
Rethinking RespVis:
A Responsive Visualization Library with

Modern CSS

David Egger





Rethinking RespVis:
A Responsive Visualization Library with

Modern CSS

David Egger B.Sc.

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Computer Science

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 11 Dec 2024

© Copyright 2024 by David Egger, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/




Überarbeitung von RespVis:
Eine Bibliothek für Responsive Visualisierungen

mittels modernen CSS Methoden

David Egger B.Sc.

Masterarbeit

für den akademischen Grad

Diplom-Ingenieur

Masterstudium: Informatik

an der

Technischen Universität Graz

Begutachter

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 11 Dec 2024

Diese Arbeit ist in englischer Sprache verfasst.

© Copyright 2024 David Egger, sofern nicht anders gekennzeichnet.

Diese Arbeit steht unter der Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz.

https://creativecommons.org/licenses/by/4.0/




Abstract

Data visualization presents data in a graphical way, so as to make it easier and more efficient to
understand. Responsive web design promotes a set of techniques to make web pages responsive, i.e. able
to adapt to the characteristics of the end user’s device. Charts and visualizations embedded within a web
page must themselves also become responsive. In particular, this means adapting to the available display
space and to interaction modalities such as keyboard or touch.

RespVis is an open-source library for creating responsive visualizations. It is written in TypeScript with
the popular visualization library D3, and is grouped into multiple packages which are publicly available
on the npm registry. Chart creators with their own dataset and some experience in web development can
use the RespVis API to create responsive bar charts, scatter plots, line charts, and parallel coordinates
charts of their data. Chart developers with more experience in web development can customize the
standard RespVis charts or create their own new chart types.

The RespVis API makes it easy to apply some common responsive patterns. Chart components such
as title, axes, and legend can be positioned via powerful CSS layout techniques like Flexbox and Grid,
even though RespVis visualizations are pure SVGs. This is made possible due to a custom layout engine
working in the background. During this thesis work, dozens of updates and improvements were made to
RespVis, resulting in the current version, RespVis v3.





Kurzfassung

Data Visualization befasst sich mit der grafischen Darstellung von Daten, die so einfacher und effizienter
interpretiert werden können. In Responsive Web Design gibt es empfehlenswerte Muster, um Websites
responsive zu gestalten, d.h. Websites zu erstellen, die in der Lage sind, sich an die Charakteristiken
eines Endgerätes anzupassen. Diagramme und Visualisierungen, die in einer Website eingebettet sind,
müssen ebenfalls responsiv sein. Das bedeutet, dass sie sich an den verfügbaren Bildschirmplatz und die
vorhandenen Bedienungsmöglichkeiten eines Endgerätes wie Tastatur oder Touchscreen anpassen.

RespVis ist eine quelloffene Bibliothek für das Erstellen von responsiven Visualisierungen. Der Code
ist in TypeScript geschrieben, baut auf der populären Visualisierungsbibliothek D3 auf, und ist in mehrere
Softwarepakete gegliedert, die öffentlich auf der npm Registratur verfügbar sind. Diagrammautoren mit
Erfahrung im Bereich Webentwicklung können mit eigenen Datensätzen die API von RespVis verwenden,
um responsive Balkendiagramme, Streudiagramme, Liniendiagramme und Parallele Koordinaten Dia-
gramme zu erstellen. Diagrammautoren mit mehr Erfahrung im Bereich Webentwicklung können die zur
Verfügung gestellten RespVis Diagrammtypen individuell anpassen oder eigene, neue Diagrammtypen
erstellen.

Die RespVis API erleichtert die Anwendung von einigen gängigen responsiven Mustern. Diagramm-
komponenten wie Titel, Achsen und Legenden können mit mächtigen Layout-Techniken wie Flexbox und
Grid positioniert werden, obwohl RespVis Diagramme reine SVGs sind. Diese Besonderheit wird durch
die spezielle RespVis Layout Engine ermöglicht, die im Hintergrund arbeitet. Während der Erstellung
der Masterarbeit wurden dutzende Updates und Verbesserungen am Quellcode durchgeführt, woraus die
aktuelle Version, RespVis v3, resultierte.





Contents

Contents iv

List of Figures vi

List of Tables vii

List of Listings x

Acknowledgements xi

Credits xiii

1 Introduction 1

2 Web Technologies 3

2.1 HyperText Markup Language (HTML) . . . . . . . . . . . . . . . . . . . 3

2.2 Cascading Styling Sheets (CSS) . . . . . . . . . . . . . . . . . . . . . 4

2.3 JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Browser Web APIs. . . . . . . . . . . . . . . . . . . . . . . 4

2.3.2 JavaScript Module Formats . . . . . . . . . . . . . . . . . . . 5

2.4 TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Raster Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.6 Scalable Vector Graphics (SVG) . . . . . . . . . . . . . . . . . . . . . 7

2.7 D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.8 NodeJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.9 Rollup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.10 Gulp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.11 Storybook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.12 Responsive Web Design . . . . . . . . . . . . . . . . . . . . . . . . 12

2.12.1 Responsive Design Strategies . . . . . . . . . . . . . . . . . . . 13

2.12.2 Modern Responsive Design . . . . . . . . . . . . . . . . . . . 14

2.12.3 Avoiding Horizontal Scrolling . . . . . . . . . . . . . . . . . . 14

i



3 Responsive Visualization 17
3.1 Information Visualization . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Mobile Visualization . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Display Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Responsive Visualization. . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Responsive Visualization Patterns . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Visual Patterns . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Interaction Patterns . . . . . . . . . . . . . . . . . . . . . . 25
3.5.3 Data Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 RespVis v1 and RespVis v2 33
4.1 RespVis v1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 RespVis v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 RespVis v3 35
5.1 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Package Structure . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Gulp Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Self-Contained Examples . . . . . . . . . . . . . . . . . . . . 41
5.1.4 Live Documentation . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Library Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Naming Conventions . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Sub-Package Modules . . . . . . . . . . . . . . . . . . . . . 45
5.2.3 Component Hierarchy . . . . . . . . . . . . . . . . . . . . . 46

5.3 RespVis Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.1 Window Modules . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Toolbar Modules . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.3 Layouter Modules . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.4 Chart Modules . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.5 Data Series Modules . . . . . . . . . . . . . . . . . . . . . . 59
5.3.6 Axis Modules . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.7 Legend Modules . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.8 Marker Primitive Module . . . . . . . . . . . . . . . . . . . . 62
5.3.9 Label Modules . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.10 Element Modules . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.11 Scale Modules . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.12 Categories Module. . . . . . . . . . . . . . . . . . . . . . . 64
5.3.13 Breakpoints Modules . . . . . . . . . . . . . . . . . . . . . . 64
5.3.14 Responsive Property Modules. . . . . . . . . . . . . . . . . . . 66
5.3.15 Sequential Color Module . . . . . . . . . . . . . . . . . . . . 67
5.3.16 Zoom Module . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.17 Utilities Modules . . . . . . . . . . . . . . . . . . . . . . . 69

ii



5.4 RespVis Tooltip . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 RespVis Cartesian . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.6 RespVis Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.1 Bar Chart Modules. . . . . . . . . . . . . . . . . . . . . . . 77
5.6.2 Bar Base Series Modules . . . . . . . . . . . . . . . . . . . . 78
5.6.3 Bar Grouped Series Modules . . . . . . . . . . . . . . . . . . . 78
5.6.4 Bar Stacked Series Modules . . . . . . . . . . . . . . . . . . . 79
5.6.5 Bar Module . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6.6 Bar Label Module . . . . . . . . . . . . . . . . . . . . . . . 80

5.7 RespVis Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7.1 Scatter Plot Modules . . . . . . . . . . . . . . . . . . . . . . 81
5.7.2 Point Series Modules . . . . . . . . . . . . . . . . . . . . . . 81
5.7.3 Point Module. . . . . . . . . . . . . . . . . . . . . . . . . 82
5.7.4 Point Label Module . . . . . . . . . . . . . . . . . . . . . . 82
5.7.5 Radius Modules. . . . . . . . . . . . . . . . . . . . . . . . 83

5.8 RespVis Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.8.1 Line Chart Modules . . . . . . . . . . . . . . . . . . . . . . 83
5.8.2 Line Series Modules . . . . . . . . . . . . . . . . . . . . . . 84

5.9 RespVis Parcoord . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.9.1 Parallel Coordinates Chart Modules . . . . . . . . . . . . . . . . 85
5.9.2 Parallel Coordinates Series Modules . . . . . . . . . . . . . . . . 86

6 Outlook and Future Work 89

7 Concluding Remarks 91

A User Guide 93
A.1 PC and Mobile Interactions . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 Toolbar Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2.1 Filter Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.2 Download Tool . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2.3 Inspection Tool . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2.4 Chart Settings Tool . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Tooltip Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.4 Legend Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.5 Zooming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.6 Parallel Coordinates Chart Interactions. . . . . . . . . . . . . . . . . . . 101

B Chart Creator Guide 103
B.1 RespVis Patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.1.1 Visual Patterns . . . . . . . . . . . . . . . . . . . . . . . . 103
B.1.2 Interaction Patterns . . . . . . . . . . . . . . . . . . . . . . 105

iii



B.2 Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B.3 Scatter Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.4 Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.5 Parallel Coordinates Chart . . . . . . . . . . . . . . . . . . . . . . . 125

C Chart Developer Guide 133
C.1 Creating New Charts . . . . . . . . . . . . . . . . . . . . . . . . . 133
C.2 Customizing Standard Chart Types . . . . . . . . . . . . . . . . . . . . 136

D Maintainer Guide 139
D.1 Releasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
D.2 Importing and Exporting . . . . . . . . . . . . . . . . . . . . . . . . 140

D.2.1 Importing and Exporting TypeScript . . . . . . . . . . . . . . . . 140
D.2.2 Importing CSS . . . . . . . . . . . . . . . . . . . . . . . . 140

Bibliography 143

iv



List of Figures

2.1 Scaling Raster Graphics and Vector Graphics . . . . . . . . . . . . . . . . . 7
2.2 SVG Created with D3. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Responsive Breakpoint Diagram . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Responsive Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 V1: Scaling Entire Chart Down . . . . . . . . . . . . . . . . . . . . . . 21
3.3 V2: Repositioning Element Labels in Scatter Plot . . . . . . . . . . . . . . . 22
3.4 V3: Using Tooltips Instead of Element Labels . . . . . . . . . . . . . . . . . 22
3.5 V4: Rotating Axis Tick Labels . . . . . . . . . . . . . . . . . . . . . . 23
3.6 V5: Shortening Labels and Titles . . . . . . . . . . . . . . . . . . . . . 23
3.7 V6: Scaling Labels Between Minimum and Maximum Size . . . . . . . . . . . . 24
3.8 V9: Rotating Chart 90° . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.9 I1: Providing a Menu . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 I1: Providing a Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.11 I2: Filtering Dimensions and Records . . . . . . . . . . . . . . . . . . . . 28
3.12 I3: Supporting Zooming. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.13 D1: Data Generalization. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.14 D1: Data Generalization. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 D2: Data Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Sub-Package Dependencies . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Live Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Respvis Component Hierarchy . . . . . . . . . . . . . . . . . . . . . . 48
5.4 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 Statically Positioned Toolbar . . . . . . . . . . . . . . . . . . . . . . . 51
5.6 Filter Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.7 Download Modal . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.8 Inspection Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.9 Layout Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.10 Chart Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.11 Padding Wrapper Layout . . . . . . . . . . . . . . . . . . . . . . . . 58
5.12 Flipping Axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

v



5.13 Rotating Axis Labels . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.14 Shifting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.15 Breakpoint Property Interpolation . . . . . . . . . . . . . . . . . . . . . 68
5.16 Sequential Color Encoding . . . . . . . . . . . . . . . . . . . . . . . . 69
5.17 Data Series Tooltip. . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.18 Cartesian Padding Wrapper Layout . . . . . . . . . . . . . . . . . . . . . 74
5.19 Origin Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.20 Grid Lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.21 Inverted Cartesian Axis . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.22 Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.23 Grouped Bar Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.24 Stacked Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.25 Point Label Position Strategies . . . . . . . . . . . . . . . . . . . . . . 82
5.26 Responsive Bubble Radii . . . . . . . . . . . . . . . . . . . . . . . . 83
5.27 Multi-Series Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.28 Parallel Coordinates Chart . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Filter Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3 Download Modal . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.4 Toolbar Tooltip . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.5 Inspection Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.6 Data Series Tooltip. . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.7 Legend Highlighting . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.8 Legend Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.9 Zooming in Cartesian Charts . . . . . . . . . . . . . . . . . . . . . . . 100
A.10 Zooming in Parallel Coordinates Charts . . . . . . . . . . . . . . . . . . . 100
A.11 Parallel Coordinates Chart Equidistant Axes . . . . . . . . . . . . . . . . . 101
A.12 Parallel Coordinates Chart With No Equidistant Axes . . . . . . . . . . . . . . 101
A.13 Parallel Coordinates Chart Range Sliders. . . . . . . . . . . . . . . . . . . 102
A.14 Parallel Coordinates Chart Axis Inversion . . . . . . . . . . . . . . . . . . 102

B.1 Grouped Bar Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 107
B.2 Scatter Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
B.3 Multi-Series Line Chart . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.4 Parallel Coordinates Chart . . . . . . . . . . . . . . . . . . . . . . . . 126

C.1 Axis Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
C.2 Customizing a Bar Chart . . . . . . . . . . . . . . . . . . . . . . . . 137

vi



List of Tables

5.1 RespVis v3 Naming Conventions . . . . . . . . . . . . . . . . . . . . . 45

vii



viii



List of Listings

2.1 D3 Selection API . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Media Query Example . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Top-Level File and Directory Structure . . . . . . . . . . . . . . . . . . . 38
5.2 Sub-Package File and Directory Structure . . . . . . . . . . . . . . . . . . 39
5.3 Self-Contained Examples File and Directory Structure . . . . . . . . . . . . . . 42
5.4 Live Documentation File and Directory Structure. . . . . . . . . . . . . . . . 43
5.5 Chart Module Validation Logic . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Core Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Chart Layout CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8 Padding Wrapper Layout CSS. . . . . . . . . . . . . . . . . . . . . . . 58
5.9 Padding CSS Variables . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.10 Component Breakpoints Argument . . . . . . . . . . . . . . . . . . . . . 65
5.11 Component Breakpoints in Style Container Queries . . . . . . . . . . . . . . . 65
5.12 Component Breakpoints in Size Container Queries . . . . . . . . . . . . . . . 66
5.13 Title Argument as Responsive Value . . . . . . . . . . . . . . . . . . . . 67
5.14 Tick Orientation Argument as Breakpoint Property . . . . . . . . . . . . . . . 68
5.15 Tooltip Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . 71
5.16 Cartesian Directory Structure . . . . . . . . . . . . . . . . . . . . . . . 73
5.17 Cartesian Padding Wrapper Layout CSS . . . . . . . . . . . . . . . . . . . 73
5.18 Bar Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.19 Point Directory Structure . . . . . . . . . . . . . . . . . . . . . . . . 81
5.20 Line Directory Structure. . . . . . . . . . . . . . . . . . . . . . . . . 84
5.21 Parallel Coordinates Directory Structure . . . . . . . . . . . . . . . . . . . 85

B.1 Grouped Bar Chart: HTML . . . . . . . . . . . . . . . . . . . . . . . 108
B.2 Grouped Bar Chart: CSS . . . . . . . . . . . . . . . . . . . . . . . . 109
B.3 Grouped Bar Chart: TypeScript . . . . . . . . . . . . . . . . . . . . . . 110
B.4 Scatter Plot: HTML . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.5 Scatter Plot: CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.6 Scatter Plot: TypeScript . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.7 Multi-Series Line Chart: HTML. . . . . . . . . . . . . . . . . . . . . . 120
B.8 Multi-Series Line Chart: CSS. . . . . . . . . . . . . . . . . . . . . . . 121
B.9 Multi-Series Line Chart: TypeScript . . . . . . . . . . . . . . . . . . . . 122
B.10 Parallel Coordinates Chart: HTML . . . . . . . . . . . . . . . . . . . . . 127
B.11 Parallel Coordinates Chart: CSS . . . . . . . . . . . . . . . . . . . . . . 128
B.12 Parallel Coordinates Chart: TypeScript . . . . . . . . . . . . . . . . . . . 130

ix



C.1 Axis Chart Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.2 Axis Chart Validation. . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.3 Custom Bar Chart Class . . . . . . . . . . . . . . . . . . . . . . . . . 137

x



Acknowledgements

Major thanks go to my advisor, Keith Andrews, who always had an ear open for my many questions of
both technical and literal nature. Without him, this work only would have been an inferior version of the
actual work.

I am also indebted to Graz University of Technology, for the invaluable knowledge I could gather
through many years of studying. Thanks go to my colleagues, who always supported and accompanied
me during this time.

Lastly, I want to thank my friends, my family, and my girlfriend, from the deepest of my heart for their
endless support, and the patience I received from them. Completing this work would have been a lost
cause without their persistent care.

David Egger

Graz, Austria, 11 Dec 2024

xi



xii



Credits

I would like to thank the following individuals and organizations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2021].

• Figure 2.3 is used with kind permission of Keith Andrews, Graz University of Technology.

