interoperable with other

database types likeWWW or Gopher. The designers of Hyper-G and Harmony considered

these requirements and the problems of large hypermedia systems.

3.2 Hyper-G

Hyper-G is a general-purpose, large-scale, distributed, multi-user hypermedia information

system, which is based on the server-client model. The client (Harmony) communicates

with the server (Hyper-G). Client and server can run on the same computer, on two

computers in a local network, or on the Internet (several thousand kilometers apart).

Hyper-G stores and manages hypermedia data and makes this data available to one

or more clients. A particular client, however, always talks to the same server during a

session (WWW clients are connected with several servers). When the client wants to

access documents from other Hyper-G servers, the server which is connected to the client

(the local server) fetches it and delivers it to the client. Hence users only work with one
large hypertext and the other servers are not visible for them. Each server knows all

the information stored in all other server and stores the remote documents which have
been fetched in a local cache. When the same or another client (connected with the local
server) asks again for those documents, the server must not fetch it from the remote server
a second time. It get those documents from its local storage. The transmission-time for
a big document within a local network is much smaller than the transmission-time of

a document within the Internet across several thousand kilometers. A server should be
installed locally in the user's network even if that server is used for nothing much beyond
caching.

The connection with only one server has even more advantages. Regarding access
rights, the user has to identify to one server only and the client can be kept simple. The
Hyper-G client-server protocol is e�cient and connection-oriented.

3.2.1 Collection Hierarchy

Hyper-G provides additional hierarchical structuring facilities beside hyperlinks. This

structure is an important navigation aid. De�ning a search scope and access control

without this structure is quite di�cult.

The collection hierarchy is best explained recursively: Every document is a member
of one or more collections and every collection is also a member of one or more collections

except the root collection. The resulting structure is not really a tree because a document

or a collection can belong to more than one parent collection. For example the document
with the topic \theory of relativity" can belong to the collection \physics" and to the

collection \Einstein". A user can move in the collection hierarchy and view the contents
of the collections. A collection contains a list of objects: documents, subcollections,

and clusters. A cluster is similar to a collection but when a cluster is visited all of

its substructures are visited (visualized) too. Hence a cluster is a kind of multimedia
document for example a text, an image, and a video clip simultaneously displayed on the

screen. It can also be used to support multilingual documents and version control (see
also Figure 3.1).

18

document

cluster

collection

search

link

Figure 3.1: The Hyper-G Data Model

In addition and in parallel to other navigation aids the collection hierarchy can be used

to get an overview and to orientate oneself in the information space. In this structure the
place of a document is obvious and the user can �nd and �nd a document again, even
in a very large hyperspace. For example a text with the topic \proton" can be placed in
the collections \natural science", \physics" and \atomic physics". Everybody would look
there. Comparable to using maps of the world, of countries, of towns and so on, users

can easily get an overview of the content with di�erent levels of detail. Relevant parts of

the information universe will not be missed.

3.2.2 Architecture

The Hyper-G server comprises three distinct server processes: full text server, link server
and document server (see Figure 3.2). The full text server is not explained further here.

The link server is an object-oriented database of objects and relations between such ob-

jects. The objects can be description of documents, links, anchors, collections and so on.

The relations are for example which documents belong to which collection or which source
anchor are connected to which destination anchor.

The link server assigns object IDs to objects. An object ID is an unique number
(similar to an ISBN number). No two objects share the same number. The object IDs of

19

Legend: Client plannedServer

Hyper−G Server

Full Text
Server

Gopher

W3

WAIS
Z39.50

FTP

Gopher

Hyper−G

W3

Server
Link

Document
Server

Hyper−G

Figure 3.2: Hyper-G Architecture

20

a deleted object is not used a second time and each version of an object receives a new

ID. The link server stores additional information of the objects: title, author, creation

date, additional keywords. In the case of documents also the location in the document

server is stored which is necessary to retrieve the document from the document server. In

WWW links are embedded in documents, in Hyper-G links and documents are strictly

separated. That means several advantages over WWW: Accessing only the link-server

the user can browse the hypermedia corpus. When the users �nd a interesting document

they can fetch it from the document server. It is not necessary to fetch documents for

exploring the collection or the link structure. The link information is stored in the link

server, the documents themselves are stored in the document server. Another advantage

is the possible attachment of links to read-only documents, for example documents stored

on a CD-ROM or on a remote server where the user has no write permission. For ex-

ample the user can create a link from a dictionary (stored on a CD-ROM) to a private

annotation (an additional explanation). Storing links within a separate database has a

further advantage: the link server can provide bidirectional links. Usually a link is di-

rected from an anchor node to a destination node. In the case of a bidirectional link one

can also follow a link from the destination to an anchor and so one can determine all
documents which refer to a particular document. Whenever this document is deleted or
modi�ed, documents which refer to the document can be identi�ed and possibly the links
can be removed from the web. In a large database it is almost impossible to remember
or know all documents connected to a particular document. (Other persons can also link
their documents to this document). The link server is able to maintain the consistency

and integrity of the information web. It also stores the information about the collection
hierarchy and guarantees that every document belongs to least one collection. The link
server is also responsible for additional tasks like searching and access control and it can
gather detailed statistical data about the system.

As was mentioned before, the document server stores all local documents and caches
remote documents. When a document is needed, the document server delivers it to the
user. It caches remote documents on local mass storage. This cache memory (for example
hundred of megabytes of hard disk) is limited and so the least recently accessed documents
must be deleted regularly. In a large hypertext system documents are modi�ed perma-

nently and so the system must guarantee that the user receives always the latest version

of a document. A document in the cache can be an old version. A possible solution is
that whenever a document is modi�ed, it must be sent again to all relevant caches. A
list of all relevant caches is necessary and so on. The solution implemented in Hyper-G is

much simpler. Every object or document receives an unique number, the object ID. This

means that the new version of a document receives a new number which is passed to the
client when the user visits this document. The document server doesn't �nd a document

with the new object ID in the cache and so it fetches the new version from the remote
document server. The old version with the old object ID will be deleted because of the

least-recently-used strategy of the cache.

21

3.2.3 Searching

The attributes of a Hyper-G object (such as title, keywords, creation time, expiration

time and so on) which are stored in the link server can be used to �nd documents of

current interest. Boolean queries might be for example \Search for all documents with

'theory of relativity' or 'Einstein' in the title", or \Search for all images which have been

created yesterday", or \Give me text-documents with 'Windows' in the keywords, created

by Smith after 23-05-94". Hyper-G provides also sophisticated full-text search facilities.

The result of a search query is a list of matching objects. When the user searches in

a large database this list might be very large. In Hyper-G the user can de�ne a search

scope in order to reduce the number of matching objects. The scope can be a union of any

number of collections, for example a particular set of collections on a single or a number of

Hyper-G servers. The search scope can thus range from a single collection on a Hyper-G

server to all collections on all Hyper-G servers worldwide.

3.2.4 Access Control

Hyper-G also supports access rights. Users can use Hyper-G anonymously or can identify
themselves. Identi�ed persons have their own home collection where they can collect
pointers to documents most important for them. Similar to a UNIX �le system read and
write access to certain parts of the information web (collections) can be granted or denied

to certain user groups.

3.2.5 Interoperability

WWW is the �rst wide-spread hypermedia system on the Internet. A lot of WWW servers
are installed in the Internet because WWW server and client are available via Internet and
easy to install and clients are available for all major platforms. This large existing pool of

information resources should also be available for the Hyper-G user. Thus interoperability

of information servers is a very important issue. Hyper-G is able to interact with Gopher
and WWW servers and Gopher and WWW clients. When a WWW or Gopher client is
connected with Hyper-G server the hierarchical structure must be mapped from Hyper-G

to the clients. Gopher provides a menu-tree and so a collection is converted to a menu.

Hyperlinks can not be represented in the Gopher metaphor. There is no hierarchical
structure in WWW, so the WWW documents are generated to look like menus. Each

collection in Hyper-G must be converted to a document containing a menu of links to
other documents (sub-menu or sub-collection).

Hyper-G can also connect Gopher and WWW servers. Gopher menus are converted

into Hyper-G collections, WWW text documents into Hyper-G text documents. The col-
lections and documents of the WWW and Gopher servers are part of only one collection

hierarchy which the Hyper-G client presents and so the user works with one large virtual
information space.

22

control

documents

Session
Manager

Harmony
Hyper−G
Server

Text

Image

Film

Audio

3D

PostScript

External

HG−CSP

Harmony
DVP

stdin

port 418

Figure 3.3: Harmony Architecture

3.3 Harmony

Harmony [1] is the native Hyper-G client for X Windows on UNIX platforms. It is written
in C++ [30] and InterViews X11 user interface toolkit [17]. Harmony makes the facilities

and advantages of Hyper-G available to the Hyper-G user. The collection hierarchy with
data from the local and remote servers are arranged clearly and several navigation aids are
available. Harmony is an excellent tool to manage large amounts of data and to browse
in the information web. Figure 3.3 shows the architecture of Harmony.

Session Manager

The session manager is the primary process. It is connected to the link server and coor-
dinates all activities. The Information Landscape and other navigation facilities are part
of the session manager. Figure 3.4 shows the session manager containing a menu bar,

buttons, a status-line and a view of the collection hierarchy. The types of the objects

(collection, cluster, or document) are represented by a particular icon. The user can open

and close collection and view documents by clicking at the titles of the objects. One can

also use keys for browsing the hierarchy. Documents which have been visited before in
this session are marked with a tick.

The session manager provides several dialog boxes for example a box for identifying

or for selecting di�erent settings. In the language dialog box, users can choose their

preferred language. The menus, the titles of the buttons, or each message are displayed

23

Figure 3.4: The Session Manager

24

Figure 3.5: The Search Dialog Box

in this language and when the user views a cluster, Harmony chooses the most suitable

document from the multilingual documents in this cluster.

One can query the Hyper-G database by using the search dialog box and the dialog
box presents the search results in an ordered list. A single click on an object in the list

opens the path in the collection hierarchy in order to show the position in the hierarchy.
Hence the user can decide whether the document is interesting or not, before actually
retrieving it (see Figure 3.5). For example a user who wants to use the command \grep"

would choose the document with the topic \grep" in the collection \Manual Pages" and
not in the collection \Hacker's Jargon". The documents can be retrieved and displayed

by double clicking on the item in the list. The history list is also active and the user can
view a document a second time by selecting it from the list.

Another important navigation aid is the local map which displays documents and hy-

perlinks (see Figure 3.6). The whole web of links and documents can not be displayed on a

single screen. And so the user determines a document and the session manager draws dy-

namically a desired number of levels of incoming and outcoming links. Documents which
refer to the selected document and documents which are referred to by this document can
be viewed by double clicking their icons in the graph. The user can also determine the

types of the links (reference, parent, child ...) drawn in the local map. The local map is

another advantage of bidirectional links.

When the users activates a document, the session manager starts the corresponding

25

Figure 3.6: The Local Map

viewer for the document. The viewer fetches the document from the Hyper-G server and
presents it to the user. Several native document viewers are available in Harmony (see
Figure 3.7) :

� text viewer (with inline images)

� image viewer

� �lm player

� 3D viewer

� audio player

� PostScript viewer

Each of these viewers provide links and one can easily create and delete links. In the
text viewer the source anchor of a link is an arbitrarily long highlighted text and in the

PostScript viewer links are rectangles in page coordinates. The viewers provide common

operations such as scrolling, searching, selecting, etc. One can change the display styles
of the various attributes (title, anchor, ...). The image viewer accepts several raster image

formats (GIF, JPEG, TIFF) and it has the usual facilities for zooming and panning. In
the image viewer, source anchors may be circles, ellipses, rectangles, or polygons. The

user can see the source anchor as a highlighted frame. Anchors in the �lm player are

similar to anchors in the image viewer but can move and change size during play track.
Source anchors in the audio player are a time period represented by a coloured region at

the scrollbar.
Hyper-G can also be used to store 3-dimensional objects and the native 3D viewer

VRweb can display these objects [24, 25] (see Figure 3.8). The user can interactively
y

26

Figure 3.7: Harmony Viewers

27

Figure 3.8: The 3D Viewer VRweb

28

around (or walk around) in order to explore the objects. There are a lot of possible appli-

cation for example a complex technical object or a building. Several di�erent navigation

techniques are available: object movements and viewpoint movements. In a 3D scene,

individual objects can be a source anchor of a link. The 3D viewer provides di�erent

methods for highlighting anchor objects. For example colour code (source anchors have

one colour, non-anchors another) or bounding cube (anchor objects are enclosed in their

bounding wireframe cube). One can follow a link to its destination document by double

clicking on an anchor object.

29

30

Chapter 4

Spatial Metaphors in Information

Systems

The amounts of data which a computer can process and store increase continuously and
so human is confronted with more and more information and data. The computer could
present these data and information in a very simple form for example lists or sequential
printed text and we would have many problems to manage the data or to �nd a partic-

ular part of information. But one can also use increasing computer power to build more
comfortable interfaces between computer and human being. Of course, 3-dimensional
representation of information needs a lot of computer power but it makes accessing, man-
aging and searching for information easier and one can concentrate upon the creative part
of one's work. These are some advantages of spatial metaphors and 3D presentations:

� The advantage of a complex network displayed in 3D space is a simplifying the
network structure by removing intersection links. A 3D presentation can reveal the
organization or structure of information or a database.

� One can increase the density of information displayed on a single screen by using
3D perspective and so 3D can be used to maximize e�ective use of screen space.

� User's existing knowledge and natural abilities can be used by using a 3D metaphor.
All people are very familiar with navigation in 3-dimensional space and with objects.
Users instinctively know what they have to do in a everyday spatial environments

and they can draw on existing world knowledge to act in the electronic domain.

� A 3D continuous animation can show complex processes and one can examine every

detail of 3D objects by changing the viewpoint.

In this chapter some projects using spatial metaphors are introduced and the chapter

provides an overview of the current research work. Several ideas and conceptions have
been incorporated into the Harmony Landscape.

4.1 SemNet

SemNet [11] was developed to present large and arbitrary knowledge bases as directed

graphs in a three-dimensional space. The elements of a knowledge base are represented as

31

labeled rectangles connected by arcs, which represent relationships between the elements.

The user can
y through the three-dimensional space and so can explore the knowledge

base. The position of the elements is very important because the user should recognize the

organization or structure of the knowledge base. One possibility is to map the properties

of an element to a position in three-dimensional space. Another possibility is to place

related knowledge elements close together and unrelated elements far apart. Therefore,

three techniques were explored: Multidimensional scaling, a centroid heuristic and an

annealing heuristic. A further possibility is that the user decides the position of an

element. In very large knowledge bases it is not possible to display all elements at the

same time. So a form of �sheye view is necessary. A �sheye view means that details are

apparent near the viewpoint and only more important context is displayed further away.

Using perspective a �sheye view is obtained automatically: A few objects near the focal

point, which are points of interest, are very large and those further away appear smaller

and smaller. Another possibility is to join elements of less interest (far away) to clusters.