• Figure 3.1 is used with kind permission of Keith Andrews, Graz University of Technology.

xiii



xiv



Chapter 1

Introduction

The field of data visualization seeks to present data and information visually, so as to facilitate its rapid
assimilation and understanding [Andrews 2024]. Early figures in the field, like William Playfair and
Florence Nightingale, produced visual representations of data on paper [Infogram 2016]. Today, charts
and visualizations are largely viewed online on the web. Smartphones and tablets are also increasingly
displacing desktops and laptops as the viewing platform of choice. In the fourth quarter of 2023, already
54.67% of all web page views worldwide were requested from mobile devices [Statista 2023b].

Responsive web design refers to a set of techniques, which are used to create web pages and applications
capable of adapting to the characteristics of the end user’s device [Marcotte 2014]. These days, all web
design is responsive web design. Data visualizations capable of adapting to the different requirements of
desktops, tablets, smartphones, and other devices, are called responsive visualizations [Andrews 2018b].

This thesis presents RespVis v3 [Egger and Oberrauner 2024a; Egger and Oberrauner 2024b; Egger
2024j], the current version of RespVis, an open-source library for creating responsive visualizations.
RespVis v3 is written in TypeScript [Microsoft 2024b] and is built on top of D3 [Bostock 2024h], a
powerful low-level JavaScript visualization library. D3 works by injecting SVG or HTML nodes into the
DOM, binding data to these nodes, and defining the appearance of the nodes based on the bound data.
RespVis v3 provides an intuitive, uniform API for the creation of complete charts, but also allows chart
creators to access the underlying functionality. This includes overriding and explicitly customizing the
render routines of the provided charts.

Since the source code of RespVis v3 is written in TypeScript, library users can rely on full type support
when importing modules from the official RespVis v3 packages. RespVis v3 provides multiple packages,
which are publicly available on the npm registry [NPM 2023], from where they can conveniently be
installed using a NodeJS package manager.

While the API of RespVis v3 is more extensive than in previous versions, the custom layout mechanism
introduced in RespVis v1 remains a core feature. It allows chart creators to apply powerful CSS layout
techniques to elements contained in an <svg> element, which is generally not possible. Recommended
good practice is to use the custom layout mechanism to position and size higher-level chart components
like titles, legends, and axes via CSS. In contrast, elements in the drawing area should not use the custom
layout mechanism, since these elements typically must be positioned at exact coordinates depending
on the underlying data. The custom layout mechanism was slightly improved in RespVis v3, such that
alternating between standard SVG layout and the custom layout mechanism became possible at lower
nesting levels. This feature proved useful for positioning the titles of axes where they are contained inside
the drawing area of a chart, for example with a parallel coordinates chart.

A core feature introduced with RespVis v3 is the layout breakpoints API. The concise definition of
layout breakpoints and their reusability in CSS via style container queries makes them a powerful tool
and opens up new possibilities for applying responsive patterns to RespVis visualizations.

1



2 1 Introduction

To avoid any confusion, some frequently occurring terminology is clarified at this point. RespVis
identifies four specific kinds of user. A chart end user (or simply end user) is a person who does not
necessarily know anything about the technical details of RespVis, but views and explores charts created
with RespVis. A chart creator (or chart author)) is a user with some web developer experience, who
has some data and wishes to create a responsive chart with that data using the RespVis API. A chart
developer is a more experienced web developer, who wishes to customize the standard RespVis charts or
create their own new charts. Finally, a maintainer is a custodian of the RespVis library itself.

In terms of datasets, RespVis typically deals with tabular (spreadsheet) data in the form of records (or
data points), each represented by a row in the table, and dimensions (or variables), each represented by
a column in the table. A data series is a set of data points which belong together. In RespVis v3, the
data points in a data series can be specifically grouped into categories. For example, a multi-line chart
with measurements from three regions would be handled as one data series with three categories and one
polyline would be drawn for each category.

The rest of this thesis is structured as follows. Chapter 2 discusses some of the modern web technologies
used in the implementation of RespVis, beginning with the core technologies of the web, HTML, CSS, and
JavaScript, progressing to more specific tools like TypeScript, NodeJS, Gulp, and Storybook, and ending
with an explanation of responsive web design. Chapter 3 continues with an overview of information and
data visualization, and specific discussion of responsive data visualization.

Chapter 4 describes the previous versions of RespVis, which were used as a starting point for this work.
They are referred to as RespVis v1 [Oberrauner 2022b; Oberrauner 2022a] and RespVis v2 [Egger and
Oberrauner 2023a]. Chapter 5 contains the main body of the thesis, describing the dozens of updates
and improvements made to RespVis during this thesis work to produce RespVis v3. It includes detailed
explanations of the project structure, library design, and all available RespVis packages. The thesis
concludes with an outlook and ideas for future work in Chapter 6.

The thesis has four appendices. Appendix A contains a User Guide for end users viewing and exploring
responsive charts created with RespVis v3. Appendix B contains a Chart Creator Guide for chart creators
wishing to use the standard charts provided by RespVis v3 with their own datasets. It describes how
to apply various responsive patterns, and includes a complete example of each of the four chart types
available in RespVis v3. Appendix C contains a Chart Developer Guide for developers wishing to modify
existing charts or create their own charts. Finally, Appendix D contains a Maintainer Guide for subsequent
maintainers and contributors, who might work on RespVis in the future.



Chapter 2

Web Technologies

RespVis is a library conceived to be used on the web. As such, it makes use of the core technologies of the
web: HTML, SVG, CSS, and JavaScript. RespVis is actually implemented in TypeScript, a strictly typed
superset of JavaScript. RespVis is heavily dependent on D3, the widely used JavaScript library for data
visualization. Visualizations on the web are a form of web graphics. The official vector graphics standard
of the web is Scalable Vector Graphics (SVG). The purpose of RespVis is the creation of responsive
visualizations, which are rendered as SVGs.

Many technologies are used as developer dependencies to improve the development workflow when
dealing with the source code, the curated set of self-contained examples, and the live documentation.
NodeJS and npm are used for dependency management and running the tools Gulp, Rollup, and Storybook.
Gulp is used for automating and orchestrating tasks like the bundling of the source code via the module
bundler Rollup. Storybook is used for creating RespVis’ live documentation.

2.1 HyperText Markup Language (HTML)
HTML is a markup language used to describe the content and structure of a web page. Some HTML
elements are capable of containing other elements, leading to a tree hierarchy of elements. It was
introduced in 1993 by Tim Berners-Lee and originally designed to organize scientific information. The
core functionality provided by HTML is its capability of marking up structured text and connecting
documents over a digital channel using links (HyperText) [Berners-Lee 1999; Gillies and Cailliau 2000;
Vujovic 2024].

HTML was soon adopted, and its potential was recognized by various companies and institutions.
This eventually led to the foundation of the World Wide Web Consortium (W3C) in October 1994 [W3C
2024b] and the subsequent publication of the HTML 2.0 standard as RFC 1866 in November 1995
[Berners-Lee and Connolly 1995].

A major step forward was the specification of HTML5 in October 2014 [W3C 2014], which significantly
extended and improved the features of HTML. The last versioned specification was HTML 5.2 in
December 2017 [W3C 2017]. In May 2019, the W3C passed control over the HTML standard to the Web
Hypertext Application Technology Working Group (WHATWG) [WHATWG 2024b]. HTML is now a
living standard, which is continuously updated [WHATWG 2024a].

HTML is parsed and interpreted by web browsers, which create an in-memory representation of the
parsed markup called the Document Object Model (DOM) [MDN 2023d]. Since HTML5, web browsers
are capable of parsing SVG elements as well as HTML elements and adding them to the DOM. Browsers
provide Application Programming Interfaces (APIs) allowing DOM elements to be manipulated via
JavaScript, as discussed in Section 2.3.

3



4 2 Web Technologies

2.2 Cascading Styling Sheets (CSS)
CSS is a declarative stylesheet language, proposed in 1994 by Håkon Wium Lie, and officially standardized
in 1996 by the W3C as CSS 1 [W3C 1996]. The motivation of Lie was to take the existing idea of
separating structure from presentation by introducing a separate language for the presentation aspect [Bos
2016]. In CSS, the presentation of the markup can be controlled by specifying CSS rules. A CSS rule
consists of two parts: a selector specifying to which elements a rule should be applied, and a set of
declarations (wrapped in curly braces) to be applied to the selected elements. Each declaration consists
of a property and a value. Depending on which values are assigned to which properties, the presentation
of an element changes [MDN 2024k]. A core feature of CSS is its capability to apply a sophisticated
cascading algorithm, to detect which CSS rules have precedence over others [MDN 2024c].

CSS 2 was defined in May 1998 [W3C 1998], followed by CSS 2.1 in June 2011 [W3C 2011a]. Rather
than being a single, monolithic standard, CSS 3 was divided into numerous separate documents (modules),
which are progressed and standardized independently, and are collected into annual “snapshots” [W3C
2024a].

The most common ways of adding CSS to a web site are the addition of <link> elements referencing
external stylesheets, and the usage of inline styles specified directly in the markup. The parsing and
interpretation of CSS by modern browsers is invoked during the creation of the DOM. When the HTML
parser of the browser comes across an element linking to an external stylesheet or an element with an
inline style, the creation of the CSS Object Model (CSSOM) is initiated. The CSSOM is the result of
parsing and interpreting all CSS contained in a document. The styles are applied by constructing the
Render Tree out of the DOM and CSSOM. The Render Tree represents all actually visible elements of a
loaded document and their current properties [Irish and Garsiel 2011].

2.3 JavaScript
Before JavaScript was conceived, no interactivity could be added to web sites. Browsers could only
interpret HTML for displaying content and handle simple events like form submissions in a limited
manner. The original prototype of JavaScript was developed by Brendan Eich at Netscape, under the
name LiveScript, to provide a solution for these limitations for the Netscape Navigator 2 web browser.
Soon, other companies began to implement their own versions of JavaScript to add interactivity to their
browsers [Manik 2020].

It became clear that the language needed to be standardized such that web developers could be sure their
client-side code works in all browsers. This was the birth of the ECMAScript [Ecma 2024], standardized
by the then European Computer Manufacturers Association (today known as Ecma International) in 1997.
This language specification solely concerns the core constructs of the JavaScript language like language
syntax, data types, objects, and arrays.

JavaScript was designed to be executed in the runtime environment provided by web browsers like
Google Chrome, Firefox, and Safari. More recently, server-side runtime environments have been de-
veloped for JavaScript, such as NodeJS, Deno, and Bun. A JavaScript runtime environment has a
JavaScript engine to interpret and execute JavaScript code, and all JavaScript engines strive to comply
with the current ECMAScript version published annually by Ecma International.

2.3.1 Browser Web APIs
Depending on the runtime environment being used, additional APIs are made available to JavaScript.
Inside a web browser, these are called Web APIs. Organizations like the W3C [W3C 2024b] and
WHATWG [WHATWG 2024b] publish API standards recommended to be implemented by browsers,
but browser vendors choose whether to implement a particular API or not, depending on various factors
like usefulness, demand, and implementation difficulty.



JavaScript 5

A list of browser Web APIs is maintained by MDN [2023f]. Among the most important is the DOM-
API, which is used to access and manipulate DOM nodes, as discussed in Section 2.1. The DOM-API
is a collection of interfaces describing all existing element types in the DOM. Accessing properties
and functions defined by these interfaces in JavaScript is reliably supported by browsers. The DOM-
API comprises the HTML-DOM-API [MDN 2024i] and the SVG-DOM-API [MDN 2024j], which are
collections of interfaces describing all elements in HTML documents and SVG documents respectively.

2.3.2 JavaScript Module Formats

In the beginning, JavaScript was conceived as a scripting language for executing simple tasks at the
client-side of web sites. However, over the years, more functionality was included in the language, and it
became capable of executing complex procedures. With the release of NodeJS [OpenJS 2024b], JavaScript
became a viable alternative for backend (server-side) applications, making it possible to create full stack
applications entirely in JavaScript. Today, JavaScript is the most widely used programming language in
the world [Statista 2023a]. Apart from the web, it is also commonly used in game development, desktop
applications, and data visualization, to name only a few.

Due to the massive growth of the language, there was high demand among developers for code
modularization. This led to the development of standard formats for collecting JavaScript code into
modules. There are now five principal formats for JavaScript modules:

• Immediately Invoked Function Expressions (IIFE): The IIFE module pattern was conceived to solve
the problem of global scope pollution. In the early days of JavaScript, there was no standard syntax
for modularization. In IIFE, all code in the module is wrapped in an anonymous function, which is
called immediately and saved into one global variable. This variable represents and holds the API
of the module, and can be called later by other scripts in a controlled manner [Dixin 2024].

• CommonJS (CJS): CJS is a module pattern founded under the lead of Kevin Dangoor in 2009, with
the goal of easing the organization of code in large-scale projects, especially server-side [Theekshana
2024]. It was quickly adopted by NodeJS, which was released later in the same year. For systems
applying the pattern, each JavaScript file is interpreted as CJS module. Each module must provide
a module.exports property, declaring the properties visible to other modules. Modules can import
other modules using the require function. CJS applies synchronous module loading, which comes
with a guarantee of dependencies being always loaded before usage, but may also lead to performance
issues, especially when loading dependencies conditionally or in loops.

• Asynchronuous Module Definition (AMD): AMD is a module pattern designed to be used on the
client-side, where asynchronous module loading is required for performance reasons. Its API
specification defines a single function define for defining a dependency array and the API of a
module as factory function. Loading modules should be achieved by using the reserved require
keyword [AMD 2016]. The most prominent implementation of the AMD pattern is the module
loader RequireJS [RequireJS 2024].

• Universal Module Definition (UMD): UMD emerged from the need for libraries to be independently
usable in all used module environments. The idea is to make use of an IIFE, which checks for the
current environment (AMD, CJS, or as browser globals) and, based on that, defines the module in
an appropriate way [UMD 2024].

• ECMAScript Modules (ESM): With the proliferation of different module patterns, it was high time
for a modularization system to be standardized as part of the native JavaScript syntax [MDN 2024d].
This was achieved with the introduction of ESM as part of ECMAScript2015 [Ecma 2015]. ESM
modules exactly define their dependencies to other modules using the import keyword and their API
to other modules using the export keyword. Today, all major browsers support ESM modules. They
can be included in HTML as <script> elements with their type attribute set to module.



6 2 Web Technologies

2.4 TypeScript
In its early days, JavaScript was used mainly to add a small amount of interactivity to web sites. For this
reason the language was invented to be dynamically typed. In dynamically typed languages, variable types
are checked at runtime, meaning there is no need to explicitly define a variable’s type in its definition.
Furthermore, the variable type can change dynamically multiple times, which is possible due to type re-
checking at runtime. The advantages of a dynamically typed language like JavaScript are great flexibility
and concise and easy-to-write code [BairesDev 2024].

As explained in Section 2.3, JavaScript evolved dramatically over the years, becoming a general purpose
language usable for creating large-scale frontend and backend applications. However, the language is
not well-suited for implementing these kinds of applications due to its dynamic typing. This lead to the
invention of TypeScript, a statically-typed superset of JavaScript, which was first released in 2012 by
Microsoft [Jackson 2012].

TypeScript essentially provides two tools: the TypeScript compiler tsc, and the TypeScript standalone
server tsserver [Vanderkam 2024, page 27]. The compiler, which can be configured by creating a
tsconfig.json file, is used to compile TypeScript into JavaScript, which is subsequently executed in a
runtime environment. This means any production code written in TypeScript is compiled beforehand
and executed as plain and pure JavaScript, effectively leading to no additional computational cost when
choosing TypeScript over JavaScript. One of the main features of TypeScript is its easy migration
to JavaScript applications, since all syntactically valid JavaScript programs are also syntactically valid
TypeScript programs. The rules specified in the tsconfig.json file determine which code should be
included in the type-checking process, and how strict the type-checking process should be. The major
benefit of type-checking is that errors can be caught at compile time, leading to better quality code.

The second main reason to use TypeScript are the language services provided by the TypeScript
standalone server [Vanderkam 2024, page 27]. Using these services greatly improves the workflow when
developing large-scale applications. The services include autocompletion, error checking, enhanced
refactoring, and code navigation. A TypeScript developer makes use of these services by using an
Integrated Development Environment (IDE) configured to communicate with the TypeScript standalone
server.

2.5 Raster Graphics
In the early days of HTML, text was the only content of web pages. Soon, the web community began to
realize how useful it would be to embed multimedia like images, audio, and videos into web pages. This
resulted in the invention of the <img> element, which was first released in the Mosaic web browser in
1993, and later officially standardized as part of HTML2.0 in 1995 [Hoffmann 2017]. This new element
made it possible to embed raster graphics next to the text of a web page, at first in the form of GIF images.

A raster graphic stores the information of an image by defining a two-dimensional grid, where each
grid cell contains color information and is called a pixel. The quality of a raster graphic is determined
by its resolution and color depth [Pickle 2023]. Having a high resolution, i.e. many pixels, and deep
color depth results in smooth color transitions, enhancing the overall quality of an image. However, with
increasing quality, the file size increases too. This can pose a problem, especially in web development
where files should be as small as possible to speed up loading times.

To address this issue, different compressed raster graphic formats were conceived. The most prominent
ones are Joint Photographic Experts Group (JPEG) and Portable Network Graphics (PNG). JPEG is the
most used type on the web, since it provides a good trade-off between quality and file size. The downside
of JPEG are the artifacts caused by its lossy compression algorithm, which accumulate if the image is re-
edited. PNG images, in contrast, are saved using a lossless compression algorithm, but with significantly
larger file sizes [Weinreb 2019]. Recently, more advanced image formats with even better compression



Scalable Vector Graphics (SVG) 7

(a) Original raster graphic. (b) Scaled raster graphic.

(c) Original vector graphic. (d) Scaled vector graphic.

Figure 2.1: Scaling up a raster graphic leads to aliasing effects and a blurred appearance, while an
equivalent, scaled up vector graphic remains crisp. [Images created by the author of this thesis.]

and quality have started to emerge and be supported by web browsers, including WebP, AVIF, and JPEG
XL [Osmani 2021].

2.6 Scalable Vector Graphics (SVG)
In contrast to raster graphics, vector graphics are not defined by a static raster of pixels, but use math-
ematical equations to define the shapes and colors of a graphic in a two-dimensional coordinate system.
This comes with two major advantages compared to raster graphics: smaller file size, and automatic
crisp scalability, independent of the graphic’s resolution. Figure 2.1 demonstrates the negative effects of
scaling up a low-resolution raster graphic compared to the equivalent scaled up vector graphic.

Using vector graphics on the web became possible with SVG. SVG is an XML-based markup language
standard for vector graphics, which has been continuously improved since the late 1990s by the SVG
working group [W3C 2010]. Since SVGs are XML-based, they can be edited with both text editors, and
graphical drawing editors such as Adobe Illustrator and Inkscape.

Like HTML, SVG is parsed by browsers to create and maintain a DOM from the parsed SVG elements.
SVG is specifically designed to work well with other web standards like HTML, CSS, and JavaScript.
For example, complete SVG documents can be embedded into HTML documents without additional
adjustments. The concept of XML namespaces avoids possible naming collisions between elements
of different XML dialects, such as the <title> element which exists in both the HTML and SVG
specifications [MDN 2024f].

The appearance and position of SVG elements can be defined in three ways. The first method is to set
the attributes of SVG elements directly in the markup, which exhibits the lowest specificity. The second
method is to specify attribute values via CSS. This approach is only applicable to so-called presentational
attributes, a subset of all SVG attributes, and has a higher specificity than the first approach. The third



8 2 Web Technologies

method is to use inline styles, which like the second approach is only applicable to a subset of SVG
attributes, but has the highest specificity.

SVGs can be easily made interactive. This is achieved by combining the SVG-DOM-API, a dedicated
API for manipulating SVG elements, with the possibility of assigning event listeners to SVG elements.
Both of these features are supported by all major browsers.

The first SVG standard was SVG 1.0 in 2001 [W3C 2001]. SVG 1.1 was specified in 2003 [W3C
2003], and its second edition SVG 1.1 (Second Edition) in 2011 [W3C 2011b]. Modern web browsers
have broad support for SVG 1.1 (Second Edition). SVG 2 has been a W3C Candidate Recommendation
since October 2018 [W3C 2018], but has only partially been implemented in modern web browsers,
and doubts persist whether it will ever become a full W3C Recommendation with wide browser support
[Coyier 2016].

The various advantages of SVGs make it the perfect medium for creating responsive visualizations on
the web. They can be scaled without loss of quality, have a small file size, can easily be made interactive
using Web APIs, live directly in the DOM, and allow the exact positioning of elements.

2.7 D3
D3 [Bostock et al. 2011; Bostock 2024h] is a powerful, low-level JavaScript visualization library. It differs
from traditional charting libraries, since no API for creating complete charts is provided. Instead, recipes
show how to bind data to marks, which are composed to form various chart types. D3 also provides a
wide range of utility functions for many use cases. The library follows a poly-repository architecture by
grouping related utility functions into separate repositories. The code of each repository is provided as a
package on the npm registry. This section describes the D3 packages used by RespVis v3. The book by
Wattenberger [2019] is an excellent and extensive resource for a deep dive about creating visualizations
with D3.

D3 enables the manipulation of DOM elements via its SelectionAPI, which is part of the d3-selection
package [Bostock 2024e]. Selections of DOM elements can be created using the functions Selection.se
lect, Selection.selectAll, Selection.selectChild, and Selection.selectChildren and passing selector
strings as arguments. The Selection.data function can be used in multiple ways to bind data to selections.
A common practice is to pass an array of data objects, where each object is bound to an element. The
mapping between data objects and elements can be specified as a key function. By default, the array
index of a data object is used as the key. The Selection.data function can be called repeatedly to update
the underlying data. By subsequently calling Selection.join on a selection, new elements can be created
for previously non-existent data, and old elements, whose data was removed in the data update, can be
removed. This procedure, called a D3 data join, results in intermediate enter, update, and exit selections
and a join selection, containing the elements existing in the DOM after the data update.

Selections also provide modification functions like Selection.classed, Selection.attr, and Selectio
n.style to modify elements of a selection. In RespVis v3, selections are omnipresent in render routines.
Listing 2.1 demonstrates how the DOM can be manipulated via D3 selections. The resulting SVG is
shown in Figure 2.2. As can be seen, D3’s API exploits the advantages of method chaining to enable
developers to write more concise code. The Selection.callmethod is used to call any function expecting
a selection as input argument, without interrupting method chaining.

D3’s d3-transition package [Bostock 2024f] provides the API for interacting with D3 transitions.
Transitions can be created by calling the Selection.transition function. A transition can be used
similarly to a selection. The difference is that modification functions, which conduct changes to the
DOM, are animated rather than being applied instantly. Furthermore, certain methods provided by
selections like Selection.data and Selection.join are not available for transitions. In RespVis v3,
transitions are used to animate DOM changes of labels and markers in the drawing area.



D3 9

1 export function renderCircles() {
2 const width = 400
3 const height = 100
4 const offset = 100
5 const circles = [{
6 size: 5,
7 color: ’red’,
8 }, {
9 size: 10,

10 color: ’green’,
11 }, {
12 size: 15,
13 color: ’blue’,
14 }]
15
16 function printDimension(selection: Selection) {
17 console.log(selection)
18 }
19
20 const circleS = d3.selectAll(’.svg-wrapper’)
21 .data([null])
22 .join(’svg’)
23 .attr(’viewBox’, ‘0 0 ${width} ${height}‘)
24 .classed(’svg-wrapper’, ’wrapper’)
25 .call(printDimension)
26 .selectAll(’.circle’)
27 .data(circles)
28 .join(’circle’)
29 .attr(’fill’, d => d.color)
30 .attr(’cx’, (d, i) => offset / 2 + i * ((width - offset) / (circles.length - 1))

)
31 .attr(’cy’, ‘${height / 2}‘)
32 .attr(’r’, d => d.size)
33 }

Listing 2.1: Using D3’s Selection API to create a simple SVG containing three colored circles. The
output is shown in Figure 2.2.

Figure 2.2: An SVG containing three colored circles. The graphic was produced by the code in
Listing 2.1. [Image created with D3 [Bostock 2024h] by the author of this thesis.]



10 2 Web Technologies

The d3-dispatch package [Bostock 2024b] allows for registering and dispatching named callbacks. In
contrast to DOM events, which involve the event queue and asynchronous execution of event listeners, the
callbacks registered by d3.dispatch and Selection.dispatch are executed immediately when dispatching
them. In RespVis v3, the D3’s dispatch system is mainly used to manually trigger re-renders.

The d3-scale package [Bostock 2024d] provides various functions for creating Scale objects, which
map one domain of values to another. In most cases, scales are used for mapping input data to a visual
representation. The mapping between data values and screen position is the most frequent use case of
scales in RespVis v3. However, scales are also used for mapping a numerical dimension to a color range,
for instance to color-code data points in scatter plots.

The d3-axis package [Bostock 2024a] provides convenient utility functions for creating axis compon-
ents. The functions axisTop, axisBottom, axisLeft, and axisRight are used to create Axis objects with
different orientation configurations. The functions expect a scale to be passed as an argument for the
creation of an axis object, which can further be configured to customize the desired visualization of axis
ticks. Axis objects are also functions. When calling an axis object as a function and passing a selection
of <g> elements, the <g> elements are populated with all visual elements of the axis. In RespVis v3, the
utility functions of the d3-axis package are heavily used, since all provided chart types contain axes.

The d3-drag [Bostock 2024c] and d3-zoom [Bostock 2024g] packages provide a convenient way for
adding drag and zoom interactions to selections. The functions d3.drag and d3.zoom create drag and
zoom behavior objects respectively, which are also functions. To handle drag and zoom events, event
listeners can be directly attached to these behavior objects. The first argument of the event listeners are
event objects, which provide useful data for event handling. The behavior objects are finally attached to
selections by making use of the Selection.call function. RespVis v3 makes use of the d3-drag package in
the render routine of the parallel coordinates chart to enable dragging and dropping axes and interaction
elements. The d3-zoom package is used in the render routines of all charts to enable zooming into axes
with a numerical domain.

2.8 NodeJS
NodeJS [OpenJS 2024b] is a server-side runtime environment for JavaScript. With the advent of NodeJS,
JavaScript became a viable alternative for backend (server-side) systems, making it possible to create full
stack applications entirely in JavaScript. The first version of NodeJS adopted the CJS module pattern
natively for code modularization. Nowadays, developers can freely choose between CJS and ESM. For
more information about module formats, see Section 2.3.2.

Backend systems must be able to handle multiple requests concurrently. This is typically achieved
by creating multiple threads, which was not possible in JavaScript for a long time. JavaScript is an
asynchronous, event-driven language requiring an event loop to function properly. The event loop
manages asynchronous operations and must be provided by runtime environments like NodeJS. NodeJS
exploits the asynchronous nature of JavaScript to solve the concurrency problem by providing an API
for loading off computational costly I/O tasks to the system kernel [Ostrowski 2023]. Since version 12,
NodeJS is capable of running multiple threads in parallel using worker threads. These threads can be
spawned by the main thread to offload computationally costly non-I/O tasks. Other features of the NodeJS
runtime environment include built-in APIs for HTTP and file operations.

NodeJS comes with a default package manager called Node Package Manager (npm) [NPM 2024a],
which manages the installation and sharing of dependencies for NodeJS applications. Today, npm still
requires and runs on top of NodeJS, but its usage is no longer limited to NodeJS applications. The official
npm registry [NPM 2023] comprised over 2.1 million packages in 2022 [OpenJS 2024a], making it the
world’s largest package system. It contains packages for countless use cases like CLI tooling, frontend
libraries, backend service libraries, JavaScript utility libraries, and testing libraries.



Rollup 11

Over recent years, competing package managers for the node ecosystem were released. The most
prominent ones are Yarn [Yarn 2024] and pnpm [pnpm 2024]. These package managers are used
similarly to npm, but may achieve better results in terms of performance, security, and disk efficiency.

2.9 Rollup
Rollup [Rollup 2024] is a JavaScript module bundler. The purpose of module bundlers is to convert
complete JavaScript codebases, which may consist of an arbitrary number of files and have an arbitrary
number of third-party dependencies, into single files called bundles [Gardón 2022]. This comes with
many advantages.

First, bundlers greatly improve the performance of web applications. Complex JavaScript applications
should be structured and organized in meaningful named directories and files to enhance the development
workflow. However, using many files in production requires browsers to send many requests, one request
per file to be precise. Furthermore, the transmitted files will unnecessarily contain unused or dead code,
increasing the load time of the scripts. Bundlers solve these problems by creating a dependency graph
of a project, traversing these dependencies, and including only the actually needed functionality in a
single bundle, which can be sent to clients via a single request. Rollup especially excels in dead code
elimination, which is also called tree shaking. It is noteworthy, that tree shaking only works for ESM
modules, which are discussed in Section 2.3.2.

The second feature coming with module bundlers is extensive control over different output formats.
In RespVis v3, Rollup and its plugins are instructed to produce multiple bundles in different module
formats. Furthermore, all bundles are created once with third-party dependencies included, and once
without third-party dependencies. This is especially useful for large libraries, since it allows library users
to choose which parts of the library they need for their projects.

2.10 Gulp
Gulp [Gulp 2024] is a task runner, which automates complex procedures by defining public and private
tasks in plain JavaScript or TypeScript, in a file called gulpfile.js or gulpfile.ts (the Gulpfile). Tasks are
declared as asynchronous functions and can be composed to be executed in both serial or parallel. Private
tasks can be imported by the Gulpfile, which makes it possible to outsource private tasks to separate files
to achieve a higher degree of readability. A public task has to be exported from the main Gulpfile and can
be invoked via the command line using the gulp and gulp-cli packages. Gulp uses NodeJS as its runtime
environment. Typical use cases of Gulp include the efficient automation of file operations, orchestration
of bundling tools like Rollup, and setting up development servers for live editing of code.

2.11 Storybook
Storybook [Storybook 2024a] is an open-source frontend tool for developing, testing, and documenting
UI components. This is achieved by implementing so-called stories, where each story describes exactly
one state of a UI component. Storybook can be installed using a node package manager, as discussed in
Section 2.8. Storybook can be used in projects using popular frameworks like React, Angular, and Vue,
but also works with plain HTML and JavaScript. The Storybook application itself is built using React
[Meta 2024] and can be served locally via command line or built as static files, which can be served from
a web server without further adjustment. A Storybook application is structured in two UI components:
the Manager and the Preview [Storybook 2024b]. While the Manager component is responsible for rendering
the UI components inherent to the Storybook application, the Preview component is an isolated iframe,
rendering the stories defined in the project.



12 2 Web Technologies

1 @media only screen and (max-width: 40rem) {
2 // styling for narrow screens
3 }
4
5 @media only screen and (min-width: 40rem) and (max-width: 60rem) {
6 // styling for medium screens
7 }
8
9 @media only screen and (min-width: 60rem) {

10 // styling for wide screens
11 }

Listing 2.2: Media queries for three viewport sizes, with breakpoints at 40 and 60 rem.

By default, Storybook finds all stories inside a project automatically by searching for files with
the ending *.stories.ts. Storybook also provides the possibility to include Markdown JSX (MDX)
files [MDX 2024], which are markdown files capable of interpreting JavaScript XML (JSX). JSX was
introduced by Meta for writing components in XML-like syntax in JavaScript [Meta 2022]. Using MDX
files in Storybook makes it possible to write documentation with embedded React components. This
allows for great flexibility when composing documentation out of texts and interactive elements like
charts.

2.12 Responsive Web Design
In 2010, Marcotte [2010] published his article entitled “Responsive Web Design”, which was the catalyst
for this new design approach to web sites and applications. The intention was to design only once for all
kinds of devices, and to serve the same code from the same URL to all devices. A year later, Marcotte
[2011] expanded on the article with a book of the same title.

Marcotte described three core technical concepts for responsive web design:

• Flexible Grids: The width and height of container elements should be defined in relative CSS units
such as % and em, rather than absolute units such as px. Font sizes should also be specified in relative
units such as em or rem, depending on whether the font sizes should cascade or not.

• Flexible Images: Images and other media elements should adapt their size to the available space, for
example by specifying max-width: 100%;.

• Media Queries: Media queries were introduced in CSS3 and allow selected styles to be applied
if certain conditions are met. In most cases, such conditions query the current viewport width,
although other factors like aspect ratio, screen orientation, or screen resolution can also be queried.
Listing 2.2 shows media queries for three layout widths.

Media queries with viewport widths are often used to define layout breakpoints, at which the screen
layout changes. For example, as shown in Figure 2.3, setting layout breakpoints at 40rem and 60rem
defines three layout widths: narrow, medium, and wide. This could be used to implement a one-column
layout for narrow screens (<40rem), a two-column layout for medium width screens (between 40rem and
60rem), and a three-column layout for wide screens (>60rem).

For a web page or application, the viewport is the area of the page or application visible to the user
[W3Schools 2023]. The viewport depends on the display properties of the device and the screen real
estate used by the web browser, as well as on the size of the browser window. Paddings and margins
sometimes have to be reduced on narrower screens, and font sizes may have to be adjusted to the current
viewport too. Some elements may have to be reordered or removed, depending on the initial structure



Responsive Web Design 13

40rem 60rem

header

global-nav

stories

specials

footer

narrow medium wide

Figure 2.3: A responsive breakpoint diagram. Setting layout breakpoints at, say, 40 rem and 60 rem
provides for three different layout widths: narrow, medium, and wide. The layout scales smoothly
between breakpoints and changes at a breakpoint. [Used with kind permission of Keith Andrews.]

of the user interface. Wider screens may also pose problems, like elements becoming too large or lines
of text becoming too long. This is especially problematic for paragraphs of text, since lines longer than
around 75 characters are harder to read [Rendle 2019].

2.12.1 Responsive Design Strategies

In the early days of the web, developers designed applications only for desktops and laptops. Therefore,
it is not surprising that when web browsers became available for mobile devices, the first strategy was
to adapt a design for a desktop device to also fit a mobile device. This design strategy is known as
desktop-first design.

As the number of mobile devices out-shipped the number of desktop and laptop devices in 2010, a
rethinking of the design strategy started. Web designers began to design their applications for narrower
screens first, later ensuring that the design responded well to make use of the extra space available on
wider devices. This strategy became known as mobile-first design [Wroblewski 2011].

The increasing usage of the mobile web led to a strategy which went even further, with the objective to
solely design for mobile devices, so-called mobile-only design. This strategy can make sense for projects
which are clearly dominated by mobile devices, like location-based services, but may be detrimental to
user experience [Budiu and Pernice 2016].