The clusters are represented as large rectangles with a di�erent colour. For navigation the

user has to know where the current viewpoint is in a complex knowledge space. Therefore

SemNet provides overview maps that show the current position of the viewpoint in the
x-y and x-z planes. Several techniques for navigation have been explored: relative and
absolute movement, teleportation and hyperspace movement. Using teleportation the
user can select already visited knowledge element from a list and immediately move to
the location of the knowledge element. Hyperspace movement allows the user to follow
an arc to a related element.

4.2 Multimedia Information System with 3D Objects

L. Serra et al[27] developed a model for organizing and presenting multimedia information
especially suitable to provide information about 3D objects for example an engine or an
airplane. An object is a composition of elements and so an object represents a hierarchical

structure. For example an engine, a car body, a wheel are part of a car. A piston, a rod,

a base are part of an engine and so on. This structure or a 3-dimensional model of the
object respectively is the base of the information system. A concept node contains a 3D
model of an element, text nodes, image nodes and video nodes. The concept nodes are

connected by hierarchical links. Nodes and links build up a tree. The root node contains

the 3D model of the whole object and the user can move along the 3D hierarchy to get
more detailed information by selecting a part of the object. Association links generates a

network of arbitrary text, image and video nodes. Image and video media don't provide a
natural procedure of directly manipulating and interacting with their contents. Therefore

the existing 3D model is superimposed on the video sequence. The 3D model has to be

synchronized in time and space. Now the user can retrieve further information by clicking
on the object in the video sequence. The system provides also realistic animations for

training applications on mechanical structures. Joint relations are used to describe the
relative movement of the 3D objects. And so an animation can be made by using the

already existing 3D objects and de�ning joint relations.

32

4.3 File System Navigator

The File System Navigator (FSN or Fusion) [31] provides a 3-dimensional graphical rep-

resentation of the tree structure of a UNIX �le system. The tree with the directories and

�les is stored in a special �le which is updated during each session. The directories and

�les are displayed as blocks. The smaller �le-blocks are placed at their directory-blocks

which are laid out in an open landscape (see Figure 4.1). The size of the �les and direc-

tories is mapped to the height of the blocks. A icon at the top of the �le-block shows

the type of the �le and the colour symbolizes the age of the �le. Lines, which are drawn

on the plane connect directories with subdirectories. The user can
y over the landscape

using the mouse. One can also
y to stored places automatically. The user names this

places and stores them in the list. Clicking on a line to a subdirectory puts the user to

that subdirectory with a smooth animation. A block is highlighted by pointing at it with

the mouse cursor. Clicking on the �le-block selects that �le. The user can recognize a

selected block by a virtual spotlight. Double-clicking opens the �le. The user can also

open another window, which displays an overview map. The user's position in the main
window is shown as a red cross in the map.

4.4 Information Visualizer

Card et al at Xerox PARC[26] developed an information visualizer which is suitable for
large amounts of hierarchical and linear information. The information visualizer is not
only a simple information retrieval system because there are more requirements. The
user wants to work (think and act) with the information. Examples are design or decision
making. Therefore the time cost of information access must be reduced and the scale of

information that a user can handle at one time must be increased. The system provides
some methods to achieve these requirements. The heart of the architecture is a controlled
resource scheduler (Cognitive Coprocessor) which is responsible for immediate response
and continuous animation. For example if the system didn't answer to a search query in
about 10 seconds, then the user would get bored and a user can begin the next request

as soon as su�cient information has arrived. The system should react to an action (for

example a pressed key) of the user in about one second. A room system was implemented
because a computer display provides only a limited workspace. Every room is a working
space and the user can shift between the rooms. One can view an overview map which

shows all rooms at the same time. Card et al implemented also 3D representation of

information and animation to increase the density of information displayed on a single
screen or in a room and so 3D can be used to maximize e�ective use of screen space.

The cone tree presents hierarchical information structure. The information chunks which
are called nodes are displayed as a index card with a title in 3D space. This nodes build

up a tree. Each layer of nodes in the tree is drawn below the previous layer, with their

children in cones. The index cards of the nodes are placed on a cylinder at the button
of the cone, which can be rotated by selecting a node. The rotation is animated so

the user sees the transformation. The developers used the cone tree to display a UNIX
directory hierarchy, which contained about 600 directories and 10000 �les. A 2D tree of

this hierarchy could never displayed on a single screen. The perspective wall presents

33

Figure 4.1: The File System Navigator

34

linear information structure with spanning properties (for instance �les sorted by time).

The information is presented at a wall which uses the �sheye view. The wall slides the

item of interest to the center panel with a smooth animation where the item is displayed

with great detail. The perspective view makes the neighborhood of the \area of interest"

larger than more distant parts of the contextual view.

4.5 Navigational Aids in Hypertext

Smith and Wilson [29] examined the problem of navigation in hypertext and developed

four types of navigation aids. Hypertext systems are a kind of database in which related

documents are linked together. That means a lot of advantages over other databases, but

hypertext may also present a new set of problems. The major problem is the disorienta-

tion or becoming \lost in hyperspace". Another problem is for example to digress from

the main task because of interesting information on the way. Smith and Wilson inspected

di�erent types of navigation or orientation aids like indices, typographical cues or graph-
ical browsers. These aids are insu�cient for large hypertext systems. Therefore Smith
and Wilson described a hypertext system which can represent spatial and schematic forms
of the network in two or three dimension, using HyperCard1 and Virtus Walkthrough2 .

In a schematic network the position and distance of the nodes and links have no mean-
ing, however in spatial networks nodes with related content are close together. Smith
and Wilson chose for the test domain an academic department information system. A
conventional 2D browser with a schematic representation of the network and a spatial rep-
resentation in a form of a map of the department are available. The user's position in the

network is highlighted. A 3-dimensional schematic representation of the network removes
the intersection of the links and is very useful for large networks. The 3-dimensional
spatial representation is a 3D model of the department and the user can walk through
the rooms of the building. For example in the o�ces the user can �nd information about
the members of sta� and their research interests. In the laboratory are information about
the facilities and so on. Another possible application may be manufacturing shop-
oor

information system or a public building direction information.

4.6 Bead by Rank Xerox EuroPARC

Bead [9] is a prototype system for graphically-based information retrieval, where sets of

documents are stored and categorized in order to allow for search and retrieval. Docu-
ments are close in 3-dimensional space if they have roughly the same words occuring in the

'keywords', 'title' and abstract sections, and so spatial distance corresponds to thematic
similarity. In an earlier version of Bead this information was represented as 'point clouds'

in a 3-dimensional space, but users found it di�cult to get an overview of the entire set

of documents. It was also di�cult to orientate themselves and navigate within the space.
And so an open landscape was developed, where the documents are represented as objects

on a ground plane. The user has an overview of similarity and dissimilarity of the docu-

1HyperCard are trademarks of Apple Computer Inc.
2Virtus Walkthrough is a computer-aided visualization system (Virtus Corporation, N.Carolina, USA).

35

ments making up the corpus. Clumps of objects, gaps and a surrounding contour serve as

natural reference points (or landmarks) and are important in orientation and navigation.

Initially a user makes a search for a keyword and the matching documents change their

colour. The resulting patterns of colour show the distribution of matching documents

in the corpus of documents. Then maybe the user �nds other documents nearby, which

are more interesting, and he starts a search with a di�erent keyword. Initially known

documents may be dispersed among other unknown but potentially relevant ones.

4.7 LyberWorld

LyberWorld [18] is a 3-dimensional graphical user interface for an information retrieval

system. Matthias Hemmje used a database with 800 scienti�c publications. This system

is able to �nd automatically documents which are relevant for a particular term. A user

can start the search with a word and then he can examine the relevant documents and

start another search with a di�erent word and so on. A new user interface has been

developed for this searching process or search-path. Hemmje represents this search-path
as a hierarchical 3-dimensional tree called a cone tree. A document is speci�ed by several
terms which are the children of the document. A term has some documents as children

which are relevant for this term. The root of this tree can either be a familiar document
or a term (the start of the search) and then there are alternate term-levels and document-
levels. A document or term with its children is displayed as a cone. The user is allowed
to open or close subtrees as he likes and so he examines only the interesting part of the
document corpus. The titles of the documents and the terms are placed on an cylinder,

which can be rotated. The user can enter a room by zooming into a document-symbol
and the whole document is projected on a wall. And so he or she can decide whether the
document is relevant.

4.8 Information Island

Increasingly we are confronted with information in the electronic world of distributed

and networked computers. Therefore J. Waterworth and G. Singh [32] developed a user

interaction model to be able to navigate and orientate in this complex, electronic world-
at-large. In this model, the world-at-large is represented as a set of archipelagoes, each
is a collection of information island. An archipelago represents a major class of service

or application, for example information services, communications, medical and �nancial

services. Each island generally contains only one subclass of information. On an island
are buildings and in each building are a set of information sources or services related

to a particular theme. Examples might be Weather Building, Sports Building, Stocks
and Shares Building. In all buildings are common features which allows the user to get

an overview what is available in a building. Now the user can explore this world with

a vehicle, that provides a private and a public view. The public view or the \God's
Eye" view shows everything that is available. The private view contains only for the

user interesting objects. Both views can be displayed simultaneously in two windows
on the screen and so the user can easily select an object (for example an island or a

building) from the public view for his private view. It is also possible to store and revisit

36

without navigation a list of places. There are di�erent types of agents. The user can order

information about what is available and where it is located from an agent. The system

provides three kinds of navigation: moving around the world and in history, viewing

di�erent levels of the world. For example the user may want to see the whole world and

then examine an island of interest and so on.

4.9 Mapping from Spatial Cognition to Hypertext

The navigation in a hypertext is similar to �nd ones way within real world environments.

And so Shum [28] inspected the results of spatial cognition research and he simulated an

interface for hypertext using this results. The main problem in hypertext is to maintain

the orientation (not to get lost) and therefore the user has to acquire and develop a

cognitive map. A cognitive map means an orienting schema or a mental representation

and one develops it by browsing the information web and/or with a graphical map of

the network. There are four di�erent classes of information which embodies a cognitive
map. Locational information are distance and direction and attributional information are
descriptive and evaluative attributes. Descriptive attributes tell the user something about

the content of the node. With the evaluative attributes of a node one can decide whether a
visit is important for him or her or not. Inhabitants sketched maps of cities (which reveal
some of the content of cognitive maps) consist of landmarks, paths, nodes, districts and
boundaries. However, the last two terms are often underestimated in hypertext. If the
spatial environment becomes dynamic (for example di�erent views) it is very di�cult to

acquire a cognitive map. It is also important for developing a cognitive map that a node's
location carries information about the content. Shum developed a layered-space model
for certain tasks (no model is suitable for all applications) by considering the preceding
analysis. The 3D euclidian space is structured into layers and subspaces between layers.
Each layer contain a root node of a subnetwork which is dedicated to a particular subtopic

of the complete information space. The subnetwork is located on the layer or in the
associated subspace. These nodes are subspace nodes. One can click on a subspace node
and a new window shows another subnetwork of nodes. Thus there are three levels: layered
representations, subnetworks, and actual nodes. If a subnetwork in its own window has
links to other parts of the hypertext, the location of the remote nodes is represented by

a schematic icon. The property of a layer or a node can be mapped to its position, for

example the further to the right layers are, the more advanced the material becomes.

4.10 Web World

Web World [7] uses the metaphor of a landscape with houses and presents a part of the

WWW hypermedia web. Each user can have his or her own house and clicking on this

house activates the link to the user's WWW server. This town doesn't show the whole
current web because the set up of a house is voluntary. One can only move forward,

backward, left and right and one always looks from above on the landscape. And so

interactive movement for example changing the line of sight or the height is not possible.

37

Figure 4.2: GopherVR

4.11 GopherVR

Gopher is an Internet-based information system and provides a hierarchical structure
(menus) to access data which are stored on di�erent servers (see also Section 2.4.3). The

current interface has a lot of limitations (the menu-items are presented in a linear list)
and there are three usage problems: lost-in-space problem, the grouping problem and the
browsing problem. The users often feel lost after browsing for a while and they don't

know where they can �nd the desired information. The grouping problem means that

it is di�cult to show relationships between menu-items in a linear list and the browsing
problem occurs because the title of the menu-item reveals only little of the contents.

Hence McCahill and Erickson [20] developed a 3-dimensional interface which provides a
more comfortable and natural way to browse the hierarchical menu-structure. The items

of a menu are arranged circularly which means a number of advantages (see Figure 4.2).

For example, users generally have a head on view of the title on the fronts of several 3D
icons and if one is inside the circle then one always looks at something. A 3D 'kiosk' icon

at the center point represents the parent menu and provides a link back to the previous
menu. The result of a search query is presented in a spiral which provides a natural

38

ordering for the relevance of the items. A menu-item is represented by a 3D icon and the

basic form is an approximately rectangular box. The form and the colour shows the type

of the object (sub-menu, document, interactive session and so on). The title of the item

and a proxy is displayed on the icon and the proxy re
exes something of the contents.

Overview maps should give an overview of a menu and an overview of the local region of

Gopherspace.

The program provides several navigation modes and it supports special movements

like circular motion. Of course the new client is backward compatible and can access

the data of any Gopher server. Newer servers provide additional information about the

menu-items.

39

40

Chapter 5

The Harmony Information

Landscape

The Harmony Information Landscape is one of several navigation aid in the Harmony

client for Hyper-G and it is used to maintain orientation in the large information universe.
It supports a user interface which is very comfortable and easy to handle.

The Landscape is part of the collection browser and provides another view of the
current collection tree but it does not portray links. The spatial metaphor used in the
Landscape is an open landscape where objects (collections, clusters and documents) are

spread out. User's existing knowledge and natural abilities can be used by using such a
3D metaphor. One can interactively
y over the landscape, open and close collections
and view clusters and documents.

5.1 Layout

We live in a world of three physical dimensions and we are used to move in this world and
to perceive individual objects. But the horizontal extent appears larger then the vertical
because we are on the surface of the earth. Chalmers [9] calls our world '2.1-dimensional'.
And so we are very familiar with an open landscape wherein di�erent objects are placed.

The third dimension 'height' can be used to encode an attribute of the object. Some
projects already used this metaphor like Bead [9] or the File System Navigator [31].

The Harmony Information Landscape (Figure 5.1) presents the collection hierarchy
of Hyper-G in an open landscape. There are no boundaries in this landscape and the

collection tree can be arbitrarily large (practical depending on the computer power). It

can spread out over an unlimited area. A horizon and a sky give the realistic impression
that the collection tree is placed on the surface of the earth. The sky is either blue or
sunset glow (continuous from blue to red) with some stars. The colour of the sky is

adjustable by X attributes. The sunset glow on the horizon has the appearance of a

landscape in the evening. The collection hierarchy itself is an acyclic directed graph (not
a tree) because a document or collection can have more than one parent collection. But

the hierarchy which is shown in the landscape is really a tree. A document or a collection

with two (or more) parent collections is displayed two (or more) times. Each parent
collection has its own child and the same object can be found more than once in the tree.

41

Figure 5.1: The Harmony Information Landscape

A document is represented by a block. The size (n bytes) of the document is mapped to
the height of the block. The size of a typical text document is very much smaller than

the size of a long MPEG movie. Hence a logarithmical function is used to calculate the
height of a document block.

A document is always part of a collection or a cluster which is also displayed as a square
block. This block is larger than the document block but it is less high like a socle. The
document blocks are placed on their parent collection or parent cluster. And so the user
can easily comprehend the contents of a collection. The subcollections (the collections

in a collection) are symmetrically located behind the parent collection one level further.
They are connected by edges to the parent collection. The subcollections carry their own
document blocks. The collection socles with their documents on the top are spread out
in the landscape. The type of an object (collection, text, image etc.) is mapped to a

colour which is adjustable per X attribute. For example, the user can determine that

a movie document should be red and a Postscript document blue and so on. Now the
users can know the type of the document but they aren't informed about the contents.

Therefore each block is inscribed with a title. The title can be very long and for that
reason it extends over two lines. If the space is too small for the whole title ellipses (...)

are appended to indicate that the title has been truncated.

Texturing means that an arbitrary 2D bitmap is mapped onto a surface in 3D space

for example on the plane, the horizon or on the surfaces of an object and it can be used

to enhance visual realism of a 3-dimensional world. At present the user can determine
four di�erent textures per X attributes for the plane, the background, collections and

clusters. A marble texture is used for collections (per default) so that a collection has

the appearance of a marble socle (see Figure 5.2). The pattern of a stone bottom which

42

Figure 5.2: Textured Landscape

43

Figure 5.3: Lines and Letters without (left) and with (right) Line Antialiasing

is used for the plane has another advantage: The movement of objects in the landscape
indicates that one is moving. One doesn't become aware of a movement when there are
no objects. In the landscape with a pattern on the plane one always becomes aware of a
movement and the moving stone bottom makes the impression that one is
ying.

Line antialiasing is a method that makes lines drawn on a discrete device (the display
screen with discrete pixels) appear smooth and it is used in the Landscape to improve the
readability of the lettering. Figure 5.3 shows letters and an enlargement of lines with and
without line antialiasing. Line antialiasing and texturing can only be used with powerful

graphic computers.

5.2 Hit, Select and Activate

The user can touch each object (even the edges) in the landscape by moving the cursor

over the object. When the user touches an object, it is highlighted which means that the

edges of the block and the edge to the parent collection is drawn in a particular colour.
The status-line shows the title of the highlighted object.

When the cursor is not over an object, no object is highlighted and the status-line

shows the title of the current or selected object. The edges of a current block are drawn
in a distinct colour and are dotted lines. The user can select an object by clicking the

left mouse button on the object and this object remains the current object until the user

selects a new object. The Landscape and the collection browser are coupled and so the

44

current objects in the Landscape and in the collection browser are always the same (see

Section 5.7).

Single-clicking selects an object and double-clicking activates an object. When the

user activates a document, the Landscape starts the corresponding viewer which presents

the document. Activating a cluster shows all documents which belongs to the cluster and

so a cluster is a kind of multimedia document. Double-clicking on a closed collection (no

subcollections are visible) opens the collection and shows all subcollections at the next

level. When the user double-clicks on an open collection, all subcollections are removed

recursively (the whole sub-tree). For example after closing the root collection only one

block (the root) is visible in the landscape.

If one opens or closes a collection, the layout of the tree will be changed. The positions

of the collections and clusters have to been calculated newly and the positions can di�er

from the old positions. The Landscape presents a new tree. That can mean that a

collection or a cluster abruptly disappears in the window and then the user may be

confused. Therefore the Landscape doesn't change the position of the current (open or

closed) collection or cluster1, because the users focus their attention just on this object.
Other objects may change their position but the users can see always the current object
at the same position after calculating a new tree.

Another solution would be to present the whole tree with all collections, clusters and
documents, for which the Landscape has to read the whole collection hierarchy from the
server, store the data local and update the data regularly. But there are several problems

with large amount of data for example speed problem depending on the computer power
(see also Section 6.5). And so in this version the users can open and close subtrees as they
likes. When the users search for a particular document they successively open collections
with analogous topics until the desired document is found.

5.3 Overview Map

The Landscape provides an overview map which presents a general view of the current
collection tree from above (see Figure 5.4). When the user selects the menu item overview
map, the Landscape opens a new window with the map. The window can be placed as
the user likes and it shows all collections and clusters but no documents and lettering.

When the user hits an object with the mouse cursor, the status line shows the title of

the object and the user can also open and close collections in the overview window. The

user's position in the main window is represented as a red cross in the overview map. The
larger the tree, the smaller the tree is shown in the window with unchanged dimensions.

If the tree becomes too large, only the area surrounding the user's position is shown in the
overview window and not the whole tree. In that case a movement in the main window

shifts the presented area in the overview window.

Comparable to a road map the users can use the overview map to �nd their position

in the information tree and to �nd out the direction for reaching a new goal. The user

can also perceive the shape and extension of the current collection tree and the overview

window provides another kind of navigation (see Section 5.4.3).

1Actually the viewpoint is changed.

45

Figure 5.4: Overview Map

5.4 Navigation

The information tree is located on the surface of a 3-dimensional world and the user's
desire is to change his or her position in order to explore this world. One distinguishes
between two basic methods: moving the objects or moving one's viewpoint[24]. The �rst

method is most used to examine a single object for example a complex technical engine.
Moving the viewpoint and changing the orientation is equivalent to the movement in the
real world and is used in the Landscape. Users feel as if they are
ying through a vir-
tual world. The Landscape provides di�erent types of viewpoint movements: General

movement can be used for exploring the information tree. Targeted movement is used for

moving to a particular place or object for example an object with a particular content

(searching), or object which has already been visited (history), or an object which the
user can see.

The use of the input devices should be easy and easy to learn and the user should be

able to work with the program without speci�c knowledge and training. Natural abilities

and knowledge should be used. The 3D input devices (data glove and data helmet) ful�ll
these requirements. For example everybody instinctively know that one has to turn one's
head to change the line of sight. The data helmet can track the orientation of the head

and change the orientation of the viewpoint. But these input devices are not widely in

use at present. A mouse is used with almost every computer and most users know how to
use a mouse. Hence, the Landscape uses the mouse and the keyboard as input devices.

But the mouse is only a 2-dimensional input device and therefore a 2-dimensional mouse

movement has to be mapped to a 3-dimensional movement. The result of a mouse move-
ment can be changed by using the mouse button or the keyboard and so 3D movement is

46

possible.

In the real world we can change our position (three dimensions) and orientation (three

dimensions). In the Landscape users always look straight ahead and can not turn around.

One can only move forward, backwards, left, right, up and down and can change the view

direction between horizontal and vertical (angular of 90 degrees) which means several

advantages and maybe some disadvantages:

� One has to learn and know less movement commands and so a novice is not so

confused. Using a program with complete freedom of movement, untrained handling

can cause an adverse viewpoint and orientation for example upside-down or looking

in the sky. Then the user may not �nd back to a normal position. That can not

happen to a user of the Landscape. Complete freedom is not necessary, because the

user is only interested in a particular area (the collection tree) and not for example

in the sky in contrast to Harmonys 3D viewer VRweb which supports complete

freedom of movement.

� Another advantage is that the objects behind the viewpoint can be determined
without complicated calculations. These objects must not be taken into account for
picking and drawing. Objects further away can also be determined very easily and
drawn with less detail.

� Most importantly one doesn't need the z-bu�er. (see also Section 5.8).

A possible disadvantage is that one can not move as one likes for example turn around and
look back and the direction of moment is not always the current view direction. When
users move backwards, they can not look in the direction of
ight.

The Landscape provides four navigation modes:

5.4.1 Fly

Fly is the �rst and only general movement in the Landscape and the navigation mode is
called
y, because one can walk not only on the ground plane but also one can
y up in
the sky comparable to a helicopter (The great advantage of a virtual world is that one can

do thing without cost, money or speci�c knowledge). Using the mouse and the buttons

two parameter are controlled :

� direction of
ight

� speed

The direction of
ight is not always the view direction. In the real world we normally

move in our view direction but in the landscape the user always looks straight ahead and

a movement command always causes the same movement direction independent of the
view direction. For example the command 'forward' moves the user forward although he

is looking down. Therefore a novice might be not so confused.

47

All kinds of motion are achieved by dragging the mouse while pressing a button. When

a mouse button is pressed, the Landscape draws a cross at the position of the mouse cur-

sor. This cross indicates the reference point. Now the relative position of the cursor to the

reference point (the cross) determines the direction of
ight and the speed. The speed is

proportional to the distance between the reference point and the cursor and the direction

from reference point to the cursor determines the direction of
ight. Table 5.1 shows the

mouse button assignment.

The left mouse button and middle mouse button change the position of the user (view-

mouse button mouse movement resulting movement

left up / down
ying forward / backward

left left / right
ying left / right

middle up / down
ying up / down

middle left / right
ying left / right

right up / down tilt the head up / down

Table 5.1: Viewpoint Movement

point) and the right mouse button only changes the view direction and not the position.

The user can immediately stop the movement by releasing the button.
When the user looses the orientation, he or she can choose the menu item reset to

come back to the root collection.

5.4.2 Point of Interest Movement

The point of interest (POI) movement or
y-to movement is a target movement. The user
can choose any visible target (point) in the landscape and can move towards this point of

interest. The POI movement uses a logarithmic function in order to calculate the speed.
The current distance between the viewpoint and the POI determines the speed. This
means that the movement is fast towards the POI and slow near the POI. For example,
imagine the user wants to read the title of an object, which is very far away. Using POI
movement at the beginning the user covers a large distance very fast. The target object

appears to grow at a constant rate during approaching the viewpoint. The movement is

slow near the object and the user can easily �nd the desired position in order to read the
title. It is impossible to
y through or into the object.

The user can choose the desired point or object with the mouse cursor. He or she starts

the POI movement by pressing the middle (right) mouse button and the CTRL button.

The Landscape draws a crosshair symbol at the position of the POI. The viewpoint moves
towards the POI by pressing the middle mouse button and away from the POI by pressing

the right mouse button. One can stop the movement by releasing a button.

5.4.3 Navigation using the Overview Map

The overview map presents a general view of the current collection tree and it provides

another kind of navigation (targeted movement). One can select any place in the overview

48

window by moving the mouse cursor to the desired place and pressing the left mouse

button. Then the viewpoint in the main window moves towards this place and the cross

in the overview map, which indicates the viewpoint position in the main window moves

towards the mouse cursor. The line of sight doesn't change. When the user arrives at

the desired place, movement stops. One can also move the mouse cursor while the mouse

button is pressed. The cross always follows the cursor. So the user can move to any

precise position in the landscape.

5.4.4 Animation

Sometimes the user wants to know the position of a particular object in the collection

hierarchy or to move to a particular object. The Landscape solves this problem by putting

the user to the desired object with a smooth animation. Card et al[26] emphasize the

importance of smooth interactive animation: \ ... because it can shift a user's task

from cognitive to perceptual activity, freeing cognitive processing capacity for application

tasks." If the Landscape immediately put the user to another position without animation,
the display would jump from a con�guration to another. The user would not know the
direction he or she has moved and would have to spend time (and maybe cognitive e�ort)

reassimilate the new view and �nding out his or her new position in the tree. Using the
animation one can see how one's position is changing.

One can select an object and the Landscape leads the user from the current position to
the desired object. There are some possibilities to select an object and to start a smooth
movement towards this object :

� Single-clicking the left mouse button on an item in the history list or in the search
result list (see more in Section 5.4.5).

� Double-clicking the left mouse button on an object (which also activates it).

� Double-clicking the left mouse button on a line on the plane selects the collection
or cluster, which is at the end of the line (but doesn't activate it).

� Double-clicking the middle mouse button on an object selects it's parent collection
(but doesn't activate it).

The last two points are very useful for moving along the collection tree. One can move
forward by selecting the desired subcollections and one can move backward to the parent

collection (up to the root) by using the middle mouse button. The Landscape also whisks

the user to the current object by pressing the space button on the keyboard.
The
y animation can be immediately stopped by pressing the left or the middle mouse

button. Pressing the left mouse button leaves the user at the current position, pressing
the middle mouse button puts the user (without animation) to the desired object at

once and so the user has not always to wait for �nishing the animation. There are two

possibilities for the view direction and the height of the viewpoint during the animation.
One can change the height and view direction, so that, upon arrival, the user has a good

view of the object and can read the title. But maybe the user doesn't want to change
the height or the view direction, he or she just wants to move to the object. So the user

must always rechange his or her height and view direction, which can be very tiresome.

49

The alternative is that the height and the view direction is not changed and maybe the

title is not readable. The Landscape changes the height and view direction when the user

deliberately wants to move to a particular object (the last two items in the list above) and

it doesn't change the height and view direction when the user opens or closes a collection

or clicks on an item in the history or in the search result list.

5.4.5 Searching and History List

The collection browser provides search facility, backtracking and history list as navigation

aids which are very important for the users to �nd their way in the information net of

links and nodes. These navigation aids can also be used to move in the Landscape and

are additional navigation modes. Each activated object (document, cluster or collection)

and each search is stored in the history list. One can view this list by selecting the menu

item or pressing the button 'history list' in the window. The list shows the titles of the

objects and an icon which symbolizes the type of the object. One can select an item in the

list by pressing the left mouse button. In the Landscape this object becomes the current
object and the user
ies to this object with a smooth animation. So the history list is a
kind of memory for already visited places.

The result of a search (the matching documents or collections) are presented in a list.
This list is similar to the history list and one can also select a item by a single-click. In
case the selected object should be not part of the current collection tree, the Landscape
inserts the object and all parent collections recursively. When the selected object or any
parent collection has more than one parent collection the program accidentally chooses

one parent collection and inserts it in the collection tree. The Landscape puts the user to
the selected object with an animation.

5.5 User Interface

At the top of the Landscape window there is a menu bar with pull-down menus and

a row of buttons (see Figure 5.5). At the bottom of the window there is a status line
(with a progress indicator) and a button which is used to close the window. When a
collection is opened, the progress indicator shows the expected time the user has to wait

until all children are retrieved. The menu is very similar to the menu of the collection
browser but some menu entries only concern the Landscape. Most of the commands can
also be executed by pressing a particular button. The following commands and dialogs

which concern the landscape are activated with pull-down menus: reset the view, colour

chooser, font chooser, scale dialog, switching on/o� texturing and line antialiasing and
save the current collection tree in a �le using the VRML format (at the moment without

lettering). VRML is platform-independent markup language (Virtual Reality Modeling
Language) [23, 4]. The standalone version of the Harmony 3D viewer [25] can read this

�le and one can explore the collection tree with the 3D viewer. But it is not possible to

open or close a collection or to view a document.

5.5.1 Font Chooser

Figure 5.6 shows the Font Chooser of the Landscape. One can choose a font by clicking

50

Figure 5.5: Pull-Down Menu

Figure 5.6: The Font Chooser

51

Figure 5.7: The Colour Chooser

on the font name in the list and double-clicking displays the font in the window.