Perhaps the best strategy is to define a number of logical layout widths (say narrow, medium, and wide)
using layout breakpoints like those in Figure 2.3, and to design for all of them in parallel. A good name
for it would be everything-in-parallel design.



14 2 Web Technologies

2.12.2 Modern Responsive Design

Over ten years have passed since the term responsive web design was first used [Marcotte 2010]. Naturally,
the web continued to evolve and new tools for creating responsive web applications were created. In his
online article, Shadeed [2023] discusses the current state of responsive web design in 2023. The core
message is to reduce the number of media queries and instead use more recent CSS layout techniques
like Flexbox [MDN 2023a] and Grid [MDN 2023b], and viewport units [MDN 2023c]:

• The Flexbox property flex-wrap can be used to make elements fill up the available space, and
realign themselves automatically into additional rows if space becomes too narrow.

• CSS Grid layout allows elements to be placed in a 2d grid, with sizing according to a variety of
criteria, such as auto-resizing for columns, for example:

.grid {
grid-template -columns: repeat(auto-fit, minmax(10rem, 1fr));

}

Here, the columns will always have a minimum width of 10rem. If the grid container grows enough to
fit another column without breaking the 10rem constraint, the number of columns will automatically
increase. A more detailed explanation is given by Soueidan [2017].
Another possibility is to explicitly assign template areas for specific named elements, like this:

grid-template -areas: "a a a"
"b c c"
"b c c";

• With the introduction of CSS comparison functions, another tool for increasing the fluidity of layouts
became available. For example, the clamp function allows font sizing to fluidly change between a
minimum and maximum size:

h1 {
font-size: clamp(2rem, 2rem + 0.5vw, 3rem);

}

• Size container queries are similar to media queries, but refer to the size of the parent element
(container), rather than the viewport. This is often what is wanted, so size container queries can be
expected to replace media queries for responsive layout. Container query units (cqw, cqh) work like
viewport units (vw, vh), but are relative to the corresponding parent container.

• Style container queries allow the current styling of a container element to be queried, so as to
conditionally apply styling to its contents.

At the time of writing, all the above CSS features are supported by all modern web browsers, according
to Deveria [2024], except for style container queries which are still being standardized.

2.12.3 Avoiding Horizontal Scrolling

In his blog post, Juviler [2021] explains why it is generally a bad idea to encounter horizontal scrolling
in a web application:

• Since the beginning of the web, the convention was and is to scroll vertically through a web
application, not horizontally. Changing this rule would result in a higher cognitive workload for the
user.

• Many users might simply not notice that horizontal scrolling was possible (discoverability).



Responsive Web Design 15

• Vertical scrolling is easy to do with a mouse wheel, horizontal scrolling, on the other hand, is not.
Similarly, users of mobile phones have a higher range of motion to scroll vertically than horizontally.

For these reasons, it is generally advisable to avoid horizontal scrolling in web development and to deal
with issues of fitting content into narrower widths in other ways.



16 2 Web Technologies



Chapter 3

Responsive Visualization

In essence, responsive visualization addresses the process of designing visualizations capable of adapting
to different device characteristics, both in terms of screen space and interaction modalities. Designing
for smaller displays, such as those on mobile devices, can be particularly challenging.

3.1 Information Visualization
The field of visualization covers all types of visualization, which seek to present abstract information in a
human-readable, visual way by offloading cognitive work to the human visual perception system, which
is able to process patterns and differences in certain visual attributes unconsciously in parallel, instead
of consciously in series. These attributes include, for example, color hue, color intensity, orientation,
size, shape, focus and blur, and many more [Andrews 2024, Chapter 2; Ware 2021, Chapter 2]. The
visual representation is, however, only half the story. The provision of interactivity is equally important
to enable a viewer or analyst to explore the visualization.

The broader field of visualization can be broken down into three main subfields: scientific visualization
(SciVis), geographic visualization (GeoVis), and information visualization (InfoVis). Whereas the visual
representation in SciVis and GeoVis is largely given by the underlying concrete objects and coordinates
data, information visualization deals with abstract information structures, necessitating that an appropriate
visual representation be carefully chosen by the visualization author or the analyst. In recent years, the
term data visualization (DataVis) has become popular; it can be thought of as encompassing both InfoVis
and GeoVis.

The abstract information structures and spaces covered by information visualization include [Andrews
2024, Chapter 1]:

• Linear: Sequentially ordered information like table rows, lines of code, and lists.

• Hierarchical: Tree-like information structures like folders and subfolders, library catalogs, etc.

• Networks: Graph structures of nodes connected by links, for example social networks, web pages,
and underground maps.

• Multidimensional: Tabular (spreadsheet) data comprising rows of records and columns of dimen-
sions.

• Feature Spaces: Features extracted from a collection of objects to represent them in a high-
dimensional space.

Some of the most prominent visualization types come from classic statistical charts such as line chart,
scatter plot, and bar chart. These charts are easy to read, independent of a person’s experience with

17



18 3 Responsive Visualization

information visualization. Other charts, like parallel coordinates [Inselberg 2009], are more complex and
often used by experienced analysts to explore larger multidimensional datasets.

3.2 Mobile Visualization
Horak et al. [2021, pages 37-40] explain in detail the factors which must be considered when designing
for mobile devices such as phones, tablets, and smartwatches:

• Usage factors: Usage factors describe the impact of a user’s posture when using a device as well
as the position of the device itself. This is very different from desktop devices, which are operated
typically by a person sitting in front of the device, resulting in fixed posture and position of the
device.

• Environmental factors: Environmental factors represent surrounding influences, which may have
impact on the user’s perception and/or interaction capabilities. A noisy bus ride may prevent a user
from catching audio messages or force the user to use one hand to hold on. Lighting conditions can
influence how a visualization is perceived.

• Data factors: Data factors embody the difficulty to render visualizations for large datasets on devices
with limited available screen sizes and/or computational power.

• Human factors: Human factors stand for the individual motivation, background knowledge, attention
span, goals, and subjective preferences a user may have. Depending on those factors, completely
different aspects of a visualization may be of interest to the user.

• Device factors: Device factors include screen size and interaction modalities. Issues like the fat-
finger-problem [Horak et al. 2021, page 38] on touch devices have to be resolved for a visualization
to become truly responsive.

Many of these factors are also relevant to responsive visualization.

3.3 Display Properties
The size of a screen can be measured in two ways, either in number of pixels or in physical size. When
referring to the physical size of a screen, the correct term is physical size or screen size, which is typically
stated in centimeters or inches. When referring to the number of pixels, the correct term is display
resolution, or simply resolution [Christensson 2019]. Typically, resolution is stated as width×height,
where width is the number of horizontal pixels and height is the number of vertical pixels, for example
1920×1080 (Full HD).

Pixel density is a measure of detail, which sets the number of pixels in relation to the physical space.
The corresponding unit is pixels per inch (ppi). The aspect ratio defines the relation between width and
height of a screen, for example 16:9.

3.4 Responsive Visualization
Responsive visualization seeks to design visualizations capable of adapting to the characteristics of the
display device, including display size, orientation, and interaction modalities. A common strategy is to
first design a visualization for wider viewports and then apply responsive transformations to adapt the
visualization to also fit narrower ones [Kim et al. 2021]. Such transformations often include reducing
or removing non-essential information in order for the visualization to take up less space. However, the
author has to be careful not to change the original wider version in a way that communicates a different
message. An example of a responsive line chart can be seen in Figure 3.1.



Responsive Visualization 19

(a) 70 em. (b) 50 em.

(c) 40 em. (d) 30 em. (e) 20 em.

Figure 3.1: A responsive line chart at various widths. As the chart adapts to smaller widths, tick
marks are thinned out and tick labels are rotated. Finally, the chart becomes a sparkline. [Extracted
from Figure 1 of Andrews [2018b]. Used with kind permission of Keith Andrews.]

The simplest approach to creating responsive visualizations is to simply scale the whole visualization
down for smaller screen sizes. However, if downscaling is excessive, this approach becomes problematic
as certain components become unreadable. This means simply shrinking the size of a chart alone will
not be sufficient to create a good visualization for a smaller viewport. As Kim et al. [2021] explain, the
key challenge when scaling down visualizations is the density-message trade-off. They distinguish three
types of challenge in this context:

• Graphical Density Challenges: Visualizations often include many smaller elements like axis ticks,
points, lines, labels, etc. When a visualization shrinks, these elements can only shrink to a certain
extent. Otherwise, users would not be able to read labels or differentiate between similar-looking
elements like data points with different radii. However, if elements do not shrink with the visu-
alization, this will inevitably lead to overlapping elements. A typical approach for avoiding such
scenarios is to thin out elements in a way that preserves the original message, but does not show too
many elements.

• Layout Challenges: Visualizations are often built from a set of components. If enough width is
available, it makes sense to place the legend, say, to the right of the chart. If less width is available,
it might make sense to place the legend above or below the chart.

• Interaction Complexity Challenges: For the majority of interaction modalities on desktop devices,
equivalent interactions exist for mobile devices. However, some interactions, like hovering or
navigating by tabbing (pressing the Tab key), are only available when using a mouse or keyboard,
respectively [Korduba et al. 2022, page 4]. Additional factors like the precision difference between a
finger and a mouse pointer must also be taken into account when designing responsive visualizations.

An alternative approach is to pre-render multiple separate visualizations, applicable for specific view-
port widths. This is typically achieved by first creating a base visualization and then applying responsive
transformations at fixed-width breakpoints. The breakpoints should be chosen carefully to provide ap-
pealing visualizations for as many devices as possible. This method comes with the advantage of having
stable, fixed visualizations for specified screen sizes, easing the integration of visualizations. Certain



20 3 Responsive Visualization

visualizations can be prepared as raster graphics, if necessary due to performance constraints. Re-
cently developed tools like Hoffwell’s visualization system [Hoffswell et al. 2020] support this approach.
Modifications to one visualization can be propagated down to the others, and a simultaneous preview
of all visualizations helps avoid inconsistencies. While using multiple pre-rendered visualizations has
advantages, it breaks the principle of shipping a single codebase for all kinds of devices.

As discussed in Andrews [2018b, page 2], simply scaling a visualization down for smaller sizes does
not create a truly responsive visualization. Instead, a responsive visualization is a single visualization
capable of changing its layout structure at specific breakpoints and adapting its content automatically
and fluidly in between breakpoints. Furthermore, support for a variety of input modalities should be
provided, such as touch (tap, swipe, pinch zoom), keyboard, and mouse. When applying these concepts,
the content of a visualization always perfectly fits the available space. Furthermore, transitioning between
different visualization sizes can be controlled in a fine-grained manner by adapting only those entities and
properties of a visualization, which need to be changed. The disadvantage of creating a single responsive
visualization is the complex process behind it. Not all transformations are applied simultaneously and
may influence each other. Furthermore, breakpoints will still be necessary to switch between different
layouts at specific viewport or container widths.

3.5 Responsive Visualization Patterns
Kim et al. [2021] list 76 design strategies for transforming wider visualizations into narrower ones.
Each strategy includes a target element and an executed action. Targets are grouped into five types:
data, encoding, interaction, narrative, and references/layout, while actions are split into five kinds:
recomposition, rescaling, transposition, reposition, and compensation.

Previously, Egger [2024a] curated a set of 16 tried-and-tested responsive visualization patterns; these
are repeated here. The patterns are divided into three groups: visual patterns (10), interaction patterns
(3) and data patterns (3). These patterns are generic, best practice examples, which can theoretically
be applied by any arbitrary visualization system. However, since the web is the primary medium for
consuming visualizations, all the patterns assume web-based visualizations. Practical examples of the
patterns can be seen at the showcase web sites of Andrews [2018a] and Egger and Oberrauner [2024a].

3.5.1 Visual Patterns
Visual patterns are applied directly to visualizations in order to change the state and appearance of a
visualization’s components to maximize the user experience depending on the available space:

• V1: Scaling Entire Chart Down

• V2: Repositioning Element Labels

• V3: Using Tooltips Instead of Element Labels

• V4: Rotating Axis Tick Labels

• V5: Shortening Labels and Titles

• V6: Scaling Labels Between Minimum and Maximum Size

• V7: Scaling Down Visual Elements

• V8: Hiding Elements and Labels

• V9: Rotating Chart 90°

• V10: Using a Different Chart



Responsive Visualization Patterns 21

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l 
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(a) Wide.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l 
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(b) Narrow: Entire chart simply
scaled down.

Figure 3.2: V1: A chart can become unreadable when the entire chart is simply scaled down. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

3.5.1.1 V1: Scaling Entire Chart Down

The most straightforward visual transformation is to scale the whole chart down. However, if downscaling
is too excessive, this approach becomes problematic, as certain components become unreadable. While
there is no fixed rule about a minimum font size, there is some consensus around the root font size being
16px or 12pt [PennState 2023]. The WCAG documentation also states that text should be scalable up to
200% of its original size [WCAG 2023]. Text labels in particular should not be scaled down below this
tolerance. Similar issues arise when downscaling markers for data points; they can become too small
to distinguish. Another problem occurs when downscaling a visualization in just one direction. This
can lead to an unacceptable degree of distortion. As Andrews [2018b] states, it is not enough to just
scale down a visualization to make it responsive. If it were, it would be the only pattern needed for
achieving responsiveness. Figure 3.2 illustrates the problems which occur when only scaling down the
entire visualization.

3.5.1.2 V2: Repositioning Element Labels

Repositioning of labels can help avoid intersections and clutter. In web-based visualizations, this can be
achieved using media queries or container queries. Both of these are discussed in Section 2.12. Figure 3.3
illustrates how repositioning element labels can help avoid clutter in a visualization.

3.5.1.3 V3: Using Tooltips Instead of Element Labels

If a visualization contains many data points, but has only limited space, a helpful pattern is to hide the
labels of all elements and display an element’s label upon hover or selection. In web-based visualizations,
the CSS hover selector can be used to display a tooltip while hovering over an element with a pointer
device. For touch devices, a single touch can be used to toggle the display of a tooltip. The disadvantage
of this pattern is that it is not immediately obvious to users (discoverability). A practical example of the
usage of tooltips can be seen in Figure 3.4.



22 3 Responsive Visualization

55950€

9990€

11500€

29690€

24425€

6890€

13650€

6900€

Car Characteristics from AutoScout24 in Germany

Car Make
Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make

Mercedes-Benz Renault Ford Other Volkswagen Opel

(a) Wide: Plenty of room for element labels.

55950€

9990€

11500€

29690€

24425€

6890€

13650€

6900€

Car Characteristics

Mercedes-Benz Renault Ford

Other Volkswagen Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make
M

e
rce

d
e
s-B

e
n
z

R
e
n
a
u
lt

Fo
rd

O
th

e
r

V
o
lksw

a
g
e
n

O
p
e
l

(b) Narrow: Un-
changed label po-
sitions.

55950€

9990€

11500€

29690€

24425€

6890

13650€

6900€

Car Characteristics

Mercedes-Benz Renault Ford

Other Volkswagen Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make

M
e
rce

d
e
s-B

e
n
z

R
e
n
a
u
lt

Fo
rd

O
th

e
r

V
o
lksw

a
g
e
n

O
p
e
l

(c) Narrow: Adapted
label positions.