5.5.2 Colour Chooser

The colours of the Landscape can be changed by using the Colour Chooser (Figure 5.7).

One chooses the desired object in the list and the desired colour. Clicking on the Apply

button causes the new colours to be applied in the main Landscape window. Clicking on

the Ok button commits the current colour settings, clicking on the cancel button exits

the colour chooser without changing any colours.

5.5.3 Scale Dialog

The height of the document blocks, the size of the document titles (small) and the col-

lections and clusters titles (big) can be modi�ed with the scale dialog (Figure 5.8). The
user can also scale the speed of all movements (
ying, point of interest movement or

animation) by using the fourth scrollbar.

52

Figure 5.8: The Scale Dialog

5.6 Lettering

The block in the Landscape represents a document (collection or cluster) and the at-

tributes and properties of the object are used to inform the user about the contents of
the document. The height of the block corresponds to the size of the document and the
colour to the type. But the size and the type of a document is not enough information.
The user needs more information about the contents otherwise the collection tree is not
useful. Hence a title is necessary, which is a very short description of the contents. In the

Landscape the title is displayed in front of the object and so the user can have an idea of
the contents.

For e�ciency, vector fonts are used rather than raster fonts. The basic command for
drawing a title is the \line command" (to draw a line from a starting point to a �nal

point). The number of lines per character and the starting and �nal points of the lines
are stored in a �le and are loaded after starting the program. At the beginning of my
thesis work I created a very simple font (Figure 5.9) with few lines per character and I
developed a �le format in order to store the data of the characters. The german special
characters and two icons are also part of this font (the Eyl Simple Font). The icons are

drawn at the top of a document in order to show the user the type of the document (text

or image). I used a drawing program to draw the icons and stored them in the CGM �le
format. A program converted the CGM �le format to this �le format. Later we found
out about the Hershey fonts (see also appendix C). They were taken over and modi�ed a

little. The Eyl Simple Font have been converted to the new Hershey �le format and now

several di�erent fonts can be chosen by using the Font Chooser (see also Section 5.5.1).

The Eyl Simple Font has an advantage over the other fonts. It is a very simple font and

hence the drawing of the titles takes less time and the drawing cost can be reduced. It
also supports german special characters.

The list with the font names in the font chooser is stored in an information �le. The
data of all fonts are stored in a single main �le. In addition to the two �les there are �les

for each font storing the information where the font data in the main �le can be found.

The names of these font �les are also stored beside the font names in the information �le.

53

Figure 5.9: The Eyl Simple Font

One can add an additional font or can delete a font by editing the information �le. The
names of the information �le and the main data �le can be changed by changing the X
attributes.

The writing should be readable independent of the view position or the view direction.
When an object is far away the lettering is drawn with a small line width and when
the object is near it is drawn with thicker line width. The line of sight always strikes
perpendicular to the letters and so the user always looks at the writing optimal. When

the user change the view direction (between vertical and horizontal) the writing is also
rotated (between horizontal and vertical). A proportional writing is used in order to
display the title as long as possible and to use the existing space optimal.

5.7 Coupling with Collection Browser

The Landscape is part of the collection browser which displays the collection tree in a
2-dimensional list. The title and an icon symbolizing the type of the object are placed one
beneath the other and are connected by lines to show the hierarchy. One can open and

close the collections by double-clicking. When the user opens the Landscape by pressing

the button \Landscape" in the window the same current collection tree is displayed in

the Landscape. And so the Landscape is only another or additional way to view the tree.

Users can decide which presentation they prefer. Depending on the task, intention of the
user, or the size of the collection tree the collection browser or the Landscape is more

suitable. A collection which contains a large number of documents can be represented
more clearly in the landsape than in the collection browser. For example, Figure 5.10

shows a collection with a J.UCS paper and more than 900 inline images are part of this

paper.
The collection browser and the Landscape are coupled (see Figure 5.11). When a

collection is opened (closed) in the collection browser, the same collection is automatically

54

Figure 5.10: Landscape and Collection Browser with a large Collection

55

Figure 5.11: Coupling Collection Browser and Landscape

56

opened (closed) in the Landscape and conversely. So the trees always have the same

contents and extension and also the current objects in the Landscape and in the collection

browser are always the same.

5.8 Methods for Reducing the Cost of Drawing

The impression of movement is achieved by changing the position of the viewpoint and

calculating and drawing the scene with the new viewpoint. Drawing is done in real-time

and at least 20 frames per second are necessary for a smooth animation. When the

number of objects in the scene increases, the time, which the computer needs to draw a

scene, increases and the frames per second decreases. The collection tree can grow and

grow during a session and so the Landscape has to present more and more blocks and

characters. Therefore it is important to keep the cost of drawing as low as possible:

� One can easily determine the objects (blocks with lettering), which are behind the
user and are not visible. These objects must not be taken into account for drawing.

� The Landscape calculates a perspective view. A few nearby objects appear large
and those further away appear smaller and smaller. The title of a very small object
is not readable and it is not necessary to draw this title. When a user
ies towards
an object and approaches within a certain distance the Landscape blends in the
lettering. Unnecessary drawing is avoided.

� The size of a document is mapped to the height of a block. But it takes more time
to draw a block than to draw a square (a block with the height equal to zero) on
the plane. So all collections, clusters and documents which are within a certain
distance from the viewpoint are represented by a block, objects further away are
only represented by a square on the plane or on the collection (cluster). The distance

depends on the height of the block that means that a very large document (very
hight block) within a large distance and a small document within a small distance
is displayed as block.

� When an object is highlighted (see Section 5.2) the Landscape has to draw the whole

scene with this object newly. But using overlay bitplane the highlighted object can

be drawn into this bitplane. The overlay bitplane is put on the top of the standard
bitplane with the collection tree. And so objects can be highlighted fast without

redrawing the collection tree. The cross in the overview map which represents the
current position of the user in the main window can also be drawn in the overlay

bitplane. When the user moves in the main window, the Landscape clears the

overlay bitplane and draws the cross at the new position. The standard bitplane
with the collection tree only has to be redrawn if the collection tree is changed.
Hence the collection tree in the overview map must not be redrawn when the user

moves in the main window.

The GL (Silicon Graphics' native graphics library) supports overlay plane but

OpenGL not and so a solution for OpenGL is necessary and has to be implemented.

57

� An object nearby the viewpoint should appear in front of an object, which is far

away, independent of the succession of drawing and hidden surfaces should be elim-

inated. The z-bu�er undertakes this task. High-performance graphics workstations

have z-bu�ers in hardware and are very fast. In a computer without this hardware

the software has to accomplish this task. When the Landscape runs on a computer

without the hardware it disclaims the z-bu�er (hence drawing is much faster). For

that reason the Landscape has to draw the objects and the lettering in a �xed or-

der. The succession of drawing is clear because the staring view direction is always

straight ahead (see also Section 5.4). The following succession has been considered:

1. From the horizon to the viewpoint

2. From left side to the viewpoint, then from the right side to the viewpoint at

each level

3. When the viewpoint is higher than the collection or the cluster, �rst the docu-

ment blocks and then the parent collection or cluster. When the collection or

the cluster is higher than the viewpoint, �rst the parent collection or cluster
and then the document blocks.

4. First the block and then any lettering

This issue is becoming less and less important, because the prices for powerful graphic
hardware are falling.

58

Chapter 6

Implementation

In this chapter I am going to introduce you to the classes (the program is written in

C++) which comprise the Landscape. The parent classes of these classes are explained

too. Certain selected details of the implementation, like picking an object or calculating
the tree layout, are also described more fully. At the end of the chapter there is a section

about possible extensions to the Landscape.

6.1 About the Implementation

The Landscape is part of the Session Manager and is not an independent process or

program. The names of the source �les end with \3d" for example \overview3d.C" and
\overview3d.h" and so one can distinguish between the source �les of the Landscape and
the �les of the Session Manager. The Landscape was implemented using C++ [30] under
the UNIX operation system with the X11 window system.

The user interface was implemented by using the InterViews toolkit [17]. InterViews
provides classes for menus, buttons, scroll bars, labels, input handlers and so on. These
elements can be combined to build a user interface. In the course of time, the Harmony
team has developed innerous InterViews widgets for example a �le chooser or a colour
chooser. Some of these dialog boxes were utilized in the Landscape. InterViews also sup-

ports X attributes which are used to de�ne style values (for example a font or window size)
and di�erent variables outside the program in a con�guration �le (see also Appendix B).

Users can change the con�guration �le to specify their preferences. Using InterViews and

the widgets a consistent look and feel for all Hyper-G applications is possible.

The device-independent GE3D graphics library is used for 3-dimensional graphical

output. This library is an interface between the application program (the Landscape)
and any graphic library which is available on the platform. One can port the Landscape
to another platform (graphic library) without changing the source of the Landscape. Only

the GE3D library has to be adapted. At present the GE3D library is available for

� GL - Silicon Graphics' original native graphics library

� OpenGL - standardized 3D graphics interface which evolved out of GL and is now

endorsed by numerous companies and institutions

59

OpenGL becomes more and more the standard for 3D graphics and is already o�ered by

many vendors. The Landscape runs on following platforms:

� Silicon Graphic UNIX workstations with GL or OpenGL

� UNIX workstation with X11 window system which supports OpenGL

� any UNIX workstation with X11 window system using the Mesa library

The Mesa library uses only standard X11 functions and the program needs no special

hardware for graphic output. Of course only relatively simple scenes can be drawn su�-

ciently fast and interactive movement is only possible when the collection tree is small.

The GEContext is the link between InterViews and the 3D graphic output. It is

responsible for opening, placing and resizing the window for graphic output within the

application window. GEContext must be adapted for di�erent window systems.

6.2 The Main Class - View3D

The main class of the Landscape is the class View3D which is derived from the class
Graph. The class Graph was originally implemented for the collection browser and is
responsible for storing a graph, calculating a layout, presenting the graph to the user and

so on. For example this class is used for showing the 2-dimensional collection tree. The
class View3D inherits this capabilities and provides additional functions for 3-dimensional
presentation. Some functions of the class Graph are overloaded for example the function
'draw' which is responsible for drawing the collection tree. The class Graph undertakes
a lot of work and so I am going to introduce you to the parts of the class which are

important for the class View3D. The class Graph accomplishes two basic tasks:

� caching the collection hierarchy from the Hyper-G server

� managing the collection hierarchy data

The collection hierarchy (collection tree) is stored in two lists:

� node-list

� edge-list

There are also index lists which are used to �nd a particular edge or node. Nodes and
edges are classes. A node can be a collection, a cluster or a document (text, image, movie,
...) and the nodes are numbered consecutively. The edges link the parent node (collection
or cluster) to the child node (subcollection, cluster or document). They are stored in the
edge-list and are also numbered consecutively. An edge contains two node numbers, the
node number where the edge starts and the node number where the edge �nishes (see
Figure 6.1). The edge-index-list is used to �nd a particular edge without searching the
whole list. When one wants to know the edge-numbers from (or to) a particular node one
can use the edgeindexfrom-list (or edgeindexto-list). For example one wants to know the
�rst edge, which goes out from the node with the number two. The edge-number can be
found at the second position in the edgeindexfrom-list. This edge-number is for example
four. At the fourth position in the edge-list is the desired edge. More edges which also

60

5 6

2 3 4

1

EdgelistNodelist Edgeindex−
from

Edgeindex−
to

1
x,y

2
x,y

3
x,y

4

5

6

x,y

x,y

x,y

1 −> 2

1 −> 3

1 −> 4

2 −> 6

1

4

−1

1

2

3

4

5

1

2

3

1

2

3

4

5

6

1

2

3

4

5

1

from

to

from

to

from to

2 −> 5
4

5

6

−1

−1

−1

Figure 6.1: Node-list, Edge-list and Index-lists

go out from the node two are at the next positions in the edge-list, because this list is
sorted by the node-numbers where the edge starts. Several functions provide access to
these lists and are used in the class View3D. There are some function for caching nodes
from the Hyper-G server for example 'takeAndInsertChildren' or 'insertNodeWithPath'.
These functions are overloaded by the class View3D, because the metadata of the docu-
ments which are placed upon the collections must also be retrieved. Opening a collection
caches all children. If the child is a collection or cluster it's children are also retrieved.
The documents are placed upon the parent collection or cluster and the subcollections or
clusters of the children are not displayed and remain invisible.

The class View3D is responsible for the 3-dimensional graphic output. This is a ex-
cerpt of the interface of the class View3D:

class View3D: public Graph

{

public:

View3D (Sessionmanager* s,IvNode* root);

~View3D();

// request the desired geometry :

virtual void request (Requisition&) const;

virtual void allocate (Canvas*, const Allocation&, Extension&);

// draw the collection tree :

virtual void draw (Canvas* c,const Allocation& a) const;

// catches the children of a node from the Hyper-G server :

61

virtual int takeAndInsertChildren(IvNode*);

virtual void insertNodeWithPath(IvNode* & ,IvNode* parent=0);

// calculates the layout of the collection tree :

virtual void layout();

// determines the existing space for the lettering :

void calcSpaceLetter(IvNode*,int);

// determines the picked object :

void pickObject(float,float);

// starts an animation towards a node :

void flyTo(

IvNode*, // the target node

// change view-direction and the height of the viewpoint or not :

int nochange_z_alpha = 0);

void flyToPoint(point3D p); // point of interest movement

void makeOverview(); // create the overview window

virtual void handleKey(const Event& e); // handles key-events

// saves the current collection tree in a VRML file format :

void saveAsVRML();

private:

// InputHandler :

virtual void keystroke(const Event&); // pressed key

virtual void move(const Event&); // mouse movement

virtual void press (const Event&); // pressed mouse button

// double-c. mouse button :

virtual void double_click(const Event&);

// mouse movement and button pressed :

virtual void drag (const Event& e);

// released mouse button :

virtual void release (const Event&);

Camera cam_; // camera of the Landscape

Overview* ov_; // overview window

};

The class View3D accomplishes following basic tasks:

� View3D calculates the tree layout and determines the position of the nodes. It also

calculates the space between left and right neighbours for the lettering.

� The class stores the current viewpoint and line of sight in the class Camera and
draws the horizon and the sky. It also calls the 'draw' function of the nodes and

draws the edges between the collections or clusters on the plane.

� It determines the object which is beneath the mouse cursor.

� The class View3D is derived from the class Inputhandler which is responsible for

events (for example a mouse movement or a pressed key). The Inputhandler becomes

62

aware of an event and calls the appropriate member function of the class View3D.

In this function the Landscape can react on the event. So the user can open or close

collections, view a document, select an object or
y over the landscape.

� It provides di�erent navigation modes.