Figure 3.3: V2: A scatter plot containing element labels. Clutter can lead to labels overlapping
elements at narrow widths. Repositioning the element labels resolves the issue. [Images created with
RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

11800€

50€

41149€
2500€ 64100€40206€

4290€

91000€
28500€200000€

176000€
21162€32000€

79785€
50200€ 241000€134602€

11990€

10€ 58747€105778€102442€26011€
12300€10€

166825€

23200€

136400€ 81104€
2264€

5870€ 46328€

64500€

168055€29830€

76108€ 125343€

215334€

94217€
18950€17061€ 134000€10€4000€

81700€
129000€

34138€51826€
50142€57000€96000€13756€ 74000€

22300€

124000€

4120€

33000€ 85095€
25000€

39998€

27351€

20000€
39851€

56000€31850€3800€ 180000€180936€55608€
40327€79956€

9682€

119500€142600€
21000€

23800€

56770€

54068€ 125550€88204€
54894€

157607€185051€64390€

15736€

47000€ 81122€62514€
23500€

79450€31862€55600€63210€
12987€117660€21700€

25632€10€

99900€9700€36000€79957€100€
25979€85000€

4500€

151000€
57830€

10€ 204000€54980€

13000€

93500€63900€

25860€

72376€39500€

29990€

123000€
107900€

30000€118867€
31500€
124746€167000€

37908€110702€107772€

61979€

16285€

172097€125000€

99305€
28000€112400€89999€

131990€
10€

59150€

1000€

128680€
41500€ 160000€115900€64000€98407€

18459€

50€
244400€

21000€

37600€

15988€
82849€94000€60891€367000€61821€49500€

43873€

68686€42000€

100€

49000€

7400€

3500€

269000€43733€128000€111700€61770€

5000€

800€ 226735€

16990€

225000€60582€148401€209000€
76342€41824€4900€

79072€93427€
45914€27622€16287€
9948€

120000€

2100€

101000€187193€109000€42000€184000€
134000€119475€112500€

4€

57596€99000€244000€

5000€

24852€
136100€

74800€

52736€

108614€196000€4700€13287€
92000€27999€

24470€

123814€58100€110608€

96450€

150000€50000€29893€

19€

300907€21800€

17000€

25€35399€ 240000€140000€86300€
30€ 19632€

169986€

27337€

36000€ 65200€
88807€

39000€ 29000€
98870€

14000€
70277€

83910€
211000€182000€52100€19878€20735€

103115€24255€78000€119000€

16098€

142503€118200€

48744€

190000€74957€103414€
86000€

41130€

66000€
84500€38211€18000€161000€245000€85000€50000€

10€

36957€113789€110193€

96300€
41830€

3000€
40000€

76000€10€
216000€110113€

37600€34000€ 138922€63711€38500€ 119000€37383€9000€

4800€

43654€

23941€

24920€
68904€ 54000€36500€ 28900€55479€3000€

170000€

37755€

116274€
157900€

18370€

28500€163305€79000€ 124694€

81206€
95650€

42117€57000€
103100€

1850€

173990€

10950€
96938€

112054€
67000€

3000€

31700€139173€ 190000€138000€ 159000€116000€147945€9000€

3000€
10780€

64000€
44050€ 40576€ 215000€14176€ 183000€67000€

30349€

43924€15912€

26300€

33703€
17920€
11€

83183€
85000€54000€114000€

96749€

159000€
135110€

92342€51273€68279€40779€28336€70000€74000€92800€11200€28821€80000€
1000€

79942€
25135€

43467€
32000€ 189990€

199000€

62200€
12847€

45000€
54742€ 203200€

142579€
116900€141493€

150628€
62090€

10€ 99300€66300€ 182941€39730€ 99000€
131719€

46500€97000€

22478€22470€

40000€149000€94500€

15754€

112516€99800€89000€100€ 95500€
19008€

17416€55350€46634€19000€ 82260€164000€

15750€17725€

183450€
33890€9984€22500€20€ 47679€

29800€
85750€

94682€107517€ 250000€
159800€

12000€

95770€

182452€

25385€

18654€
149000€20355€5€ 85300€368000€

127507€

126400€93210€42800€10€ 89829€50€

136940€

4900€

100800€
1600€
40569€9985€

117000€
100€27840€

85310€
11072€138409€

173000€
51833€132550€

110513€97450€16569€

1263€

92328€ 68053€
99800€

95000€
120000€

84229€

164000€7990€57900€ 113500€

5000€

22400€

98000€

24335€

118427€

38070€
57000€129358€

75998€73318€358000€
50€ 49000€

1000€59500€166791€187800€13799€ 88456€ 138290€150000€54990€

20€
14975€

70000€
32597€44262€

31021€
20144€

99€
194766€85488€

130000€

23053€135550€

Car Characteristics from AutoScout24 in Germany

Legend
Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

C
a
r 

P
ri

ce
 [

E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

(a) Overwhelming number of element labels. (b) Tooltips instead of labels.

Figure 3.4: V3: If a scatter plot contains many data points in a narrow space, it makes sense to use
tooltips instead of element labels. [Images created with RespVis [Egger and Oberrauner 2024a] by the author of
this thesis.]

3.5.1.4 V4: Rotating Axis Tick Labels

A useful method for avoiding overlapping axis labels is to rotate them. This is especially useful for x-axis
tick labels. As the available horizontal space decreases, this approach helps preserve more of the original
axis label information (rather than thinning out or shortening the axis labels). The rotation of y-axis tick
labels can also be considered, but is less useful.

For web-based visualizations, a possible way to achieve rotating tick labels is to use a combination
of JavaScript and CSS. A JavaScript algorithm and event listeners are necessary to detect the currently
appropriate angles of labels, while the styling of the labels themselves can be achieved via the CSS
properties rotate or transform: rotate(). The advantage of this pattern is the preservation of the
original axis information. On the downside, the axis labels are harder to read, since the natural reading
direction is not retained. A practical example of a chart making use of rotating x-axis tick labels can be
seen in Figure 3.5.



Responsive Visualization Patterns 23

Electric Power Consumption (kWh per Capita)

Legend

USA

Europe

East Asia

C
o

n
s
u

m
p

ti
o

n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

(a) Wide: Room for horizontal x-axis labels.

Electric Power Consumption (kWh per Capita)

Legend

USA

Europe

East Asia

C
o

n
s
u

m
p

ti
o

n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

(b) Narrow: Rotated x-axis labels.

Figure 3.5: V4: A multi-line chart which avoids overlapping x-axis tick labels at narrow widths by
rotating the labels. [Images created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l 
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(a) Wide: Original y-axis labels.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l 
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

Country

Austria Italy France Germany Netherlands

(b) Narrow: Shortened y-axis labels.

Figure 3.6: V5: A grouped bar chart with label shortening applied to the y-axis tick labels. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

3.5.1.5 V5: Shortening Labels and Titles

A common technique for avoiding clutter and overlaps is to have different formats for labels and different
lengths for titles for different space requirements. Numbers, for example, can be shown in full length if
enough space is available (e.g. 2,200,000), but shortened to well-known abbreviated forms (e.g. 2.2M)
when space is limited. Similar strategies can be applied to other types of text such as dates, organization
names, and geographic locations. However, when using shortened labels in a visualization, any resulting
information loss, such as that caused by the rounding of numbers, should also be considered. Shortened
texts should still be understandable, so as not to confuse users. Figure 3.6 demonstrates how the technique
can be applied in practice.

3.5.1.6 V6: Scaling Labels Between Minimum and Maximum Size

Having different font sizes for different space requirements can be a useful method not only for increasing
the readability of labels, but also improving the overall aesthetics of a visualization. Having larger font



24 3 Responsive Visualization

2.0M

290k

210k
160k

130k
100k

65k

P
o
p
u
la
ti
o
n

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

City

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

(a) Fixed-size (small) unscaled labels.

2.0M

290k
210k

160k 130k 100k 65k

P
o
p
u
la
ti
o
n

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

City

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

(b) Scaled labels.

Figure 3.7: V6: A bar chart with scaled labels. When a visualization has the available space, it
makes sense to enlarge the font size of the labels and titles. [Images created with RespVis [Egger and
Oberrauner 2024a] by the author of this thesis.]

sizes where space allows looks much better than choosing the easier, safe option of always having the
same smaller font size, as can be seen in Figure 3.7.

For web-based visualizations, there are two approaches to implement this transformation. The first
relies on media or container queries and defines fixed font sizes for different breakpoints. The other
uses CSS comparison functions to fluidly transition between smaller and larger font sizes. The second
approach can also be combined with container query units to relate the font sizes to the size of the
visualization container. This method relies heavily on modern CSS techniques, which are discussed in
Section 2.12.2.

3.5.1.7 V7: Scaling Down Visual Elements

Scaling is a transformation applicable at multiple levels and in multiple variants. One form of scaling is
scaling down selected visual elements in the chart in one or both directions. A bar element in a bar chart,
for example, can be scaled in both horizontal and vertical directions without problems. An example can
be seen in Figure 3.6. The width of the bars of the grouped bar chart becomes smoothly narrower as less
space is available.



Responsive Visualization Patterns 25

The same holds for lines in a line chart, since these simply have to update their thickness and target
points. A marker for a data point is more complicated, since it must retain its aspect ratio during scaling
to avoid distortion. The same holds for any other marker elements. Other types of visualization, like pie
charts, chord diagrams, and maps, must retain their aspect ratio when scaling down.

The advantages of this technique are that much space can be saved without information loss and that
smooth transitions via event listeners appear very natural. On the downside, the pattern is only applicable
to visualizations with a manageable number of elements, since otherwise elements are already quite small
even at larger widths. Another disadvantage is that line elements in line charts appear steeper at narrower
widths and flatter at larger widths, affecting the perception of the original message.

3.5.1.8 V8: Hiding Elements and Labels

One possibility to adapt a visualization to narrower widths is to remove some elements or labels completely.
When applying this technique, care must be taken to not alter the original message of the visualization.
The advantage of this pattern is that an arbitrary amount of space can be saved by removing enough
elements. However, this comes at the cost of information loss with respect to all the removed elements.
When removing whole categories or dimensions, it is advisable to offer interactive possibilities, so the
user can choose which dimensions or categories are of interest. This is described in more detail in
Section 3.5.2.2. A practical example of hiding labels can be seen in Figure 3.4, which demonstrates how
visible labels can be replaced with tooltips.

3.5.1.9 V9: Rotating Chart 90°

Transposing or rotating a chart by 90° can be a convenient way to align the dimension which requires
more space vertically rather than horizontally. Vertical scrolling is much more acceptable than horizontal
scrolling. An example of a rotated grouped bar chart can be seen in Figure 3.8. The advantage of this
pattern is that no information is lost by the transformation process. The main disadvantage is the major
change of the visualization which may affect other ongoing transformations.

3.5.1.10 V10: Using a Different Chart

At some point, the best option may be to completely swap a visualization for a different one. This
technique is the last resort, when other techniques either lead to unacceptable information loss, alteration
of the original message, distortion of the visualization, or unreadable elements or labels. The advantage
of this technique is that it provides a solution where all others do not. On the downside, maintaining two
different visualizations is more effort.

3.5.2 Interaction Patterns

Interaction patterns support responsiveness by providing interactive functionality such as zooming and
filtering:

• I1: Providing a Toolbar or Menu

• I2: Filtering Dimensions and Records

• I3: Supporting Zooming

3.5.2.1 I1: Providing a Toolbar or Menu

Interactivity bound to visual elements, such as hovering or a right-click context menu, suffers from poor
discoverability. The user has to know such actions are possible or discover them by trial and error. A
toolbar or menu, on the other hand, is visible to users, and its features can be explored. Typical actions



26 3 Responsive Visualization

190k200k220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M
1.9M

2.0M

400k420k450k

Total Remuneration

2020 2021 2022

To
ta

l 
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0.0

400k

800k

1.2M

1.6M

2.0M

Country

Austria Italy France GermanyNetherlands

(a) Horizontal space is cluttered.

190k

200k

220k

680k

730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0

400k

420k

450k

Total Remuneration

2020 2021 2022

C
o

u
n

tr
y

Austria

Italy

France

Germany

Netherlands

Total Remuneration
[EU]

0.0 400k 800k 1.2M 1.6M 2.0M

(b) Transposing the chart, so it extends ver-
tically rather than horizontally.

Figure 3.8: V9: Rotating a grouped bar chart by 90° to make better use of vertical space. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

provided by toolbars or menus include being able to download a chart as SVG, download the data as CSV,
view the chart in full screen, view the data as a table, and show and hide specific records and dimensions
in the data.

The advantages of this pattern are the theoretically unlimited interaction options that can be added to
a visualization and the high likelihood of the toolbar being discovered by the user. Disadvantages of the
pattern include the space needed for the additional control elements and the effort for the user to find them
if they are hidden by default. A practical example of a menu from Highcharts is shown in Figure 3.9.
The toolbar provided by Plotly.js can be seen in Figure 3.10.

3.5.2.2 I2: Filtering Dimensions and Records

If space requirements are very tight, there is often no other solution than removing information from a
visualization. However, when doing so it is a good idea to empower the user to choose which dimensions
or records should be shown or hidden. The user may not be able to see all the data at once, but still has
access to all information if necessary.

Possible interaction elements for the filtering of data can be the legend of a chart, the elements
themselves, or separate control elements such as dropdown menus. Figure 3.11 shows the filtering of
records from a grouped bar chart.



Responsive Visualization Patterns 27

Figure 3.9: I1: The menu provided by Highcharts. [Image created with Highcharts [Highsoft 2023] by Keith
Andrews and used with kind permission.]

Figure 3.10: I1: The toolbar provided by Plotly.js is in the top right. [Image created with Plotly.js [Plotly
2023] by the author of this survey.]

3.5.2.3 I3: Supporting Zooming

Zooming is a crucial tool for overcoming the problems of limited resolutions and narrow screens. The
standard approach, geometric zoom, allows a user to control the magnification of a visualization, and
thereby trade the space needed for irrelevant information for more space for areas of interest [InfoVis:Wiki
2006]. The scatter plot example presented by Egger and Oberrauner [2023b] demonstrates perfectly
how this technique can be combined with grabbing and panning to make data points more accessible.
Figure 3.12 shows how zooming can be used to solve some of the problems associated with dense data
and intersecting elements.

In fisheye zoom, the focus area is magnified and the surrounding context area is reduced, like using
a magnifying glass to view the chart or visualization. Instead of removing the context completely, it is
distorted so as to take up less space. For cartesian visualizations, which have perpendicular axes such as
x and y, cartesian zoom can be used. This technique divides the chart into a grid of cells and distorts the
size of the cells such that more interesting cells are enlarged to show more detail, while surrounding cells
are made smaller. Fisheye zoom and cartesian zoom are described in detail by Sarkar and Brown [1992],
interactive examples can be explored in the responsive scatter plot example by Andrews [2018a].



28 3 Responsive Visualization

(a) All five countries are visible. (b) Only two of five countries are visible.

Figure 3.11: I2: A grouped bar chart where countries or years can be filtered with a control menu.
[Images created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

Car Characteristics from AutoScout24 in Germany

Legend
Volkswagen

Opel

Ford

Renault

Mercedes-Benz

Other

P
ri

c
e

[E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power
[PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

(a) Unzoomed.

Car Characteristics from AutoScout24 in Germany

Legend
Volkswagen

Opel

Ford

Renault

Mercedes-Benz

Other

P
ri

c
e

[E
U

]

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

70,000

Horse Power
[PS]

160 180 200 220 240 260 280 300 320

(b) Geometric zooming.

Figure 3.12: I3: A scatter plot with 500 data points representing cars. There are many overlapping
data points. To enable the user to inspect all points, geometric zooming is supported. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

Another approach is called semantic zoom [Bederson and Hollan 1995]. This form of zooming does
not simply change the sizes of items, but considers which items to display and how to display them. To
apply the technique, a form of data structuring is needed to create different levels of detail. Depending
on the current zoom factor, elements can be removed, split into sub-elements, or change size or shape
[InfoVis:Wiki 2014].

3.5.3 Data Patterns

The applicability of visual patterns is highly dependent on the size of the dataset and the chosen visualiz-
ation type. In many cases, it is necessary to group and transform the original data to obtain new datasets
and statistics, which can be visualized more easily. Such data patterns include:



Responsive Visualization Patterns 29

(a) Each car is displayed as its own polyline. (b) Binning produces classes of car.

Figure 3.13: D1: A parallel coordinates chart with binning applied to the first three dimensions.
[Images created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

• D1: Data Generalization

• D2: Data Aggregation

• D3: Data Clustering

• D4: Data Sampling

3.5.3.1 D1: Data Generalization

Data generalization combines many data points into manageable groups. For example, individual ages
can be binned into age ranges [Satori 2022]. The approach allows information to be presented in a more
compact way, consuming less space and not overwhelming the user with too many data points.

An example can be seen in Figure 3.13, which shows a parallel coordinates chart about used cars in
Germany. In Figure 3.13a, each car is displayed as its own polyline. After binning the records along the
first three dimensions, classes of cars have been created, allowing Figure 3.13b to show a less cluttered
view on the data.

Rabinowitz [2014] shows another way of how data generalization can be used to create responsive
visualizations. He created an interactive online prototype of a scatter plot, where the user can select
how much space is available to the visualization and how many data points should be included. The
visualization transforms the scatter plot into a heatmap if the density of the data points exceeds a certain
threshold. The resulting heatmap is a generalized version of the scatter plot, in that it bins data points
into a grid with the cell coloring indicating the data point density, as shown in Figure 3.14.



30 3 Responsive Visualization

(a) Each data point is displayed individually. (b) Binning produces cells shaded according to data
point density.

Figure 3.14: D1: A scatter plot transforms into a heatmap if a certain threshold of data point density
is exceeded. [Images created with Rabinowitz’ prototype [Rabinowitz 2014] by the author of this survey.]

3.5.3.2 D2: Data Aggregation

Data aggregation is a method used to summarize the information from a collection of data points into
one or multiple useful statistics, such as average or sum [Zanini 2023]. When creating responsive
visualizations, it allows the presentation of large amounts of underlying data as single visualization
elements.

Figure 3.15 shows the global surface temperature anomalies of the years 1850 and 2023, i.e. the
difference in global surface temperature in those years compared to the average temperature in the 100
years from 1901 to 2000 [NCEI 2024]. The bar chart in Figure 3.15a shows the data for 1850 and 2023
in monthly intervals. The bar chart in Figure 3.15b aggregates the monthly data into two bars, one for
each of the two years. This version of the chart is much more compact, but the original message of a
significant rise in average global surface temperature between the years 1850 and 2023 is preserved.

3.5.3.3 D3: Data Clustering

Clustering groups objects (records) based on their similarity. The most common clustering algorithms
include hierarchical clustering, k-means clustering, model-based clustering, density-based clustering, and
fuzzy clustering [Sarah 2023].

For responsive visualizations, clustering algorithms enable new options for dealing with large datasets,
since they allow the abstraction of similar data points within a dataset. One example is the use of
agglomerative hierarchical clustering to replace overlapping data points with a cluster element, with
interactions such as displaying cluster information and toggling presentation as a cluster versus individual
data points.



Responsive Visualization Patterns 31

(a) Monthly data. (b) Yearly data.

Figure 3.15: D2: Two versions of a bar chart with different time aggregation intervals. [Images created
with Chartist [Kunz 2017] by the author of this survey.]