6.2.1 Tree Layout

Some layout algorithms are implemented in class Graph. However, these algorithms are

not satisfactory because they are too slow or the layout is unsuitable. So I developed

a very simple algorithm for a symmetrical tree layout. The algorithm uses a recursive

function with a node as parameter. The function is called with the root node. In the

function the same function is called with the children as parameter and then the parent

node is placed. For example a tree has three levels (root-children-grandchildren). The

algorithm starts with the grandchildren and places them side by side. The children are

placed symmetrically above them. When two children overlaps one child has to be moved

with its children (grandchildren). Finally the root node is placed symmetrically above

the children.

6.2.2 Picking 3D Objects

When the user clicks on a point on the window the program has to determine which

object in the landscape was hit (see Figure 6.2). The program needs this picking function
for highlighting, selecting and activating an object (open or close a collection, view a
document or a cluster). Picking is also necessary for point of interest movement. The
input of the picking algorithms are the x-y window coordinates of the hit point and the
current camera settings (the current perspective projection). Several steps are necessary
to determine the hit object or hit point in world coordinates [24]:

1. Calculating the ray
Rays are described by the formula A+ t�b, where t is >=0, A is the start point and

b the direction of the ray. In the picking algorithms A is the viewpoint and b is the

direction from the viewpoint to the hit point in world coordinates or the direction
from the viewpoint to a point on the view-plane which correspond to the hit point
on the window in normalized window coordinates. t must be greater than or equal

the distance of the near clipping plane.

2. Searching for objects which the ray hits
All objects in the landscape are cubes and so a fast algorithms can be used for

testing. More complicated algorithms have to be used for an object with arbitrary
faces. The ray can hit several objects but the object which is nearest the viewpoint

or with the minimum value of t is the right one.

3. Calculating the hit point
The hit point is given by A+ thit� b and is used for the point of interest movement

or for picking the edges. If the ray hits no object the point where the ray intersects

the plane is calculated. Each edge is tested with this point.

63

0.8

0.75

x

y

z

hit

point

viewpoint

viewplane

Figure 6.2: Picking an Object

64

6.2.3 Movement

Movement is achieved by changing the position of the camera and the line of sight can be

changed by changing the lookat point. The position of the camera and the lookat point

are stored in the class Camera. The speed of movement is equal k � x. x is the distance

the mouse was dragged as fraction of the window size and k is a factor which the user

can change (see therefore section 5.5.3).

The speed of the movement towards the point of interest (POI) is proportional to the

current distance from it and so the distance from the POI decreases (or increases) with

a logarithmic function. The approach to the point is fast at the beginning but a collision

never happens. The motion is stopped at the near clipping plane (otherwise the POI

would disappear).

6.3 Node

Nodes and edges build up the collection tree and there are a lot of di�erent types of
nodes : collection, gophercollection, cluster and document nodes. A document node can

be a text, image, movie, scene (3D), postscript, generic, sound, telnet, ftp, gophertext,
gopherimage, gophersearch, gophermovie, gophersound, gophertelnet, wwwtext, wwwim-
age, wwwmovie, wwwscene, wwwsound, wwwpostscript or a wais node. Each type of a
node is represented by a class which is derived from the class Node3D. Node3D is derived
from the class IvNode which is again derived from the class Node. Node and IvNode were

originally implemented for the Session Manager.
The class Node is the basic class and it stores the position of the node (x,y) and the

title. It also stores information about the position in the database. The class IvNode
provides capabilities for displaying the 2-dimensional node in an InterViews window. The
class Node3D provides additional functions for 3-dimensional presentation. The follow-
ing short excerpt of the class de�nition shows a part of the public interface of the class
Node3D:

class Node3D : public IvNode

{

public:

Node3D(const char* name,long id,Graph* =nil,float x=0,float y=0,

float api=1,float vw=1,int level=-1);

~Node3D();

virtual void draw(Canvas*, const Allocation&); // draw the node

virtual void drawText()const; // draw the title

// draw a selected node with an additional wired cube:

virtual void drawBorder(Canvas*, Color*, Brush*);

virtual float xRequired()const; // the required space in x

virtual float yRequired()const; // the required space in y

virtual NodeTyps getType()const {return Text;}

// test if the ray hits the node (for picking):

65

virtual float rayHits(point3D&,vector3D&,float,float);

virtual void setX(float x); // set position of the node (overloaded):

virtual void setY(float y);

// set the existing space for lettering:

virtual void setSpace(float s);

// determine the size of the document and calculates the height of

// the object:

virtual void getDocSize();

// save node in VRML file format:

virtual int saveVRML (FILE*);

};

During the layout calculation the position of the node and the space for the title is

set. The member functions 'draw' and 'drawtext' are called for all nodes in the 'draw'

function of the class View3D.

6.4 The Overview, GlText and Camera Classes

There are some more classes in the Landscape. This is a short description of the more

important ones:

� Overview
The class Overview is responsible for the
at overview window. The position of the
overview camera is over the collection tree and one looks from above on the tree.
The user can not change the position or the line of sight. Overview doesn't possess

an own collection tree but it accesses the data in the class View3D using public
member functions. The class accomplishes following tasks: drawing, picking and
handling of user inputs at which key events are passed on to the class View3D.

� GlText

This class loads and stores the starting and �nal points of the lines which build up
the characters or letters. There are functions for drawing a single character or a

whole string. The parameter of the function which draws a string are the position,

the available space for the string, the size of the characters and the angle (which
depends on the line of sight) of the characters. This function uses two lines for long

titles.

� Camera

The Landscape uses a perspective and untilted camera which is de�ned by a view-

point (the position of the camera) and a reference point (or lookat point). The
vector viewpoint - lookat point is the line of sight and is called n. The distance

between viewpoint and view-plane is called focal length. The aperture is the height

of the view-port and the aspect ration is the with/height ratio of the view-port.
The up vector always equals (0,1,0) for an untilted camera. Other vectors of the

66

x

y

z

viewpoint

viewplane

lookat point

n

v u

Figure 6.3: The Camera Model

camera are u and v and they can be calculate as follows: u = n x up (cross product)
and v = u x n. The vectors u, v, n form an orthogonal coordinate system, u and

v lie in the view plane horizontally and vertically (see Figure 6.3). The class cam-
era3D stores the viewpoint, the lookat point, aperture, up vector, focal length and
the aspect radio and there are public member function for changing the viewpoint
and the lookat point. The aspect radio is set in the function allocate and it equals
the with/height ratio of the window. The classes View3D and Overview possess an

object of class Camera.

6.5 Outlook

The Landscape is not ready yet and more than a single Master's Thesis is necessary to

use and implement all advantages of a 3-dimensional presentation of information. The
hardware becomes more and more powerful and one will not be limited because of less

computer power. These are some suggestion which maybe could in future be implemented:

� A 3-dimensional object has di�erent attributes: shape, size, colour and texture. At
present only colour and size are used but the other attributes should also be used to

inform the user as much as possible about the contents of the object. Naturally the
shape should be mapped to the type of a document. For example a cylinder could be

67

a text document and a pyramid an image document. But the user has to remember

which shape represents which type of document. If an object has the appearance

of a book or a camera the user can know which document is represented without

additional knowledge. Such an object is more complicated and more computer

power is necessary.

The colour could be used for the age of an object or for something else. A texture

could also present an attribute of the document or one could display a image or a

icon at or upon the object by using texturing.

� Di�erent techniques could be used to increase the realistic impression of a landscape

for example mountains on the horizon or a gras texture on the plane.

� Drawing in the Landscape with the Mesa-library can be very slow. In that case

interactivemovement can be improved by fading out the lettering and/or by drawing

the object in wireframe mode during movement. When the movement stops then

the collection tree is displayed with lettering and in
at shading modus.

� At present the user can not turn around in the Landscape. One could lift this

restriction for expert users (and retain it for novice users) and implement a user
interface which is similar to the Harmony 3D Viewer. So expert users can move as
they like.

� There are a lot of di�erent constant values which determine the appearance of the
landscape: the height of a collection and cluster, the size (width and not the height)
of a document block, the distance between neighbouring documents, collections or
clusters, the distance between two levels of the tree. These values could be modi�ed
by the user (in a dialog box with scroll bars or/and X attributes) and the user would

determine the appearance of the landscape. The frame within which lettering is
shown or a block is drawn could also be decided by the user.

� The Landscape only presents the collection hierarchy but no links between docu-
ments. The incoming and outcoming links associated with a particular document
could be displayed using the 3rd dimension. Another possibility is to show the links

in another 3-dimensional space similar to the local map which is a 2-dimensional
map of incoming and outcoming links.

� In future, collision detection could be implemented and so one could not
y into

an object or through an object because motion would be stopped. At present an
object disappears suddenly when the viewpoint is too close.

� At the moment the Landscape only presents a view of the collection tree. In future it

could also be used to modify the collection tree for example one could take, duplicate

or create an object and put it to any desired place or into the waste bin.

68

Chapter 7

User Guide

This chapter is a short summary of the important commands and the handling of the

mouse. User working with the Landscape the �rst time should consult this user guide.

The user can open and close the Landscape window by clicking on the landscape-
button in the button row in the collection browser. At the beginning the collection tree
with the home collection is shown (if the user have not navigated in the Session Man-
ager �rst). When the user is not identi�ed the anonymous home collection is presented.
Di�erent objects (blocks) are spread out in the landscape. One distinguishes between
collections, clusters and documents. The document blocks are placed upon the collection-

socles and cluster-socles. The type of an object (collection, cluster, text-document, image-
document, ...) can be recognized by the colour. The user can change this colours by using
the colour chooser (menu View - Colours) or by changing the X attributes.

Current Object

One object in the tree is always the current object. The edges of a current block are drawn
in another particular colour and are dotted lines. The title of this object are displayed in
the status line. Commands are executed with this current object for example pressing the
'+'-button opens the current collection. One can change the current object by clicking
on an object or on the line to the object with the left mouse button or by using the

cursor buttons. The child (collection) of the current object becomes the current object

by pressing the " button, the parent object (collection) by pressing the # button, the left
neighbour by pressing the button and the right neighbour by pressing the ! button.
Pressing the shift and " buttons changes the current object to a document object which

is placed upon the current collection and pressing the shift and # buttons changes the

current object to the collection object which is the parent of the current document object.

Activating an Object

One can activate an object by double-clicking on the object. If an open (closed) collection

is activated then the collection will be closed (opened). If a cluster is activated then all

documents which are part of this cluster will be displayed using the corresponding viewer
or the text viewer will choose the document with the desired language and will present

it. If a document is activated then the user can view this document.

69

Navigation

The user can move in the landscape by using the mouse. Motion is achieved by dragging

the mouse while pressing a button. When a mouse button is pressed, the Landscape

draws a cross at the position of the mouse cursor. The relative position of the cursor

to the cross determines the direction of
ight and the speed. The speed is proportional

to the distance between the cross and the cursor and the direction from the cross to the

cursor determines the direction of
ight.

Another kind of motion is a smooth animation towards a desired object which for

example can be selected in the result list of a search or in the history list by clicking

on the list item. Table 7.1 shows the mouse button assignment. If the movement is too

Situation Hit Place Mouse Button Mouse Movement Resulting Movement

left up / down
ying forward / backward

left left / right
ying left / right

middle up / down
ying up / down

middle left / right
ying left / right

right up / down tilt the head up / down

Ctrl button any place middle movement towards POI

Ctrl button any place right movement away from POI

double-click object right animation towards object

double-click line right a. towards object at the end of the line.

double-click object middle animation towards parent

during animation right stop animation

during animation middle jump immediately to �nal destination

Table 7.1: Mouse Button Assignment

slow or too fast one can change the speed by changing the speed value in the scale dialog
(menu View - Scale Dialog - Speed).

Overview Map

The user can open a window with an overview map of the current collection tree by click-
ing on the button 'Overview' in the landscape window or by selecting the menu item View
- Overview. A red cross in this map shows the current position of the user in the main
window. The overview window supports an additional kind of navigation. One can select

any place in the overview window by moving the mouse cursor to the desired place and
pressing the left mouse button. Then the viewpoint in the main window moves towards

this place and the cross in the overview map moves towards the mouse cursor.

Commands

Several commands can be executed by pressing a particular button. Clicking on an object
with the right mouse-button opens a window with information about this object (type,

title , access rights ...).

70

Button Command

Space
y towards the current object

+ opens current collection
- closes current collection
c inserts children of current collection or cluster

Ctrl-c closes the whole collection tree
"# ! changes current object
Return activates the current object

s starts the search-dialog
h shows history-list
l shows local map of current object
S stores the current collection tree as VRML

Table 7.2: Commands

71

72

Chapter 8

Concluding Remarks

Over the past 30 years user interfaces have been improved enormously because computer

performance has increased. In the beginning computer users had to be computer ex-

perts and they had to work with punched cards and long computer printings. Today
more and more research projects and programs take advantage of spatial metaphors. The
3-dimensional presentation of large amounts of information has numerous advantages.
The Harmony Information Landscape is the �rst attempt in in Hyper-G to use a spatial
metaphor. It represents hierarchically structured information stored on a Hyper-G server.

Hyper-G is a large-scale, networked hypermedia system and allows access to heterogenous
information. Documents are connected by links and one can browse through the infor-
mation web as one likes. The system provides an additional hierarchical structure which
allows the user to maintain orientation in the large information web. The Landscape
shows this hierarchical structure as an open landscape. Objects representing collections,

clusters and documents are spread out on a plane and one can interactively
y over the
virtual landscape.

Of course, a single Master's thesis can only begin to explore the possibilities of three-
dimensional information visualisation. No hyperlinks are shown in the landscape and
all objects in the landscape are blocks. The system-readable attributes of a document,
cluster or collection could be mapped to the properties of an object (colour, size, shape
or texture). At the moment the colours of the objects show the type of the document,

but one could also use the shape of an object to represent its type: for example a camera

can represent an image and a book a text document. A creased and worn book could
represent an old text and so on. Users could recognize the type and other attributes of
an object at a glance.

Other features which could also be implemented include interactively changing the hi-
erarchical structure. The 3rd dimension could be used to present information on di�erent

levels or/and to display hyperlinks and one could also support the use of sound as part

of a representation for a place or object.

At the moment, immersive 3D devices (such as data glove and data helmet) are not

widely used, but they have some important advantages. The data helmet can track the
orientation of the head and change the orientation of the viewpoint and it gives the

impression that one is really part of the landscape. One only has to point at the place

where one wants to
y. In future one could use such devices enabling users to walk and

y around in a virtual information world and look for interesting information. They

73

will be able to arrange part of this world as they like. One might be able to ask the

computer questions and be
own to the desired place. The current Landscape should be

thought of as an initial proof-of-concept prototype, with many possible extensions still to

be investigated.

The Harmony Information Landscape is currently available, for most common UNIX

workstations, with software-only graphics and with hardware-accelerated graphics for

platforms with OpenGL support.

74

Appendix A

Colour plates

75

76

Appendix B

X Resources

Several values and settings can be changed by editing the �le with the X attributes. This
is a list of all X attributes which concern the Landscape:

!! the position and the size of the Landscape window.

Harmony.Session.Landscape.geometry: 1200x600+40+170

!! scaling factor for the height of the document blocks [0..100]

Harmony.Session.Landscape.DocumentHeight: 50

!! scaling factor for the size of the titles [0..100]

!! the size of the collection titles and cluster titles

Harmony.Session.Landscape.TitleSizeBig: 27

!! the size of the document titles (which are located upon

!! the collections and clusters)

Harmony.Session.Landscape.TitleSizeSmall: 45

!! speed factor for all movements [0..100]

Harmony.Session.Landscape.Speed: 30

!! the name of the main font file with all data

Harmony.Session.Landscape.fontdeffile: 3dfonts/hersh.oc

!! the file name of the current font

!! this file contains the information where the data (for one font) in

!! the main file can be found

Harmony.Session.Landscape.fontfile: 3dfonts/simple.hmp

!! the name of the information file which contains the font names and

!! file names of all existing fonts

Harmony.Session.Landscape.fontinfofile: 3dfonts/fontinfo.dat

!! colours

Harmony.Session.Landscape.planecolour: #009500

Harmony.Session.Landscape.skycolour: blue

Harmony.Session.Landscape.edgecolour: blue

Harmony.Session.Landscape.highlightedcolour: white

Harmony.Session.Landscape.iconcolour: black

77

!! edge colour of the current object

Harmony.Session.Landscape.selectedcolour: red

!! colour of all titles

Harmony.Session.Landscape.textcolour: black

Harmony.Session.Landscape.Collection.colour: #50ff50

Harmony.Session.Landscape.GopherColl.colour: #00ff00

Harmony.Session.Landscape.Cluster.colour: cyan

Harmony.Session.Landscape.Text.colour: #b000e0

Harmony.Session.Landscape.Image.colour: blue

Harmony.Session.Landscape.Scene.colour: #ffff00

Harmony.Session.Landscape.Movie.colour: #00ffff

Harmony.Session.Landscape.Sound.colour: #00ff60

Harmony.Session.Landscape.Generic.colour: #90ff20

Harmony.Session.Landscape.Drawing.colour: #ff00ff

Harmony.Session.Landscape.Remote.colour: #30a050

Harmony.Session.Landscape.Telnet.colour: #10a020

Harmony.Session.Landscape.PostScript.colour: #00a020

Harmony.Session.Landscape.GopherNode.colour: #b000e0

Harmony.Session.Landscape.GopherText.colour: #b000e0

Harmony.Session.Landscape.GopherImage.colour: blue

Harmony.Session.Landscape.GopherMovie.colour: #00ffff

Harmony.Session.Landscape.GopherSearch.colour: #909010

Harmony.Session.Landscape.GopherSound.colour: #909020

Harmony.Session.Landscape.GopherTelnet: #909030

Harmony.Session.Landscape.WWWNode: #909090

Harmony.Session.Landscape.WWWText.colour: #b020c9

Harmony.Session.Landscape.WWWImage.colour: #b010c5

Harmony.Session.Landscape.WWWMovie.colour: #b000c2

Harmony.Session.Landscape.WWWSound.colour: #b015c0

Harmony.Session.Landscape.WWWPostScript.colour: #a015c0

Harmony.Session.Landscape.WWWScene: #a01510

Harmony.Session.Landscape.FTP: #f01510

Harmony.Session.Landscape.WAIS: #f000f0

!! sunset on : sunset and sunrise during a session

!! sunset off: the colours dosen't change

Harmony.Session.Landscape.sunset : on

!! nosunsetbackground on : the sky is displayed in the flat shading

!! mode with the colour 'skycolour' (see above)

!! nosunsetbackground off: smooth shading sky

Harmony.Session.Landscape.nosunsetbackground : off

Harmony.Session.Landscape.lineantialiasing : off

Harmony.Session.Landscape.texturing : off

!! Using the Landscape with MESA library nosunsetbackground should be

!! on, lineantialiasing and texturing should be off

!! texture for the plane

Harmony.Session.Landscape.upperbackgtexture: textures/skytxc.tif

!! texture for the sky

78

Harmony.Session.Landscape.lowerbackgtexture: textures/grasstxc.tif

Harmony.Session.Landscape.Collection.texture: textures/marmor128.tif

Harmony.Session.Landscape.Cluster.texture: texture/stone.tif

79

80

Appendix C

The Hershey Fonts

The Hershey vector Fonts were originally created by Dr. A. V. Hershey while working at

the U. S. National Bureau of Standards. The format of the font data was originally cre-

ated by James Hurt. For the Harmony Information Landscape, the fonts were converted
into a slightly modi�ed format. The data of all fonts are stored in a main data �le and
each character or letter is stored as a record. Lines build up a character or a letter and
so a record contains the points (x,y coordinate) of these lines. For example, record with

the number 2 has the entry :

00002016MWOMOV ROMSMUNUPSQ ROQSQURUUSVOV

The �rst �ve characters are the record number (2), and the following 3 are the num-
ber of character pairs (16) which are following and so there are 32 additional characters.

Each pair is the x and y coordinate of a point. The characters are encoded relative to
'R' which is zero (Q = -1, S = 1, and so on). The �rst pair is a left and right o�set for
proportional spacing. The second pair is the �rst point of a line and the third pair is the
second point and so on. The character SPACE in the x coordinate means that a new line
begins and the next pair is the the starting point of the new line and the previous pair is

the last point of the old line. Thus the line above encodes:

record 2 (16 pairs or 32 characters)

spacing (-5, 5) MW

skip (-3,-5) OM

draw (-3, 4) OV

new line R

skip (-3,-5) OM

draw (1,-5) SM

draw (3,-4) UN

draw (3,-2) UP

draw (1,-1) SQ

new line R

skip (-3,-1) OQ

draw (1,-1) SQ

81

draw (3, 0) UR

draw (3, 3) UU

draw (1, 4) SV

draw (-3, 4) OV

Most special symbols were deleted from the original main data �le because the Landscape

doesn't need them. Each record (or character) has a unique number (the �rst number in

the record) and the record numbers of all characters which belongs to a particular font are

stored in a separate font �le (for instance simple.hmp or script.hmp). Here is an exerpt

from the �le italicc.hmp:

32 2199 0

33 2764 0

34 2778 0

35 733 0

36 2769 0

37 2271 0

38 2272 0

39 2777 0

40 2771 0

41 2772 0

42 728 0

43 725 0

44 2761 0

45 724 0

46 2760 0

47 720 0

48 2750 2759

58 2762 2763

97 2151 2176

The �rst number is the ASCII value of the character and the next number is the number
of the record in the main data �le for example the character with the ASCII value 36 is

stored in the record with the number 2769. The record numbers of several characters can

be determined with a third value for example the characters with the ASCII values from
48 to 58 are stored in the record numbers 2750 to 2759.

A new font can be added by appending the data (with unique numbers) in the main

data �le and creating a new �le with the ASCII values and the record numbers. The

name of this �le and the font name must be append in the information �le and then the

new font can be chosen using the font chooser.

One can determine the names of the main data �le, the information �le and the cur-

rent font �le by editing the X attributes:

82

Harmony.Session.Landscape.fontdeffile: 3dfonts/hersh.oc

Harmony.Session.Landscape.fontinfofile: 3dfonts/fontinfo.dat

Harmony.Session.Landscape.fontfile: 3dfonts/romanc.hmp

For more information about the Hershey font see the Hershey distribution:

ftp://gondwana.ecr.mu.oz.au/pub/hershey.tar.gz

83

84

Appendix D

Graphics Engine 3D (GE3D)

This section is an updated version of Appendix B of Michael Pichler's thesis [24]:

The GE3D library - Graphics Engine 3D - was designed as a machine independent, imme-
diate mode, 3D graphics interface. The �rst version of GE3D was developed together with
Michael Hofer, whose work is acknowledged here. The functionality of GE3D includes:

� manipulation of vectors and matrices, and a stack of transformation matrices

� camera de�nition, both perspective and orthographic

� de�nition of light sources

� double bu�ering (two screen pages)

� drawings in wire frame, hidden line,
at shaded and smooth shaded

� drawing of 3D faces (polygons) and polyhedra

� drawing some 2D primitives: lines, rectangles, arcs, circles, output of text

The library was implemented in (standard) C atop the GL graphics library of Silicon
Graphics and OpenGL. Header and implementation �le contain macros to switch be-

tween ANSI C and Kernighan-Ritchie C by de�ning the preprocessor symbol

GE3D PROTOTYPES.

As it can be seen from the list above, GE3D's functionality is on a higher level than

typical machine dependent libraries like GL or OpenGL. For example a polyhedron rep-
resents a set of faces with the same edge and �ll colour. The drawing modes (from wire

frame to smooth shading) do not bother the user of the library with correct settings of

ags for hidden surface elimination, �lling, usage of z-Bu�er and so on. Other functions,

for example for drawing lines and rectangles, and for manipulations of the matrix stack,

have a corresponding counterpart in low level graphic libraries.

One could ask for the reason why implementing yet another graphics interface (more-
over when it is closely related to GL). Beside the mentioned enlarged functionality the

85

machine independence of the interface increases the portability of the programs. As the

header �le is completely independent of any other header �le of graphics interfaces an-

other implementation of the GE3D library can be linked at any time without changes or

recompilation of existing programs.

D.1 Type De�nitions

File <ge3d/vectors.h> contains the de�nitions for 3D points and vectors and a set of

pre-processor macros for vector operations.

typedef struct

f
oat x, y, z;

g vector3D, point3D;

typedef
oat matrix [4][4];

Type matrix is used for transformations (4D homogeneous coordinates). There is no
assumption on the ordering of elements in the matrix (row major or column major).

Functions of GE3D should be used to build and to concatenate the matrices, they can be
stored and pushed onto the transformation stack, but should not be manipulated.

The �le <ge3d/color.h> contains the de�nition for colours. The colour components R, G
and B are in range 0.0 to 1.0.

typedef struct
f
oat R, G, B;
g colorRGB;

The type face, specifying a polygon in 3D space is de�ned in �le <ge3d/face.h>. See

procedure ge3d polyhedron for further explanation of �elds.

typedef struct

{ int num_faceverts, /* number of vertices in face */

num_facenormals; /* number of normals in face */

int *facevert, /* array of indices of face vertices */

facenormal; / ... and of the normals of the face */

facetexvert; / ... and texture vertices of the face */

vector3D normal; /* normalised, outward face normal */

} face;

The �ve supported drawing modes are de�ned in <ge3d/ge3d.h>:

86

enum ge3d mode tf ge3d wireframe,ge3d hidden line,

ge3d
at shading,ge3d smooth shading,ge3d texturingg;

D.2 Functions

D.2.1 Opening the Graphics Device

There are two ways for opening the graphics device. Either GE3D is asked to open a

window - this is done with the function

void ge3d openwindow ();

Otherwise the main program is responsible for opening an output window. A call to

void ge3d init ();

will initialize the GE3D library, including clearing the screen and setting default val-
ues. A call of ge3d open window automatically causes ge3d init to be called.

D.2.2 Display Control

void ge3d clearscreen ();

clears the window (with the current background colour) and the z-Bu�er (if hidden sur-

face elimination is activated).

void ge3d swapbu�ers ();

The GE3D library uses double-bu�ering (if available). This means that there are two

screen pages for graphic output: a visible and an active one. All drawings are done on the

invisible page. ge3d swapbu�ers must be called to display a drawn picture by swapping

the two pages. The purpose is to avoid
ickering on animations. If no double-bu�ering is
available, this function is intended to
ush any cached drawings onto the window.

void ge3dHint (int
ag, int value);

This function modi�es the ge3d behaviour concerning hidden surface removal.
ge3dHint(hint depthbu�er,0) disables the z-bu�er and ge3dHint(hint depthbu�er,1) en-

ables the z-bu�er. The function have to be called before activating the drawing mode

(ge3d setmode(int)) to be e�cient.
ge3dHint(hint backfaceculling,1) initiates backface polygon elimination and enables two-

sided lighting (lighting calculations are then correct for the front and back faces of poly-

gons) and ge3dHint(hint backfaceculling,0) terminates this features (enables one-sided
lighting). hint backfaceculling can be set always. Backface polygon elimination speeds

87

drawing time by not drawing backfacing polygons (vertices in counterclockwise order).

int ge3dRequestOverlay ();

This function and the following functions are used for overlay bitplanes. Overlay bit-

planes supply additional bits of information at each pixel. The number of bitplanes

(system-dependent) determines the number of colours which can be used in the overlay

plane. When zero at a pixel is stored in all overlay bitplanes, the colour of the pixel from

the standard colour bitplanes is presented on the screen. If the overlay bitplanes contain

a value which is not zero, the overlay value is looked up in a indicated colour table, and

that colour is presented instead. Overlay bitplanes are only supported for the GL version

and not for OpenGL.

ge3dRequestOverlay should be called once right after initialization to request overlay

planes. The return value equals the number of bitplanes which are supported from the

system.

void ge3dBitplanes (int);

switches between overlay bitplanes and standard (normal) bitplanes.
ge3dBitplanes(ge3d overlay planes) activates the overlay bitplanes and all following draw-
ing commands draw in the overlay bitplanes. ge3dBitplanes(ge3d normal planes) again
activates the standard bitplanes.

void ge3dClearOverlay ();

clears the overlay bitplanes (to the invisible color 0) and also activates overlay bitplanes
for following commands.

void ge3dMapColori (int i, short r, short g, short b);
void ge3dMapColorRGB (int i, const colorRGB* RGB);

Overlay bitplanes are always in colour map (colour indexed) mode. Therefore this func-

tions are used in order to choose the colours for drawing in overlay bitplanes. ge3dMapColori
and ge3dMapColorRGB de�ne a colour map entry. (r, g, b) are in range 0 to 255, RGB

colour components are de�ned in range 0.0 to 1.0. i is the index for the colour map entry

and is in range 1 to (2n)-1 at which n is the number of overlay bitplanes. Index 0 is
reserved for the colour \invisible".

void ge3dColorIndex (int i);

activates a colour from the colour map.

88

D.3 Drawing Modes and Attributes

void ge3d setmode (ge3d mode t mode);

sets the drawing mode for shapes, which should be one of:

� ge3d wireframe

� ge3d hidden line

� ge3d
at shading

� ge3d smooth shading

� ge3d texturing

void ge3d setbackgcolor (
oat R,
oat G,
oat B); or

void ge3dBackgroundColor (const colorRGB*);

Sets the background colour. All colours are speci�ed as triples of RGB values in range
0.0 to 1.0.

void ge3d set�llcolor (
oat R,
oat G,
oat B); or

void ge3dFillColor (const colorRGB*);

Sets the �ll colour (RGB values). Only relevant in modes
at and smooth shading.
Also sets the edge colour to (R, G, B).

void ge3d setlinecolor (
oat R,
oat G,
oat B); or
void ge3dLineColor (const colorRGB*);

Sets the colour (RGB) for drawing lines and polygon edges. Usually there is a performance
penalty for drawing polygons with di�erent line and �ll colour; if needed, ge3d setlinecolor

has to be called after ge3d set�llcolor.

void ge3d setlinestyle (short pattern);

Sets the linestyle pattern, which is speci�ed as a 16-bit integer. For example 0x�� (or -1)

is a solid line, 0x0f0f a dashed line.

void ge3d setlinewidth (short width);

Sets the line width in pixels. There may be a performance penalty for drawing lines

with widths greater than one or nonsolid lines.

void ge3dAntialiasing (ge3d antialiasing t
ag);

Antialiasing is a method that make objects drawn on a discrete device (the display screen)

89

appear smooth. A line or a polygon drawn without antialiasing have jagged edges be-

cause a series of points that are forced to lie on 1 positions on the screen pixel grid build

up a line. The
ag determines for which objects antialiasing is active: ge3d aa lines,

ge3d aa polygons, and ge3d aa all for example ge3dAntialiasing (ge3d aa lines) activates

antialiasing for lines and ge3dAntialiasing (0) deactivates antialiasing for all objects.

int ge3dAntialiasingSupport ();

The return value tells the user if antialiasing is supported (TRUE=1) or not (FALSE=0).