3.5.3.4 D4: Data Sampling

Data sampling is a technique typically used in statistical analysis to identify patterns and trends in a
population by extracting, processing, and analyzing a representative sample of an overall population
[Egnyte 2022]. It can also be used to improve the responsiveness and performance of visualizations by
avoiding overplotting. Probabilistic sampling has the objective of creating samples which represent the
overall population as accurately as possible. Different types of probabilistic sampling include random
sampling, stratified sampling, cluster sampling, and systematic sampling. Non-probabilistic sampling
techniques are less rigorously representative and include convenience sampling, quota sampling, snowball
sampling, and purposive sampling.

A good example of how data sampling can be used to create responsive visualizations can be seen in
Figure 3.12. The scatter plots show a random sample of 500 cars from the original 46,405 cars in the
dataset [Ander 2021].



32 3 Responsive Visualization



Chapter 4

RespVis v1 and RespVis v2

The original vision for RespVis v1 was to create an open-source library for creating responsive visualiz-
ations as an extension of the well-known D3 visualization library [Bostock 2024h]. The main focus was
to reduce the effort necessary for users to create responsive charts. RespVis v2 included improvements
in the development workflow, deployment, and first drafts of features now part of the current RespVis v3.
RespVis v2 was presented at the 27th International Conference on Information Visualisation (IV 2023)
[Andrews et al. 2023].

4.1 RespVis v1
The two main contributions of RespVis v1 were the implementation of example patterns for responsive
visualization and the inclusion of a novel layout engine. The layout engine allows components of an SVG
chart to be positioned responsively using standard CSS layout mechanisms like Flexbox and Grid.

With RespVis v1, a chart creator can choose from a collection of simple visualization patterns up
to more complex visualizations like complete charts [Oberrauner 2022b]. RespVis v1 provides the
functionality to create the following complete charts:

• Bar chart.

• Grouped bar chart.

• Stacked bar chart.

• Single-series line chart.

• Multi-series line chart.

• Point chart (scatter plot).

RespVis v1 is available in a separate GitHub repository [Oberrauner 2022a], and includes at least one
example of each mentioned chart type. The necessary HTML code, styles, and scripts to render one chart
example are all included in the same file. In addition to the HTML files, the directory data/ contains
various example datasets, and the directory vendor/ contains the D3 library, which is a dependency
of RespVis. The RespVis v1 library is essentially distributed as two monolithic files: respvis.js and
respvis.css.

The task runner Gulp, discussed in Section 2.10, was already used in RespVis v1 to automate common
tasks and workflows for developers working on the library. Gulp uses the bundling tool Rollup, discussed
in Section 2.9, to bundle all TypeScript functions into a single JavaScript library file. Gulp also handles
the removal, renaming, and movement of files, and is used to set up file watchers to provide a smooth
development experience.

33



34 4 RespVis v1 and RespVis v2

Following the convention of D3, only functions were used in RespVis v1; no classes were used.
The intention was to separate data from code and provide the functionality to create small, reusable,
components for the composition of complete responsive charts. While this approach was a good starting
point for RespVis, it came with many practical drawbacks, which are discussed in Section 5.2.

4.2 RespVis v2
The contributions of RespVis v2 included improvements to the development environment with Gulp, the
addition of a deployment workflow for the chart examples, improvements to the library, and improvements
to the chart examples.

With RespVis v2, the chart examples became self-contained, meaning a single example chart could be
deployed by simply pushing it to a web server without further adjustment. This was achieved by adapting
the directory structure of the project and improving the existing Gulpfile. In RespVis v1, all Gulp tasks
were located in the single main Gulpfile gulpfile.js. With RespVis v2, all private tasks were moved
to separate files to improve readability. Furthermore, tasks were introduced for generating all required
libraries and data dependencies into the chart example directories when serving or building the chart
examples.

To make the self-contained chart examples broadly accessible, it was decided to deploy them to a
publicly available web site. In fact, two versions of the RespVis v2 chart examples were automatically
deployed: the current stable version and the current development version. Since the RespVis repository is
hosted on GitHub, GitHub Actions were implemented to achieve this task. The cloud-computing platform
Netlify [Netlify 2024] was chosen to host the example chart sites, since it is free and provides sufficient
resources.

RespVis v2 made four major contributions to the library:

1. Four new features were added to the scatter plot: multiple categories, pinch zoom, bubble charts,
and sequential color encoding.

2. A first prototype of the parallel coordinates chart was implemented.

3. A first cut of how to define breakpoints and responsive properties for RespVis visualizations was
implemented.

4. A first version of rotating x-axis labels was implemented.

All of these features have been improved significantly with RespVis v3.

Another major part of RespVis v2 was the improvement and maintenance of the existing chart examples.
The following were performed for each of the example charts:

• Refactoring of example code.

• Maintenance of stylesheets.

• Adapting and swapping out datasets, and specifying their sources.

• Data cleaning for some datasets.

• Introduction of container queries.

• Adapting chart title and subtitle for various chart sizes.



Chapter 5

RespVis v3

RespVis is an open-source visualization library for creating responsive visualizations as SVGs [Egger
2024j]. The library is built on top of D3 [Bostock 2024h], a powerful low-level JavaScript visualization
library, which differs from traditional charting libraries, since no API for creating complete visualizations
is provided. D3 draws to the web page by dynamically injecting SVG nodes into the DOM (SVG-DOM).
A visualization is composed in D3 by assembling a collection of marks and modifying them through
channels to respond to data. As well as drawing, D3 provides a wide range of utility functions, for
example to read and write CSV files, construct appropriate axis tick labels, and format strings from dates
and times.

This way of creating charts comes with great power and flexibility, but also has disadvantages. D3 can
be very challenging to learn, especially for beginners in the field of data visualization. Furthermore, the
creation of complete visualizations with D3 can require much time and effort, since everything must be
composed of the basic marks [SciChart 2024].

For this reason, RespVis v3 was designed to ease the process of authoring responsive charts, providing
a better developer experience for chart creators, independent of their individual level of expertise. In
contrast to earlier versions of RespVis, high-level visualization components can be created simply via
class instantiation and passing single configuration objects, hiding away the complexity of D3’s API, and
taking care of setting up RespVis’ layout and render mechanisms. The layout mechanism is a core feature
of RespVis and allows chart creators to apply powerful CSS layout techniques to SVG elements, which is
generally not possible.

The main improvements made to RespVis in RespVis v3 include:

• The library was refactored and restructured to make code reusable and understandable. The goal
was to provide a clear, uniform API, including the definition of strict type arguments to guide chart
creators during the development of charts.

• RespVis charts were improved to provide a single method for defining all executed render routines.
Chart creators can override this method to completely change the desired render behavior, without
changing the expected arguments and the validation process.

• CSS variables for spacing, transition times, colors, and font sizing were added.

• All inner <svg> elements were removed and replaced with <g> elements, except for imported SVG
interaction elements.

• The layout of charts was changed to include padding containers and a <clipPath> element, which
are controlled using dedicated CSS Variables. One can make use of these CSS variables to solve the
problem of overflowing content.

35



36 5 RespVis v3

• Existing conflicts of the RespVis layouter mechanism with CSS-only layout changes on hovering
were resolved by letting the Layouter recompute the layout on hover interactions.

• The Layouter component was improved to allow alternating between the SVG standard layout system
and RespVis’ novel CSS layout mechanism within nested SVG elements.

• A uniform way of handling the alignment of SVG <text> elements was introduced. The new
approach makes it easy to avoid inconsistent spacing, since <text> elements and their replicated
counterparts occupy the same place and their baselines are aligned.

• Layout breakpoints and CSS layout variables were introduced, to improve the reusability of charts.

• The axes of cartesian charts were improved to support top and right orientations.

• The rotation of axis labels was improved to work for all axis positions (top, bottom, left, right) and
both dimensions (width, height) out of the box.

• TypeScript mixins were used to extract reusable functionality shared by groups of charts.

• Category filtering was added for all charts, categorical axes, and categorical legend entries.

• Numerical filtering was added for all charts and numerical axes.

• Zooming was added for all charts and numerical axes.

• Zooming in cartesian charts was improved to allow for zooming into a single axis, in case of one
numerical and one categorical axis.

• Flipping was added to all charts. Additional flip options are available for axes to give precise control
over axes in different orientations.

• A unified approach of creating labels for marker primitives was added.

• The origin line and a configurable grid were added to cartesian charts.

• Support for time scales was added.

• Dragging and dropping was established for axes in parallel coordinates charts and additional inter-
active filter elements were added, supporting filtering of data records.

• Cursor icons were added for parallel coordinates charts. The Gulp genSVGDataURI task was introduced
to easily convert all SVG icons in a directory into data URIs, which can be used directly in CSS.

• RespVis’ Toolbar component was completely redesigned to provide a better user experience. It
provides additional tools and new options for previously existing tools.

• All JavaScript Gulp files were rewritten to TypeScript.

• Separate modes for starting Gulp in development or production were introduced.

• A Gulp task was added for compiling the TypeScript files used in the self-contained examples.

• RespVis v2 previously used SCSS to manipulate and merge CSS. Since most of the functionality
provided by SCSS is now provided directly in CSS, SCSS was removed. A new Gulp step was
added for merging multiple CSS files to a single one, maintaining readability during development,
but providing single CSS files for library users.

• The Gulp build task was improved to create both standalone and dependency-based bundles.



Project Structure 37

• The Gulp build task was improved to create multiple sub-packages, which are published on the npm
registry.

• Extensive documentation was added using Storybook. Custom documentation components were
added to provide uniformly structured live documentation with both code and interactive examples.

5.1 Project Structure
RespVis v3 comes with an increased number of files and directories, which made it necessary to adapt
the project structure accordingly. The current top-level directory structure of the project can be seen in
Listing 5.1.

The top-level directory respvis/ contains configuration and metadata files. The README.md file contains
information about RespVis in general, lists the contributors of the project, and provides links to more
detailed documentation. The CHANGELOG.md file lists all notable changes to the project. The LICENSE file
contains the current license of the project, which is an MIT license. The package.json [NPM 2024b]
contains important metadata about the project, like the name, current version, and dependencies. This
metadata is interpreted by package managers of the Node ecosystem like npm [NPM 2024a] to install
dependencies, or to publish a project in the npm registry [NPM 2023]. The tsconfig.json file configures
how TypeScript is used in the project; it includes options for the TypeScript compiler and which files
should be included in the compilation process. The gulpfile.ts file contains all public gulp tasks of
the project. These tasks include bundling the RespVis library and developing locally via a live server.
Private utility tasks are defined in the gulp-tasks/ directory.

The directories located in the src/ directory contain the source code of RespVis’ sub-packages (packag
es/), the assets used in the sub-packages (assets/), the self-contained examples (examples/), the data used
in the self-contained examples (data/), the external libraries used in the self-contained examples (libs/),
and the source code of the live documentation (storybook/). The declarations/ directory contains
additional type rules for the D3 selections and transitions APIs and specifies how non-TypeScript files
are imported via Gulp based on their file endings. The dist/ and package/ directories are created as a
result of executing the Gulp build task and contain the compiled version of the self-contained examples
and the full monolithic package of RespVis respectively.

5.1.1 Package Structure

In the original design of RespVis v1, the whole source code of the library was kept in a single repository,
with one CSS file containing the default styles, one package.json file at the root directory and multiple
top level directories containing semantically related TypeScript code of the library, written in ES module
format. The Gulp build task discussed in Section 5.1.2 created one bundle of the whole library, forcing
chart creators to unnecessarily bloat their bundle sizes when importing the library.

To save chart creators from this disadvantage, the top-level directories were intended to represent sub-
packages in future versions of RespVis. The reasoning behind this design choice was that in most cases
only parts of RespVis’ functionality need to be imported by library users [Oberrauner 2022b, page 51].

In RespVis, a sub-package is part of the whole RespVis library, but contains its own package.json
file, TypeScript code, and CSS styles. The build task generates a separate bundle for each sub-package,
making each sub-package capable of being published on the npm registry and imported independently of
other sub-packages. The sub-packages are:

• respvis-core [Egger 2024e]: Provides core functionality of RespVis, which is always necessary
when creating a visualization with RespVis. It also includes the custom layouter mechanism.

• respvis-tooltip [Egger 2024i]: Provides the functionality to create tooltip components.



38 5 RespVis v3

respvis/
declarations/
dist/ (generated)
gulp-tasks/
package/ (generated)
src/

assets/
data/
examples/
libs/
packages/

respvis-bar/
respvis-cartesian/
respvis-core/
respvis-line/
respvis-parcoord/
respvis-point/
respvis-tooltip/

storybook/
CHANGELOG.md
gulpfile.ts
LICENSE
package.json
README.md
tsconfig.json

Listing 5.1: The top-level file and directory structure of the RespVis project.

• respvis-cartesian [Egger 2024d]: Provides the functionality to create cartesian components.

• respvis-bar [Egger 2024c]: Provides the functionality to create bar components.

• respvis-point [Egger 2024h]: Provides the functionality to create point components.

• respvis-line [Egger 2024f]: Provides the functionality to create line components.

• respvis-parcoord [Egger 2024g]: Provides the functionality to create parallel coordinates compon-
ents.

To allow for the whole functionality of RespVis to be imported at once, the build task also creates a full
monolithic bundle of RespVis, which can be published as a package called respvis using the top-level
package.json file [Egger 2024b].

Introducing sub-packages would have been possible either by splitting up the library across multiple
repositories, or by reworking the existing structure to conform to a modern monorepo architecture. The
author of this thesis decided for the latter, since there is no large team working on RespVis, but typically
only one or two students at a time. Therefore, using a monorepo approach instead of splitting up related
code sections into their own repositories saves future developers much effort. The main advantages
are the easy management of a single repository and consistency across the project [Woltmann 2024].
The monorepo approach made it possible to restructure the semantically related code directories from
RespVis v1 into fully-fledged sub-packages located in the respvis/src/packages/ directory.

The file and directory structure of a RespVis v3 sub-package is shown in Listing 5.2. The directories
css/ and ts/ contain the styles and TypeScript source code of the sub-package. The package.json
file contains metadata like the version and name of the package, and which files should be included
when publishing. The package/ directory is generated by the bundling process and contains the two
subdirectories dependency-based/ and standalone/ and a stylesheet <package-name>.css, as follows:



Project Structure 39

<package-name>
css/
package/

dependency -based/
cjs/

<package-name>.d.ts
<package-name>.js
<package-name>.js.map
<package-name>.min.js
<package-name>.min.js.gz
<package-name>.min.js.map

esm/
iife/

standalone/
cjs/
esm/
iife/

<package-name>.css
ts/
package.json

Listing 5.2: The file and directory structure of a RespVis v3 sub-package.

• Bundles located in the dependency-based/ directory solely contain code and type information of
the corresponding RespVis package. Therefore, when importing code from the dependency-based
directory, one must make sure to install the peer dependencies of the package too. As explained in
the npm docs [NPM 2024b], as of npm v7 peer dependencies are installed by default.

• The standalone/ directory contains only bundles having all necessary dependencies included. It is
not necessary to worry about peer-dependencies when importing from a standalone bundle. On the
other hand, such bundles are substantially larger than their dependency-based counterparts.

• The <package-name>.css stylesheet includes all CSS code required to be imported if the correspond-
ing dependency-based package is included in a project. If a standalone bundle is imported, this file
should be ignored. The full stylesheet from the respvis package should be imported instead.

Generated bundles are not only grouped by dependency type, but are also available in three different
module formats: ESM, IIFE, and CJS. The module formats are explained in Section 2.3.2. While ESM
is the de facto standard nowadays, the CJS and IIFE bundles are included in the package for backward
compatibility. When importing from a package, the package.json acts as a resolver. By default, it resolves
to the dependency-based bundle in ESM format.

The internal dependencies between RespVis’ sub-packages are shown in Figure 5.1. As can be seen,
all sub-packages are dependent on respvis-core, which serves as the fundamental package. The sub-
packages respvis-bar, respvis-point and respvis-line are dependent on respvis-cartesian, which
provides the base functionality for creating series and charts defined by having two dimensions for values
and scales. The respvis-line sub-package is dependent on respvis-point. This avoids duplication of
similar render functions, since a Line Series can be seen as a polyline, i.e. a series of points connected by
line segments. The respvis-parcoord sub-package is dependent on respvis-line, since one record of
a parallel coordinates chart is visualized as a polyline connecting once on each axis. The only external
dependency of RespVis is the visualization library D3 [Bostock 2024h].



40 5 RespVis v3

respvis-tooltip

respvis-line

respvis-point

respvis-bar

respvis-cartesian

respvis-core

respvis-parcoord

Figure 5.1: The internal dependencies between RespVis sub-packages.[Image created by the author of this
thesis.]

5.1.2 Gulp Tasks

In RespVis, the task runner Gulp (discussed in Section 2.10) is used to automate repeatable tasks like
bundling the library, merging style sheets, and building the self-contained examples. In previous versions,
all Gulp tasks were located in a single file called gulpfile.js. With RespVis v3, this file was changed to
be a TypeScript file gulpfile.ts, which defines six public tasks. Private tasks, which can not directly be
invoked via the command line, were moved into TypeScript files located in the gulp-tasks/ directory, as
can be seen in Listing 5.1. The public tasks can be invoked either by running Gulp via npx or by running
the equivalent scripts defined in package.json:

• npx gulp clean: The clean task removes existing package/ and dist/ directories to enable a clean
rebuild of the project.