D.3.1 The Transformation Matrix Stack

All drawing routines are called with so called modeling coordinates, also called object

coordinates, because it is the coordinate system in which graphical objects are de�ned

(or modeled). Cameras and light sources are speci�ed in the world coordinate system (or
scene coordinates). Figure D.1 gives an overview over the coordinate systems from object

to window coordinates.
The other coordinate spaces (below world coordinates) are entirely handled by the graph-

Object Coordinates

World Coordinates

Clip Coordinates

Normalised Coordinates

Window Coordinates

Model Matrix

View / Projection Matrix

Normalisation

Viewport Transformation

Figure D.1: Coordinate systems

ics library. The camera transformation transforms world coordinates to clip coordinates

- the view frustum transforms into an axis aligned cube, depth clipping is done in this

coordinate system. For z-bu�ering (hidden surface elimination) the cube is normalised

into coordinates in range 0.0 to 1.0 - these are called normalised coordinates. At last a
simple scaling and translation maps the normalised coordinates to the window coordinates.

90

The transformation from modeling to world coordinates is done with the current trans-

formation matrix. All transformation matrices use 4 by 4 homogeneous coordinates and

describe a�ne transformations (linear plus translation). A�ne transformations include

translation, rotation, scaling, and shearing. The matrix need not be built by the user -

the GE3D library contains functions to compute it from values for translation, rotation

and scaling. (These functions are discussed in the next section.)

Transformation matrices can be stacked on the transformation matrix stack. The cur-

rent transformation matrix is the top matrix on the stack. Other transformation matrices

can be pushed onto the stack and later removed. On pushing, the matrix it may be con-

catenated with the old top matrix, meaning that the transformations are relative to the

old one, thus allowing hierarchical description of objects. A typical limit for the maximum

depth of the stack set by the underlying graphic library is 64.

There are several routines for handling the transformation stack:

void ge3d push matrix ();

Pushes down the transformation stack by copying the old top matrix. (If the stack was
empty an identity matrix is pushed).

void ge3d push this matrix (matrix mat);

Pushes down the transformation stack by pre-concatenating the matrix mat with the
old top matrix. (On an empty stack the matrix is pushed unchanged.)

void ge3d push new matrix (matrix mat);

Pushes down the transformation stack and puts the matrix mat unchanged onto the top
of the stack.

void ge3d transform mc wc (
oat in x,
oat in y,
oat in z,

oat* o x,
oat* o y,
oat* o z); or

void ge3dTransformMcWc (const point3D*, point3D*);

Transforms the point (in x, in y, in z), given in modeling coordinates, with the current
transformation matrix to the point (*o x, *o y, *o z) in world coordinates. This transfor-

mation is applied implicitly to all 3D points when calling any drawing function.

void ge3d transformvector mc wc (
oat in x,
oat in y,
oat in z,

oat* out x,
oat* out y,
oat* out z); or

void ge3dTransformVectorMcWc (const vector3D*, vector3D*);

91

Same as ge3d transform mc wc, but for vectors. Note: a translation of a vector makes no

sense, therefore the transformation is applied without translation.

void ge3d print cur matrix ();

Prints the values of the current transformation matrix to stderr. Can be used as de-

bugging tool. Must not be called on an empty stack.

void ge3d get and pop matrix (matrix mat);

Stores the current transformation matrix in mat and pops it from the stack (mat is a

reference parameter, because matrix is a
oat array). Must not be called when the stack

is empty.

void ge3d pop matrix ();

Pops the current transformation matrix from the stack. Must not be called when the
matrix stack is empty.

void ge3dLoadIdentity ();

Replaces the current transformation matrix with identity matrix.

void ge3dPushIdentity ();

Pushes the identity matrix on the stack.

void ge3dMultMatrix (const
oat mat[4][4]);

Premultiplies the current transformation matrix by the given matrix mat.

D.3.2 Building Transformation Matrices

The functions ge3d translate, ge3d rotate axis and ge3d scale build and concatenate trans-
formation matrices for the most common a�ne transformations: translation, rotation

about a coordinate axis and scaling. The computed transformation matrix is pre-multiplied

to the current transformation matrix.

That means the transformations take e�ect in the order the functions are called, for
example �rst a translation and then a rotation. Mathematically the transformations have

to be applied in the reverse order to get the right result, like �rst rotating and then trans-

lating in the example.

It is an error to call these functions on an empty stack. Function ge3d push matrix ()

should be used �rst to push an identity matrix onto the stack.

92

void ge3d translate (
oat x,
oat y,
oat z); or

void ge3dTranslate (const vector3D*);

Does a translation by the vector (x, y, z).

void ge3d rotate axis (char axis,
oat angle);/*angle in degrees*/

Does a rotation about the axis axis ('x', 'y' or 'z') by angle angle. The angle is mea-

sured in degrees, counter clockwise when looking along the axis towards the origin.

void ge3dRotate (const vector3D* axis,
oat angle);/*angle in radians*/

Does a rotation about a arbitrary axis by angle angle in radians (righthand). The ro-

tation axis is given as the vector axis.

void ge3d scale (
oat sx,
oat sy,
oat sz,
oat all); or
void ge3dScale (const
oat* p);

Does scaling with the factor sx along the x axis, sy along y and sz along z, and an
overall scaling with the factor all.
The parameter p in the second function is an array of only three values: sx, sy, sz.

D.3.3 Text

void ge3d text (
oat x,
oat y,
oat z, const char* s); or
void ge3dText (const point3D*, const char*);

Output of a text string s, beginning at position (x, y, z). The text is written hori-
zontally on the window, beginning at the transformed position. The current line colour
is used.

D.3.4 Line Primitives

Some of the functions discussed in this section only have arguments for two dimensions.

They are used primarily for 2D drawings, but are also three-dimensional. They draw into
the plane z = 0, but are also a�ected by the current transformation matrix, which can be
used to translate and rotate the drawing into the desired position and orientation.

void ge3d moveto (
oat x,
oat y,
oat z); or
void ge3dMoveTo (const point3D*);

Moves the current position to the point (x, y, z).

93

void ge3d lineto (
oat x,
oat y,
oat z); or

void ge3dLineTo (const point3D*);

Draws a line from the current 3D position to the point (x, y, z), using the current line

colour, style, and width. Then the current 3D position is updated to (x, y, z) for further

calls to ge3d lineto.

void ge3d line (
oat x1,
oat y1,
oat z1,

oat x2,
oat y2,
oat z2); or

void ge3dLine (const point3D* p1, const point3D* p2);

Draws a line from the point (x1, y1, z1) to the point (x2, y2, z2), using the current line

colour, style, and width.

void ge3dPolyLines2D (
oat* p);

Draws a arbitrary number of polylines in sequence in the plane z = 0, using the cur-
rent line attributes. p is an array of
oat values. Each polyline starts with the number
of points, followed by the (x,y) coordinates of the points. The array is terminated with

(
oat) 0. Hence the array contains following sequence of values: n1 x11 y11 ... x1n1 y1n1
n2 x21 y21 ... x2n2 y2n2 ... nm xm1 ym1 ... xmnm ymnm 0 (m polylines and n1 ... nm points
per polyline). The polylines are not automatically closed.

void ge3d rect (
oat x0,
oat y0,
oat x1,
oat y1);

Draws the outline of an axis-aligned rectangle with opposite points (x0, y0) and (x1,
y1) in the plane z = 0. Current line attributes are used.

void ge3d wirecube (
oat x0,
oat y0,
oat z0,

oat x1,
oat y1,
oat z1); or

void ge3dWireCube (const point3D*, const point3D*)

Draws an axis-aligned cube with opposite vertices (x0, y0, z0) and (x1, y1, z1) as wire

frame (regardless of the current drawing mode), using the current line attributes.

void ge3d circle (
oat x,
oat y,
oat r);

Draws the outline of a circle with midpoint (x, y, 0) and radius r in the plane z = 0,

using the current line attributes.

void ge3d arc (
oat x,
oat y,
oat r,

oat startangle,
oat endangle);

94

Draws an arc, which is de�ned as the part of a circle with midpoint (x, y, 0) and radius r

(in plane z = 0), beginning at startangle, ending at endangle in counter-clockwise direc-

tion. The two angles are given in degrees, measured CCW from the positive x-axis. The

current line attributes are used.

void ge3d wirepolyhedron (point3D* vertexlist, vector3D* normallist,

int numfaces, face* facelist);

Draws a wire frame model of a polyhedron (in any drawing mode). The arguments have

the same meaning as for ge3d polyhedron (see next section).

D.3.5 Solid Primitives

void ge3d circf (
oat x,
oat y,
oat r);

Draws a circle, �lled with the current �ll colour (regardless of the current drawing mode).

The circle is drawn with midpoint (x, y, 0) and radius r in the plane z = 0.

void ge3d rectf (
oat x0,
oat y0,
oat x1,
oat y1);
void ge3dFilledRect (
oat,
oat,
oat,
oat,
oat);

Draws a an axis-aligned rectangle, �lled with the current �ll colour (regardless of the
current drawing mode). The rectangle is drawn with the opposite points (x0,y0) and
(x1,y1) in the plane z = 0.
The second function draws a shaded and �lled rectangle, and so one can also use this
function for
at shading.

void ge3dShadedPolygon (int n, const point3D* v, const colorRGB* c);

Draws a �lled polygon with a colour for each vertex (regardless of current mode). n

is the number of vertexes of the polygon and v is an array of 3D vertexes. c is also an
array which contains a colour for each vertex. The �llcolour and linecolour have no in
u-

ence and the mode is switched to gouraud shading.
Filling depends on the current drawing mode (set with ge3d mode). In mode wire frame

only the outline of faces is drawn. Hidden line does a hidden line elimination which may

be achieved by �lling the face with the background colour.

Flat and smooth shading take the light sources into account. Flat shading uses a sin-

gle (constant) colour for each face. Smooth shading (Gouraud shading) requires normal
vectors for the vertices and interpolates the colour smoothly over the face. These two

modes also include a hidden surface elimination.

void ge3d polygon (point3D* vertexlist, int nvertices,

95

int* vertexindexlist,

vector3D* normallist, int nnormals,

int* normalindexlist,

vector3D* f normal);

Draws a polygon. Parameters:

vertexlist an array of 3D vertex coordinates (modeling coordinates).

nvertices the number of vertices of the polygon.

vertexindexlist an array of nvertices integer indices, telling which vertex

of vertexlist is the �rst vertex of the polygon, the second and so on.,

in counter clockwise order when seen from outside.

The �rst vertex of vertexlist has index 0.

f normal outward normal vector (face normal), used for
at shading.

This normal has to be provided for e�ciency (to avoid recomputation

including normalisation at each drawing).

The other parameters are only used in mode smooth shading and if nvertices = nnormals.

In this case vertex normals must be provided. If the mode smooth shading is active, but
nnormals is less than nvertices, the polygon is
at shaded.

normallist an array of vertex normal vectors (outward, modeling coordinates).
nnormals the number of vertex normals of the polygon.

normalindexlist an array of integer indices, telling which normal vector to use
for the �rst vertex of the polygon, which for the second one and so on.
The �rst normal of normallist has index 0.

That means that the polygon with vertices vertexlist [vertexindexlist [0]] to vertexlist [ver-
texindexlist [nvertices-1]] is drawn and automatically closed. In mode smooth shading and
if nvertices = nnormals the normal vectors normallist [normalindexlist [0]] to normallist

[normalindexlist [nnormals-1]] are used as vertex normals to calculate the colour at the
vertices for shading.

For correct results the polygon has to be convex. The drawing of a concave or non-
simple polygon is unde�ned but lies within the convex hull. Polygons are single sided,

therefore the vertices must be given in counter clockwise order when seen from the front.

The number of vertices per face may be limited by the graphics library (e.g. to 255).

Normal vectors should be normalised to a length of 1.0 for correct shading.

void ge3d polyhedron (point3D* vertexlist, vector3D* normallist,

int numfaces, face* facelist); or

void ge3dPolyhedron (point3D* vertexlist, vector3D* normallist,

point2D* texlist , int numfaces, face* facelist);

96

Draws a polyhedron. The parameters are:

vertexlist an array of vertex coordinates (modeling coordinates).

normallist an array of vertex normal vectors (outward, modeling coordinates).

texlist an array of 2D points for texture.

numfaces the number of polygons (faces) of the polyhedron.

facelist an array of numfaces faces.

A face contains all the data for one polygon of the polyhedron:

num faceverts the number of vertices of a face/polygon.

num facenormals the number of vertex normals.

facevert an array of integer indices into the vertexlist.

facenormal an array of integer indices to the normallist.

facetexvert an array of integer indices to the texture vertices.

Note that the vertexlist and normallist (triples of
oats) are shared among all polygon
faces. Only an integer index is used to specify which vertex or vertex normal is used.

A call of ge3d polyhedron (vertexlist, normallist, numfaces, facelist) leads to the same
drawings as a call to ge3d polygon for all faces facelist [0] to facelist [numfaces - 1] as a

loop like

int i;

face* faceptr;

for (i = 0, faceptr = facelist; i < numfaces; i++, faceptr++)

{

ge3d_polygon (vertexlist, faceptr->num_faceverts,

faceptr->facevert,

normallist, faceptr->num_facenormals,

faceptr->facenormal,

&faceptr->normal);

}

The use of ge3d polyhedron is in most cases faster because it avoids unnecessary func-
tion calls and can draw all faces at once in the proper drawing mode.

Example: A tetrahedron with ground plane in z = 0.

static point3D vertexlist [] = /* vertices */

{{0, 0, 0}, {1, 0, 0}, {0.5, 0.8, 0}, {0.5, 0.5, 1}};

static int facevert [][3] = /* vertex indices */

{{2, 1, 0}, {0, 1, 3}, {1, 2, 3}, {2, 0, 3}};

static vector3D normal [] = /* face normals */

{{0, 0, -1}, {0, -0.894, 0.447},

97

{0.837, 0.523, 0.157}, {-0.837, 0.523, 0.157}

};

face facelist [4], *fptr;

int i;

for (i = 0, fptr = facelist; i < 4; i++, fptr++)

{ fptr->num_faceverts = 3;

fptr->facevert = facevert [i];

fptr->num_facenormals = 0; /* no vertex normals:*/

fptr->facenormal = NULL; /* flat shading */

fptr->normal = normal [i];

}

ge3d_polyhedron (vertexlist, NULL, 4, facelist);

void ge3dCube (const point3D* p0, const point3D* p1);

Draws an axis-aligned, shaded and solid cube using the ge3d polygon function. p0 and
p1 are two opposite vertices at which p0.x <= p1.x, p0.y <= p1.y and p0.z <= p1.z.

The following functions support texturing mapping which means that a arbitrary 2-D
bitmap is mapped onto a surface in 3-D space for example on a polygon and texturing
can be used to enhance visual realism.

int ge3dTexturingSupport ();

The return value tells the user if texturing is supported (TRUE=1) or not (FALSE=0).

int ge3dCreateTexture (int width, int height,
const void* data,
int bmpformat);

Creates a texture from a data array. The argument width and height specify the size of

the bitmap. data is a data array as speci�ed by bmpformat argument (currently only one

format supported):
ge3d ubyte RGB TB ... triples of unsigned bytes, no �lling byte, top-to-bottom
data contains the bitmap of the texture. The function returns a handle which is to be

used for later calls of ge3dApplyTexture and �nally for destroying with ge3dFreeTexture.

In case of an error, 0 will be returned.

void ge3dFreeTexture (int handle);

Destroys the texture with the handle handle.

98

void ge3dDoTexturing (int toggle);

Switches on (toggle = 1) and o� (toogle = 0) texturing.

void ge3dApplyTexture (int handle);

Applies a texture associated with its handle handle.

void ge3dTexturedPolygon (int nverts, const point3D* vert,

const point2D* tex, int handle);

Draws a polygon where a texture with the handle handle is mapped on it. The polygon is

textured and
at coloured (regardless of current mode), and �ll colour and line colour have

no in
uence. This function contains implicit ge3dDoTexturing (1) and ge3dApplyTexture
(handle). The polygon has nverts vertices which are stored in the array vert.
A texture is 2-dimensional and by de�nition it lies in the range 0 to 1 along two axes

in texture space. Now each vertex of the polygon is assigned to a point in the texture
space which are stored in the array of 2D points tex and so mapping from texture space
to geometry in object space is de�ned. When the (x,y) values in texture space (in the
array tex) are greater than 1, the texture is repeated.

D.3.6 Camera De�nition

GE3D supports a perspective and an orthographic camera model. The perspective camera
is appropriate for 3D drawings and the orthographic camera is simpler to specify for 2D

drawings. The usage of the procedures is not restricted to these cases, since all drawings
are made in 3D space.

The perspective camera is de�ned by a viewpoint position (eye point) and a reference
point (lookat) in world coordinates. The distance between eye point and view plane is
called focal length and determines together with the aperture (height of the camera win-

dow on the view plane) and the aspect ratio (width/height) the �eld of view.

The orthographic camera also uses a viewpoint position and a reference point for speci-
fying the line of sight, which is projected to the midpoint of the window. The size of the
view-port is given by its width and height.

In both cases depth clipping is done with two clipping planes called hither and yon. The
camera is untilted with the y axis as up direction in a right-handed coordinate system.

void ge3d setcamera (point3D pos, point3D ref,
oat aper,

oat focal,
oat aspect,

99

oat hither,
oat yon);

Sets up a perspective camera. The arguments have the following meaning:

pos position of the view point (eye) of the camera (in world coordinates).

ref reference point (in world coordinates), pos and ref together

determine the line of sight, which projects to the midpoint of the view-port.

aper the height of the camera window on the view plane.

focal the distance between the viewpoint position and the view plane.

aspect the aspect ratio of the camera window (width/height, e.g. 4/3).

hither distance of near clipping plane from viewpoint position, must be > 0.

yon distance of far clipping plane from viewpoint position, must be > hither.

For a perspective projection depth clipping cannot be turned o�, because the visible part

of the view pyramid, often called view frustum, has to be transformed into a cube. This is

also necessary for hidden line elimination with the z-Bu�er. If (almost) no depth clipping
is wished, set hither to a very low and yon to a large enough number, but setting it too
high can cause more rounding errors in the z-Bu�er hidden surface algorithm.

The aspect ratio used for setting up the camera should match the aspect ratio of the
output window (width divided by height). Otherwise the drawing will be distorted.

void ge3d ortho cam (point3D pos, point3D ref,

oat width,
oat height,

oat hither,
oat yon);

Sets up an orthographic camera with the following parameters:

pos position of the view point (eye) of the camera (in world coordinates).

ref reference point (in world coordinates), the line of sight
goes from pos to ref - as in the perspective camera model.

width the width of the camera view-port.
height the height of the camera view-port.

hither distance of near clipping plane from viewpoint position, arbitrary.

yon distance of far clipping plane from viewpoint position, must be > hither.

For an orthographic camera depth clipping is not restricted to regions in front of the eye.

It also cannot be turned o�, but also drawings behind the eye may be visible.

Example: drawing a diagonal line over the whole window.

point3D pos = {0.0, 0.0, 1.0};

point3D ref = {0.0, 0.0, 0.0};

point3D leftbot = {-1.0, -1.0};

100

point3D rightup = {1.0, 1.0};

ge3d_ortho_cam (pos, ref, 2.0 /* -1 to 1 */, 2.0 /* -1 to 1 */,

-10, 10);

ge3d_moveto (leftbot);

ge3d_lineto (rightup);

void ge3dCamera (int type, const point3D* pos,
oat rotangle,

const vector3D* rotaxis,
oat height,

oat aspect,
oat hither,
oat yon);

One can also use this function to set up a camera using some di�erent and more gen-

eral parameters. type determines the camera model and if the position of the camera

is absolute or relative (cam perspective/cam orthographic j cam absolute/cam relative) for
example ge3dCamera (cam perspective j cam relative) a relative and perspective camera.
A relative camera is placed relative to a object (or the current transformation matrix
on the stack). The position of the camera (relative or absolute) is given as pos and one

can determine the line of sight by rotating the camera about a arbitrary axis by angle
rotangle in degrees. The rotation axis is given as the vector rotaxis. If the camera is a
orthographic camera then height is the height of the window and if it is a perspective
camera then height is the total vertical viewing angle in degrees.

D.3.7 Light Sources

For shaded drawings, light sources have to be de�ned. The library uses positional and
in�nite light sources and spotlights in a di�use lighting model. A positional light (a light
which is placed at a particular place) is omnidirectional. A in�nite light source can be a

good approximation for a distant light source and hence one can only determine a light
source direction (not a position). A spotlight emits a cone of light that is centered along
the spotlight direction.
A di�use lighting model means that the colour of a surface is independent of the current

viewing position and there are no highlights.

Light sources must be �rst registered with an unique index and can then be turned

on and o� using that index. Note that the graphic library will limit the number of usable
light sources (e.g. only eight in GL).

There are four routines handling the light sources:

void ge3dSetLightSource (int index, const colorRGB* RGB,

const point3D* pos,
oat positional,

int camlgt);

101

Registers a light source with a (unique) index index. The colour of the light is given as

RGB. If postional is zero (in�nite light), then pos represents a light source direction. The

direction must be given towards light source. If positional unequals zero, the light source

is a positional light at position pos (in world coordinates). One can place the light (or set

the light direction) relative to the current camera by using the parameter camlgt (camlgt

equals 1).

The index (a small positive integer) is later used to switch on and o� the light source.

The light is not switched on automatically on registering.

void ge3dLightSource (int index, const colorRGB* RGB,

const matrix4D mat,
oat positional, int camlgt);

This is a more general function to set up a light source. index, RGB, positional and

camlght have been explained already. Position/orientation is not given as a point/vector,

but a transformation matrix that transforms the default position (0, 0, 0) or orientation
(-1, 0, 0).

void ge3dSpotLight (int index, const colorRGB*,
const point3D* pos, const vector3D* dir,

oat droprate,
oat cutangle);

Registers a spotlight with the index index, which is placed at position pos (in object co-
ordinates) with the spot direction dir. A spread angle cutangle of for example 45 de�nes
a cone with a radius angle of 45 degrees (range 0 to 90 or 180). The intensity fallo� is
given as droprate.

void ge3d switchlight (int index, int state);

Switches the light source with index index on (if state is not 0) or o� (if state is 0).

D.3.8 Closing the Graphics Device

void ge3d close ();

Closes the graphics device.

102

Bibliography

[1] Keith Andrews, Frank Kappe, and Hermann Maurer. Hyper-G: Towards the next

generation of network information technology. Journal of Universal Computer Sci-

ence, 1(4):206{220, April 1995. Special Issue: Selected Proceedings of the Workshop

on Distributed Multimedia Systems, Graz, Austria, Nov. 1994. Available at http://-

hyperg.iicm.tu-graz.ac.at/jucs root.

[2] Keith Andrews, Frank Kappe, and Hermann Maurer. Serving information to the

web with hyper-g. Computer Networks and ISDN Systems, 27(6):919{926, April
1995. Proc. 3rd International World-Wide Web Conference. Available at URL
http://www.elsevier.nl/www3/welcome.html.

[3] Keith Andrews, Frank Kappe, Hermann Maurer, and Klaus Schmaranz. On second
generation network hypermedia systems. In Proc. of ED-MEDIA 95, pages 69{74,

Graz, Austria, June 1995. AACE.

[4] Gavin Bell, Anthony Parisi, and Mark Pesce. The virtual reality modeling
language { version 1.0 speci�cation. Available at http://vrml.wired.com/

vrml.tech/vrml10-3.html, May 1995.

[5] Emily Berk and Joseph Devlin, editors. Hypertext/Hypermedia Handbook. Software
Engineering Series. McGraw-Hill, New York, 1991.

[6] Mark Bernstein. The navigation problem reconsidered. In Emily Berk and Joseph
Devlin, editors, Hypertext/Hypermedia Handbook, Software Engineering Series, pages

285{297. McGraw-Hill, New York, 1991.

[7] Ron Britwich. Web World. Available at http://sailfish.peregrine.com

/WebWorld/welcome.html.

[8] Vannevar Bush. As we may think. The Atlantic Monthly, 176(1):101{108, July 1945.

[9] Matthew Chalmers. Using a landscape metaphor to represent a corpus of docu-

ments. In Andrew U. Frank and Irene Campari, editors, Spatial Information Theory

A Theoretical Basis for GIS, pages 377{390. Springer-Verlag, 1993.

[10] Kim Michael Fairchild. Information management using virtual reality-based visual-

izations. In Alan Wexelblat, editor, Virtual Reality: Applications and Explorations,

pages 45{74. Academic Press, 1993.

103

[11] Kim Michael Fairchild, Steven E. Poltrock, and George W. Furnas. SemNet: Three-

dimensional representations of large knowledge bases. In Raymonde Guindon, editor,

Cognitive Science and its Applications for Human-Computer Interaction, pages 201{

233. Lawrence Erlbaum, Hillsdale, NJ, 1988.

[12] George W. Furnas. Generalized �sheye views. In Proc. CHI'86, pages 16{23, Boston,

MA, April 1986. ACM.

[13] Geri Gay and Joan Mazur. Navigating in hypermedia. In Emily Berk and

Joseph Devlin, editors, Hypertext/Hypermedia Handbook, Software Engineering Se-

ries. McGraw-Hill, New York, 1991.

[14] M. Henke. Hypermedia in der medizin - die gestaltung der digitalen patientenakte

als hypermedium. In H. P. Frei and P. Sch�auble, editors, Hypermedia '93, Zurich,

Switzerland, pages 172{182, Berlin, mar 1993. Springer.

[15] Wolfgang Dalitz / Gernot Heyer. Hyper-G Das Internet-Informationssystem der 2.

Generation. dpunkt Verlag fuer digitale Technologie GmbH, Heidelberg, Oktober

1995.

[16] Ed Krol. The Whole Internet: User's Guide and Catalog. O'Reilly & Associates,

second edition, April 1994.

[17] Mark A. Linton, John M. Vlissides, and Paul R. Calder. Composing user interfaces

with InterViews. IEEE Computer, 22(2):8{22, February 1989.

[18] Alexander Willett Matthias Hemmje, Clemens Kunkel. Lyberworld - a visualiza-

tion user interface supporting fulltext retrieval. In W. Bruce Croft and C. J. van
Rijsbergen, editors, Proc. SIGIR '94. Springer-Verlag, July 1994.

[19] Hermann Maurer. Hyper-G: The Next Generation Web Solution. Addision-Wesley,
1996.

[20] Mark P. McCahill and Thomas Erickson. Design for a 3D spatial user interface for
Internet Gopher. In Proc. of ED-MEDIA 95, pages 39{44, Graz, Austria, June 1995.

AACE.

[21] Jakob Nielsen. Multimedia and Hypertext: The Internet and Beyond. Academic

Press, San Diego, CA, 1995.

[22] A. M. Pejtersen. Designing hypermedia representations from work domain properties.

In H. P. Frei and P. Sch�auble, editors, Hypermedia '93, Zurich, Switzerland, pages
1{29, Berlin, mar 1993. Springer.

[23] Mark Pesce. VRML: Browsing and Building Cyberspace. New Riders/Macmillan,

1995.

[24] Michael Pichler. Interactive browsing of 3D scenes in hypermedia: The Hyper-G 3D

viewer. Master's thesis, Graz University of Technology, Austria, October 1993.

104

[25] Michael Pichler, Gerbert Orasche, Keith Andrews, Ed Grossman, and Mark McC-

ahill. VRweb: A multi-system VRML viewer. In To appear in Proc. First Annual

Symposium on the Virtual Reality Modeling Language (VRML 95), San Diego, Cali-

fornia, December 1995.

[26] George G. Robertson, Stuart K. Card, and Jock D. Mackinlay. Information visual-

ization using 3D interactive animation. Communications of the ACM, 36(4):56{71,

April 1993.

[27] Luis Serra, Tat-Seng Chua, and Wei-Shoong Teh. A model for integrating multimedia

information around 3d graphics hierarchies. The Visual Computer, 7(5-6):326{343,

May/June 1991.

[28] Simon Shum. Real and virtual spaces: Mapping from spatial cognition to hypertext.

Hypermedia, 2(2):133{158, 1990.

[29] Pauline A. Smith and John R. Wilson. Navigating in hypertext through virtual
environments. Applied Ergonomics, 24(4):271{278, August 1993. Butterworth-
Heinemann Ltd.

[30] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, second edition, 1991.

[31] Joel Tesler and Steve Strasnick. FSN: The 3D File System Navigator. Silicon Graph-
ics, Inc., Mountain View, CA, 1992. Available by anonymous ftp from sgi.sgi.com

in directory sgi/fsn.

[32] John A. Waterworth and Gurminder Singh. Information islands: Private views of
public places. In Proc. of East-West International Conference on Multimedia, Hyper-

media, and Virtual Reality (MHVR'94), pages 201{206, Moscow, Russia, sep 1994.

105