• npx gulp cleanExampleDeps: The cleanExmpleDeps task removes generated dependencies from the
src/examples/ directory.

• npx gulp cleanAll: The cleanAll task executes the clean task, cleanExampleDeps task, and
additionally removes the node_modules/ directory and the file package-lock.json/ in order to enable
a clean rebuild of the project including the re-installation of dependencies.

• npx gulp build: The build task first executes the clean task, then builds the whole library and
copies the self-contained examples into the freshly created dist/ directory. The build task bundles
all sub-packages contained in RespVis, in addition to building the monolithic package. To build the
library, two private tasks bundleJs and bundleLibCSS are executed in parallel.
The bundleJs task uses Rollup to generate bundles of all RespVis sub-packages and the monolithic
package. The bundleLibCSS task is responsible for merging all style sheets located in a sub-package to
a single style sheet. Both tasks are executed for all sub-packages and, again, also for the monolithic
package. The files generated from the two private tasks are written to freshly generated package/



Project Structure 41

directories, which are ready to be published on npm. A generated package/ directory is located at
the top-level directory of the corresponding sub-package, or at the root directory for the monolithic
bundle. After the execution of the two tasks, required dependencies are generated into src/examples/,
so that the examples can be compiled and built.

• npx gulp serve --dev: The serve task generates only the monolithic package to save time on
rebuilds. It additionally executes a private task called watcher, which has two responsibilities: First,
the browser-sync package is used to initialize a live server serving the respvis/dist/ directory.
Then, file watchers are initiated, which automatically update dist/ if changes are made in the src/
directory and subsequently notify browsers to reload the page. The serve task can be invoked in
production (--prod) or developer (--dev) mode. The default mode is production. The non-secret
environment variables for production and development mode can be found in the files .env.prod
and .env.dev respectively. The serve task only bundles the standalone form of RespVis, since this
package is the only one needed for the self-contained examples. Omitting the bundling of the other
packages saves much time during live development.

• npx gulp genSVGDataURI: The genSVGDataURI task converts SVG files for icons into data URIs which
are placed in a text file svg-uri-mapping.txt inside a newly generated directory gulp-util-generated/.
They can then be conveniently copied into a style sheet to define cursor shapes. The task has to be
run manually by the developer; it is not run automatically by the build process.

5.1.3 Self-Contained Examples

The RespVis repository contains a curated set of self-contained examples. The source code for these
examples is located in the directory src/examples/. When executing the build task via Gulp, as explained
in Section 5.1.2, a new directory dist/ is generated containing the built version of the examples. These
examples are insofar special, as they are fully self-contained, meaning a single example can be deployed
by simply pushing it onto a web server without further adjustment.

All chart examples, except the article example, follow the same file structure, which is illustrated
in Listing 5.3. The <chart>.css file contains the code for styling the appearance of an example. The
<chart>.html file contains the markup of an example. The <chart>.ts file provides a function responsible
for rendering the desired chart. The function is called by a script defined in <chart>.html. Since RespVis
is written in TypeScript, full type support is available when working on the chart render function. The
Gulp build task compiles <chart>.ts to <chart>.js. The <chart>/data/ directory contains the dataset
required by the example along with a text file describing the source of the dataset. The <chart>/libs/
directory contains the libraries required by the example. At the time of writing, this always includes the
current full RespVis bundle and the d3-7.6.0 bundle.

The article example differs slightly in structure, because it contains multiple charts and has additional
layout rules, but it is also provided as a self-contained example, ready to deploy.

5.1.4 Live Documentation

The documentation introduced with RespVis v3 is a major part of the new version. The frontend
tool Storybook, which is discussed in Section 2.11, is used to create the documentation. To view the
documentation, one can run Storybook locally or visit the hosted documentation of the latest version
RespVis [Egger 2024j]. The documentation is called live documentation, because it provides many
interactive chart examples, which provide the code necessary for rendering and can be interacted with.
Part of the live documentation is shown in Figure 5.2.

All documentation files, are located in the src/storybook/ directory. The most important files and
directories are shown in Listing 5.4. The file main.ts contains the main configurations for Storybook,
including static file paths, locations of stories, active addons, and the chosen build tool and its plugins.



42 5 RespVis v3

<chart>
data/

<dataset >.js (generated)
source.txt (generated)

libs/
d3-7.6.0/ (generated)
respvis/ (generated)

<chart>.css
<chart>.html
<chart>.ts (<chart>.js)

Listing 5.3: The file and directory structure of RespVis’ self-contained examples.

Figure 5.2: The RespVis live documentation includes code and interactive examples. [Screenshot taken
by the author of this thesis.]



Library Design 43

storybook/
plugins/

vite-plugin-svg-raw.ts
static-assets/

png/
respvis-logo-light.png
respvis-logo.png

storybook -reset.css
stories/

contributing/
top-level-mdx/
using-respvis/
util/

main.ts
manager-head.html
manager.ts
preview.ts
tsconfig.json
vite-env.d.ts

Listing 5.4: The files and directories in RespVis’ live documentation, created using Storybook
[Storybook 2024a].

The files manager-head.html and manager.ts are used to adjust the theme of the documentation and
hide Storybook-specific settings, which have nothing to do with the RespVis library. The preview.ts
file is used for importing global documentation example styles and to specify the order of items in the
sidebar. The tsconfig.json extends the tsconfig.json of the root directory, with small adjustments in the
configuration to get Storybook to work properly with TypeScript.

The live documentation is structured into three parts. The first part consists of top-level Markdown
documents located in the stories/top-level-mdx/ directory. The second part, located in the stor
ies/using-respvis/ directory, contains documentation, live demos, and guides about the usage of
the RespVis library from the perspective of a chart creator. The third part, located in the directory
stories/contributing/, is addressed to developers keen to learn more about the implementation details
of RespVis and how to contribute.

One of the difficulties of setting up the documentation was how to avoid massive duplication when
creating many similar chart examples. Although duplication could not be avoided entirely, it could at
least be drastically reduced by creating reusable utilities. These utilities are located in the stories/util/
directory.

5.2 Library Design
The RespVis v3 library is contained in the src/packages/ directory and distributed among the sub-
packages discussed in Section 5.1.1. The main objectives behind RespVis v3 were to improve readability
and reusability of the code, provide a better, clearer API for chart creators, and to introduce new features
for authoring responsive visualizations. To achieve these goals it was necessary to change RespVis’
structure.

The original idea for RespVis v1 was strongly inspired by D3. Therefore, no classes were used in
RespVis v1, only functions. The intention was to separate data from code and provide the functionality
to create reusable, small components for the composition of complete, responsive charts. While this
approach was a good starting point for the next versions of RespVis, it came with a number of practical
drawbacks.



44 5 RespVis v3

First, creating charts with only functions results in much duplicated code, which is hard to maintain and
keep consistent. Instead, it is advisable to use inheritance for this use case, an object-oriented mechanism
to avoid duplication and share fundamental chart behavior across all chart types.

Furthermore, strictly decoupling data from functionality leads to heavy usage of if conditions and
ternary operators in functions, which tremendously reduces the readability of the code. Instead, poly-
morphism should be used to create objects similar in structure but differing in behavior. The behavior
of these objects can be invoked at runtime without knowing the internals of the objects, dramatically
reducing the need for if conditions and ternary operators. Polymorphism helps also when aiming for
a strict API, which is a main principle of RespVis v3. In RespVis v1, a chart creator is only loosely
restricted in the choice of the passed arguments, since all arguments are optional. This leads to ambiguity
about how a chart creator is expected to use RespVis’ API. RespVis v3’s API, on the contrary, exactly
defines the allowed types for arguments and clearly describes which are optional and which are required.
Polymorphic objects are used to wrap different types of data input. These objects can be used at runtime
through a defined, shared interface.

Another problem with a pure functional approach is the increased difficulty in maintaining the state of
a chart. With a growing number of chart features and interaction possibilities like filtering, zooming, and
inversion there was an urgent need to establish a defined manner to update the chart state.

All of these problems eventually led to the decision to introduce object-oriented concepts and classes
in RespVis v3. For further reading about the topic, see the discussion about object-oriented programming
and functional programming written by Melkonyan [2023].

5.2.1 Naming Conventions

In contrast to the top-down naming convention applied by Oberrauner [2022b, page 40], RespVis v3
follows a different approach. Entities are named such that composed names sound natural and generally
adhere to English conventions. The reasoning is that a person will have less difficulty trying to understand
the internals of RespVis if the code is written in a way that seems natural to humans. As a concrete
example, the function:

function chartCartesianAxesRender(
selection: ChartCartesianSelection): void {...}

in RespVis v1 was replaced by:
function renderCartesianAxes <T extends CartesianChartSelection >(
chartS: T) {...}

in RespVis v3. Both functions accomplish the same task. When looking at the current version, a
reader immediately understands what the function accomplishes. It renders cartesian axes. From the
parameter name, one can derive that the function needs a chart selection, where the axes will be rendered.
Although the second function is a generic function, which is generally longer, it is shorter than its previous
counterpart, because it is less repetitive and avoids redundant expressions like a void return value.

A developer who is unfamiliar with the internals of RespVis and looks at the previous version will
begin to read the function and question whether the function is about cartesian charts or cartesian axes.
Then, the person will reach the Render part and reread the whole expression, hopefully drawing the right
conclusion. In the worst case, the developer does not understand the function naming and must look into
the content of the functions to understand it. To avoid such scenarios, RespVis v3 changed its naming
conventions. While there are always exceptions to the rule, in most cases the concepts shown in Table 5.1
are applied. These concepts are adapted from the work of Anichiti [2021].

For example, entities should have meaningful, natural, and descriptive names. The example in Table 5.1
shows the interfaces for a bar chart in RespVis v3 vs. RespVis v1. In RespVis v3, the user input



Library Design 45

Rule Good Bad

Repetitive naming should be
avoided.

type Component = {

title: string,

description: string

}

type Component = {

componentTitle: string,

componentDescription:

string

}

Functions should always start
with verbs.

renderLegend() legendRender()

Entities should have meaningful,
natural, and descriptive names.

interface BarChartUserArgs

interface BarChartArgs

interface BarChartData

class BarChart

interface ChartWindowBar

Files and directories should be
named using kebab case [MDN
2024e].

label-series.ts label_series.ts

Functions and variables should
be named using camel case
[MDN 2024e].

renderLegend() RenderLegend()

Classes, types, and interfaces
should be named using pascal
case [MDN 2024e].

LegendUserArgs() legendUserArgs()

Table 5.1: Naming conventions in RespVis v3.

(BarChartUserArgs), function input (BarChartArgs), resulting data (BarChartData), and instantiable class
(BarChart) are precisely defined, while in RespVis v1 there exists only one interface, ChartWindowBar,
which is used to define all data input and output. This introduced ambiguity to the data input. Furthermore,
the name ChartWindowBar does not adhere to English conventions and is difficult to read and understand.

5.2.2 Sub-Package Modules

All TypeScript modules of a sub-package are located in the src/packages/<package-name>/ts/ directory,
which itself may contain up to four directories: constants/, data/, render/, and utilities/, corresponding
to the four types of aggregated module in RespVis:

• Constant modules: Constant modules provide constants, default values, error messages, and basic
type definitions, which are used throughout the entire library.

• Data modules: Data modules expose clear and understandable interfaces for chart creators and
provide the functionality to validate input in a safe and controlled manner, typically using factory
functions or classes. The resulting validated data objects reliably provide information during the
render phase of a chart. As well as creation, data modules may provide additional utilities to
manipulate or retrieve data from these objects.

• Render modules: Render modules interpret data objects and subsequently render corresponding
components. Render modules may, like data modules, include factory functions or classes to create
corresponding data objects from the input of chart creators. If a render module does not provide such
functionality, it is conceived for internal use and provides at least a type definition of the required



46 5 RespVis v3

arguments for the render function.

• Utility modules: Utility modules provide reusable functions and types, which can be used in the
entire code base. The use cases of utility modules comprise easing interactions with the DOM,
D3, or JavaScript data structures, applying TypeScript mixins, providing geometrical types and
functionality, and defining recurring mathematical formulas.

All RespVis packages include render/ directories. The respvis-core and respvis-point packages have
data/ directories. The respvis-core package is the only package to include a constants/ directory and a
utilities/ directory.

Each of the constants/, data/, render/, and utilities/ directories implements a TypeScript aggregated
module [MDN 2024d], by defining an index.ts file at the top-level. All exports are defined in this
index.ts file, making it possible to import functionality from assorted files in a directory the same way
as it is done with single files.

Most data modules and render modules validate user arguments during the validation phase of a chart,
implementing an important concept to increase the developer experience of chart creators. They provide
three type definitions (interfaces) and a factory function or class constructor to handle validation of the
arguments. The three type definitions were conceived to exactly define the allowed user input at chart
creation, the allowed function arguments of validation functions, and the resulting data objects used
during the render phase of a chart:

• <module-name>UserArgs: Specifies the structure of the arguments passed by a chart creator.

• <module-name>Args: Extends the first type with additional arguments required by the validation
function. The first and second type may be equal if no additional arguments are required by the
validation function.

• <module-name> (or <module-name>Data): Specifies the output of the validation function or constructor.
If a related class with the name <module-name> already exists, the suffix Data is appended. An example
of this convention can be seen in Listing 5.5, which contains the validation logic for the chart module.

5.2.3 Component Hierarchy

In essence, a RespVis component is a cohesive unit of one or more elements rendered during the render
phase of a chart. All code related to a component is located in a corresponding render module. Composite
components provide dedicated render functions, which may include calls to render functions of other
components. A primitive component, in contrast, does not provide a render function, but provides a type
definition used in the render routines of composite components to create a series of primitive components
by applying D3 data joins.

In most cases, RespVis components are bound to data objects via D3. These data objects originate
from the input data passed by a chart creator at the instantiation of a chart. All charts expect two
arguments: first, a D3 selection of a single empty HTML element, typically a <div> element, which
later becomes the Window component, and second, a configuration object for adjusting the content and
render process of the chart. A configuration object is a nested JavaScript object containing options for all
configurable components of a chart. All passed options are validated in the chart constructor by calling
the corresponding validation functions. This is called the validation phase of a chart.

The outcome of the validation phase is a single validated data object, which represents the current
state of a chart and its underlying components and is bound to the Window component. The component
hierarchy of RespVis v3 is illustrated in Figure 5.3. Once a chart transitions into the render phase, data
is propagated down from top to bottom of the layout hierarchy in a controlled manner. Direct children of
the Window component are the Toolbar component, which is bound to dedicated parts of the validated data,



Library Design 47

1 import {RenderArgs} from "../renderer";
2 import {
3 RespVal,
4 RespValUserArgs ,
5 validateRespVal
6 } from "../../../data/responsive -value/responsive -value";
7 import {WindowArgs} from "../../window";
8 import {LayoutBreakpoints} from "../../../data/layout-breakpoints";
9 import {

10 LayoutBreakpointsUserArgs
11 } from "../../../data/layout-breakpoints/layout-breakpoints";
12
13 export type ChartDataUserArgs = Pick<WindowArgs , ’tooltip’> & {
14 breakpoints?: LayoutBreakpointsUserArgs
15 title?: RespValUserArgs <string>
16 subTitle?: RespValUserArgs <string>
17 }
18
19 export type ChartDataArgs = ChartDataUserArgs & RenderArgs
20
21 export type ChartData =
22 Required <Omit<ChartDataArgs , ’breakpoints’ | ’tooltip’ | ’title’ | ’subTitle’>>
23 & {
24 breakpoints: LayoutBreakpoints ,
25 title: RespVal<string>
26 subTitle: RespVal<string>
27 }
28
29 export function validateChart(args: ChartDataArgs): ChartData {
30 return {
31 renderer: args.renderer ,
32 breakpoints: new LayoutBreakpoints(args.breakpoints),
33 title: validateRespVal(args.title || ’’),
34 subTitle: validateRespVal(args.subTitle || ’’),
35 }
36 }

Listing 5.5: The file validate-chart.ts contains the validation logic for the chart module. The
declaration and export of ChartDataUserArgs acts as a contract between chart creator and library.
ChartDataArgs defines what must be passed to the validation function. ChartData defines the data
object returned by the validation function, validateChart.

and the Layouter component, which needs no data assigned to it. The Layouter component applies RespVis’
layouter mechanism in the background.

The Chart component is a direct child of the Layouter component and is bound to the same object as
the Window component, i.e. the data object representing the current state of a chart. It is a composite
component, with the outermost element being an <svg> element containing all SVG elements of the
chart. The children of a Chart component depend on the chart type and underlying data, and can consist
of one or more Series components, zero or more Axis components, and zero or one Legend components.
Primitive components, consisting of bars, points, lines, labels, and legend items are low-level components,
which cannot contain any other components and, therefore, form the leaves of the hierarchy. The Tooltip
component is the only component, which is not a descendant of the Window component. It is rendered as
a child of the document’s <body> element. However, the rendering of the Tooltip component is invoked in
the render routine of the Window component.



48 5 RespVis v3

Tooltip

Layouter

Chart

Legend

Primitive Components:
Bars, Points, Lines, Labels, 

Legend Items, etc.

Series Axis

Toolbar

Window

Figure 5.3: The component hierarchy in RespVis v3. Components are rendered from top to bottom,
beginning with the Window component and ending with the Primitive components. Outgoing lines
indicate the inclusion of lower components. The Tooltip component is drawn with dashed lines,
since it is not a direct child of the Window component. [Image created by the author of this thesis.]

5.3 RespVis Core
The respvis-core package is a collection of the fundamental modules, components, classes, functions,
types, and constants used throughout the RespVis code base. Its directory structure is shown in Listing 5.6.
The package provides the following aggregated modules:

• Render modules: window/, toolbar/, layouter/, chart/, data-series/, axis/, legend/, marker-primi
tive/, label/, and element/.

• Data modules: scale/, categories/, breakpoints/, responsive-property/, sequential-color/, zoom/.

• Utility modules: d3/, dom/, geometry/, test/, array.ts, key.ts, math.ts, typescript.ts, and
unique.ts.

• Constant modules: dom/, cssVars.ts, error.ts, events.ts, index.ts, other.ts, and types.ts.

These are listed and described in top-to-bottom order corresponding to the component hierarchy of
Figure 5.3, rather than in alphabetical order.

5.3.1 Window Modules

The Window modules, located in the window/ directory shown in Listing 5.6, are responsible for the
validation of window user arguments and rendering of the Window component, the outermost layer of a
RespVis chart. The contained render routine renderWindow expects a selection of an empty single HTML
element, already bound to a Window data object, as its argument. This element officiates as a single wrapper



RespVis Core 49

respvis-core/
css/

chart/
data-style.css
index.css
reset.css
text.css
util.css
var.css

package/ (generated)
ts/

constants/
dom/
cssVars.ts
error.ts
events.ts
index.ts
other.ts
types.ts

data/
breakpoints/
categories/
responsive -property/
scale/
sequential -color/
zoom/
index.ts

render/
axis/
chart/
data-series/
element/
label/
layouter/
legend/
marker-primitive/
toolbar/
window/
index.ts

utilities/
d3/
dom/
geometry/
test/
array.ts
index.ts
key.ts
math.ts
typescript.ts
unique.ts

index.ts
package.json

Listing 5.6: The file and directory structure of the respvis-core sub-package.



50 5 RespVis v3

(a) Collapsed. (b) Expanded.

Figure 5.4: An absolutely positioned RespVis Toolbar may overlap the chart when expanded. [Screen-
shots taken by the author of this thesis.]

for a complete self-contained RespVis chart. The render routine attaches a chart-specific class name to
the window element and also maintains its layout CSS variables, which are discussed in Section 5.3.13.
Furthermore, the function checks if tooltips are active for the current chart, and conditionally calls the
render routine of the Tooltip component.

The Window component uses CSS Grid to lay out its child components Toolbar and Layouter, which are
both rendered as <div> elements. The first row of the grid is reserved for the Toolbar, while the second
row is reserved for the Layouter. The Toolbar is positioned absolutely by default. If the Toolbar overlaps with
other elements of the chart, a chart creator can override its position to be static, which is discussed in
Section 5.3.2.

5.3.2 Toolbar Modules

The Toolbar modules are located in the toolbar/ directory shown in Listing 5.6. Toolbars are commonly
used to make visualizations more interactive by providing a set of tools selectable from a bar. If
implemented wisely, a toolbar may be of tremendous value, since it theoretically allows adding unlimited
interaction options to a visualization. In RespVis v3, an optional Toolbar is included in the creation process
of a visualization by default. The Toolbar is located at the top right of the chart. A chart creator can position
the Toolbar either absolutely, meaning it is removed from the document flow and may overlap the chart
when expanded, or statically, meaning it is allocated a grid row of its own and does not overlap the chart
when expanded. This can be seen in Figures 5.4 and 5.5.

When collapsed, only a single button for expanding the Toolbar is visible. When expanded, the Toolbar
displays three or four buttons, depending on the chart type, with icons indicating the corresponding tool.
When a user hovers over an icon, a Tooltip with the corresponding tool name is displayed. All tools are
activated by clicking their respective button.

The first tool, from left to right, is the Filter Tool. If activated, the Filter Menu slides in and docks beneath
the Toolbar, as can be seen in Figure 5.6. The Filter Menu contains multiple fieldsets, which give control of
the active filtering settings. A fieldset can be expanded and collapsed by clicking on its caption. Each
fieldset provides filter options for one dimension. This dimension may be either categorical, numerical,
or temporal. For a categorical dimension, a fieldset contains a series of checkboxes giving control of
each category. For numerical and temporal dimensions, the fieldset contains a double-edged range slider,
allowing an end user to specify the active range of values for the corresponding dimension. The double-
edged range slider is manipulated by dragging and dropping handles for minimum and maximum values.



RespVis Core 51

(a) Collapsed. (b) Expanded.

Figure 5.5: A statically positioned RespVis Toolbar is allocated a grid row of its own and does not
overlap the chart when expanded. [Screenshots taken by the author of this thesis.]

Figure 5.6: The Filter Menu with active configurations for a categorical (Continents), numerical (Con-
sumption), and temporal (Year) dimension. [Screenshot taken by the author of this thesis.]



52 5 RespVis v3

Figure 5.7: The scrollable Download Modal for configuring the download process. [Screenshot taken by the
author of this thesis.]

To ensure a consistent presentation of the value labels, RespVis makes use of the D3Axis.tickFormat
function provided by D3, which formats filter labels exactly like axis labels. This is especially useful
for time dimensions, since their values are internally represented as JavaScript Date objects, which have
various possible output formats.

The second tool is the Download Tool. It enables an end user to download the current state of a chart as a
static SVG file. If activated, a modal dialog window pops up in the center of the page. Figure 5.7 shows
the modal containing five fieldsets for specifying the desired download options. The first fieldset allows
margins to be added to the downloaded version of the chart. The second fieldset contains download
options regarding prettification. An end user can check or uncheck if prettification is applied to the
downloaded SVG file. If unchecked, the option will not have any effect on the downloaded SVG file. If
checked, an end user can specify a desired number of indentation spaces.

The third fieldset allows choosing between two approaches of including styles. In the first approach,
non-default styles are included as inline attributes and inline styles. In the second approach, relevant style
rules are filtered from all active style sheets and included in <style> elements. This involves complex
processing and filtering of active CSS rules and, in some cases, the modification of nested CSS selectors.
For these reasons, there is no guarantee of flawless results. When comparing both approaches, the inline
style approach comes with the advantages of easier implementation, a higher success rate, and working
fine for SVGs with a smaller number of elements. A drawback of generated inline styles is that they
can not simply be edited after generation, since they are applied separately for all elements. Another
disadvantage of the approach is a larger file size for charts containing many elements. The <style>
element approach, on the other hand, has a lower success rate, but all styles are included in one place
and can be edited after the creation of an SVG file. Furthermore, downloaded charts with many elements
have smaller file sizes when using the <style> element approach, since style rules need to be specified
only once.

The fourth fieldset contains removal options for RespVis-specific attributes. The fifth fieldset allows
the maximum number of decimal places used in the static SVG to be set. Setting a fixed limit of one
or even zero decimal places generally does not affect the appearance of a static SVG negatively, while
leading to much smaller file sizes. At the bottom of the modal, there are two buttons, one for canceling
and one for confirming the download. After confirmation, RespVis first creates a deep clone of the



RespVis Core 53

Figure 5.8: The Inspection Tool is used to visualize the Inspection Tooltip, which contains information about
the dimensions values at the current coordinates of the pointing device. [Screenshot taken by the author
of this thesis.]

existing chart using the Node.cloneNode function. Then, the <svg> tag of the cloned element is modified
by replacing its x, y, width, and height attributes with a viewbox attribute. This ensures the downloaded
SVG scales automatically with the viewport, which is the desired default for static SVGs. The margin
values specified earlier in the process are taken into account when calculating the bounds of the freshly
created viewbox attribute. The cloned chart node is further processed by applying the previously specified
download options. Finally, the SVG of the cloned node is packed into a blob object, which is automatically
downloaded as an SVG file.

The third tool is the Inspection Tool. When activated, a Tooltip is displayed when hovering over any part of
the drawing area. The Tooltip displays information about the dimension values at the exact coordinates of
the currently used pointer device. Figure 5.8 showcases the use of the Inspection Tool in a multi-line chart.

The fourth tool is currently only available for parallel coordinates charts. When activated, a modal
pops up in the center of the page, allowing a chart viewer to change chart-specific settings.

5.3.3 Layouter Modules

Powerful CSS layout techniques like CSS Flexbox and CSS Grid are only applicable to HTML elements.
They are not applicable to elements in SVG namespaces. There are good reasons that styling works
differently in the HTML and SVG namespaces. In the HTML namespace, elements are laid out according
to the CSS Box Model [MDN 2024h]. All elements in an HTML document are represented as boxes.
These boxes consist of four well-defined areas: margin, border, padding, and content. Powerful CSS
layout modes like Flexbox and Grid can be applied to these boxes. In many cases, the default positioning
of a suitable layout mode already achieves appealing results.

In the SVG namespace, on the other hand, a coordinate system is used to precisely define and position
elements [MDN 2023e]. This layout technique makes sense if elements have complex shapes or are
constrained to specific positions and sizes, which is the case for charts composed of many components.
It would make no sense to lay out such elements via the CSS techniques applied in HTML namespaces.
Instead, JavaScript and libraries like D3 should be used to take care of this task. However, an SVG
tree may consist of many elements. This leads to situations where layouting certain parts of the tree



54 5 RespVis v3

could be tremendously simplified by making use of the CSS Box Model and layout modes of the HTML
namespace, rather than using the precise but potentially verbose coordinate system.

For this reason, RespVis allows certain parts of an SVG to be laid out with the CSS layout techniques of
the HTML namespace. Indeed, it is possible to alternate between CSS layout and SVG layout in the same
SVG chart tree. To make this possible, RespVis applies a non-trivial, custom layout mechanism under
the hood. The Layouter modules, which are located in the ts/render/layouter/ directory of Listing 5.6,
contain the code necessary for setting up this mechanism. The mechanism produces two node trees in
the DOM:

1. A tree consisting of the displayed SVG elements themselves, the original SVG node tree, which is
pure SVG in the SVG namespace.

2. A replication of the SVG node tree, where all elements are replaced by invisible <div> elements.
This replicated node tree is a pure HTML node tree in the HTML namespace, which can be laid out
with standard CSS layout techniques.

The Layouter component serves as a wrapper for these two trees. The replicated node tree can be laid
out with powerful CSS layout mechanisms like Flexbox and Grid. The elements of the original node tree
subsequently adapt their size and position accordingly, making it possible to control the size and position
of elements inside an SVG using CSS layout techniques.

5.3.3.1 Layout Components

The creation and maintenance of the replicated node tree is the tricky part of the layout mechanism. To
make it work, layout elements are assigned certain class names:

• layouter: An empty <div> element serving as a wrapper element for both the SVG node tree and the
replicated node tree. RespVis’ layout mechanism is applied by calling the function layouterCompute
and passing a selection of a single layouter element.

• layout: All elements of the replicated HTML node tree are marked as layout elements, since their
only purpose is to make it possible to lay out their SVG twin elements.

• layout-container: To switch from SVG standard layout to RespVis’ custom layout, an element
must be classed as a layout-container. All descendant elements of the layout-container element
are then laid out with the custom layout mechanism. The mechanism is interrupted by an element
exhibiting either a data-ignore-layout attribute or a data-ignore-layout-children attribute
(which then applies to any direct descendants).

• layout-container-positioner: When SVG layout-container elements are replicated as <div>
elements, the <div> elements must be positioned such that their position matches with the position
of their SVG twin elements. This is achieved by adding an additional wrapper <div> element with
a class name of layout-container-positioner.

In addition to class names, dedicated attributes can be attached to layout elements to influence their
layout behavior:

• data-ignore-layout: To interrupt RespVis’ custom layout and switch to SVG standard layout one
can attach the data-ignore-layout attribute to an SVG element. These elements do not have an
HTML twin element and stop the propagation of RespVis’ custom layout for all descendant elements.

• data-ignore-layout-children: To interrupt RespVis’ custom layout and switch to SVG standard
layout one can attach the data-ignore-layout-children attribute to an SVG element. These
elements do have an HTML twin element, but their child elements do not, and stop the propagation
of RespVis’ custom layout for all descendant elements.



RespVis Core 55

Figure 5.9: The three layout phases of RespVis v3. Phases are processed repeatedly from left to
right in sequential order until no bounds of any element change. [Image created by the author of this
thesis.]

5.3.3.2 Layout Phases

Layouting proceeds in three phases, as shown in Figure 5.9:

1. SVG Rendering: The standard SVG node tree is created and rendered.

2. Replication: The replicated HTML node tree of <div> elements is created with the method layout
erCompute. The browser positions and sizes the <div> elements in the replicated HTML node tree
according to whatever CSS layout has been specified.

3. Bounds Detection and Synchronization: Now that the position and size of each <div> element has
been determined, a custom attribute called bounds is applied to its corresponding SVG element,
holding its x, y, width, and height in normalized SVG coordinates.
Depending on the type of SVG element, the bounds values are applied to it. A <rect> element has its
x, y, width, and height attributes set accordingly. A <circle> element has its cx, cy, and r attributes
set appropriately. Synchronizing the size and position of a <text> element is more complicated, but
proceeds similarly. For <g> elements, and all other SVG elements, the transform attribute is used.

If the bounds of any SVG element have changed, the process starts again with SVG Rendering.

The second phase, Replication, comes with many important checks. SVG elements with the attribute
data-ignore-layout or data-ignore-layout-children pause layout propagation, which is restarted
if a child element has the class layout-container. However, replication of the SVG node tree must
continue if any child is a layout-container, since the intermediate elements will be needed to be able
to restart custom CSS layout at a deeper level if required.

At a transition from SVG layouting to custom CSS layouting, the layout-container SVG element
is placed at the position of its parent element in the SVG node tree. This is achieved by inserting an
additional layout-container-positioner wrapper <div> element into the replicated HTML node tree.
This wrapper element is positioned exactly at the said location by setting its CSS property position to
fixed and calculating the position of its parent in the SVG node tree.

5.3.3.3 Synchronization of Bounds

The synchronization of bounds between original and replicated elements is accomplished by maintaining
a bounds attribute, containing the layout information of the replicated elements in the form of "<x>,<y>
,<width>,<height>". This information can be accessed beginning with the second render of a chart. In
addition to the bounds attribute, different actions are executed depending on the element type:

• <svg>, <rect>: The rectangular shape of these elements allows a 1:1 synchronization with the
position and size of the replicated layout element by setting the x, y, width, and height attributes.



56 5 RespVis v3

• <circle>, <ellipse>: The required values for synchronizing with the layout of the replicated layout
element can easily be calculated. They are set to the attributes cx, cy, and r.

• <g> and other: The transform attribute is used to synchronize with the position of the replicated
layout element.

In addition to the above-listed elements, also <text> elements are also sometimes laid out by RespVis.
The positioning of <text> elements is more complex, since they come with additional presentational
attributes for alignment:

• text-anchor (start | middle | end): An attribute controlling the alignment in writing direction in
relation to the initial text position (derived from x and y attributes) [MDN 2024g].

• dominant-baseline (auto | central | hanging | ...): An attribute controlling the position of the
baseline. The baseline is an invisible line upon which the characters of text sit. The dominant
-baseline attribute, together with the x and y attributes, is responsible for the alignment of text
vertical to the writing direction [Angelica 2024; MDN 2024b].

These attributes are necessary to exactly position text elements in SVGs, since there is no box model
taking care of positioning text automatically. However, the RespVis custom layouter must lay out SVG
<text> elements exactly like ordinary text in the HTML namespace. To achieve this behavior, the center
of a <text> element must match with the center of its corresponding layout element.

The difficulty thereby lies in positioning the baseline. The <text> element’s baseline position can be
controlled by the dominant-baseline attribute, but this alone is not sufficient, since there is no available
option leading to the desired result. The solution applied in the RespVis layout mechanism is to first set
the dominant-baseline attribute of the <text> element to central, and additionally set its y attribute to
half of its replicated layout element’s height.

To additionally ensure alignment in the horizontal direction, the text-anchor attribute of the <text>
element is set to start. Then, its x attribute is set to half of the difference between the replicated layout
element’s width and the text element’s width.

With this strategy, SVG <text> elements laid out by the RespVis custom layouter are aligned exactly
like text in the HTML namespace. This makes it possible to apply useful transformations to the elements
without risking undesired side effects. One example is the rotation of y-axis titles around their centers by
setting their transform-origin to center. Another advantage of this strategy is that it is automatically
and uniformly applied for all replicated <text> elements, which saves chart developers from struggling
to choose appropriate text alignment attributes.

5.3.4 Chart Modules

The Chart modules, located in the ts/render/chart/ directory shown in Listing 5.6, provide a convenient
way of using RespVis to the fullest by making the initialization of a chart straightforward, as follows:

const window = document.querySelector(’#chart-wrapper ’)
const chart = new <ConcreteChart extends Chart>(window, args)
chart.buildChart()

The code first selects the existing empty <div> element with id chart-wrapper. Then, a new chart
instance is created by passing the empty <div> element and the desired arguments to the constructor of a
class, which extends the Chart class. The constructor validates the passed arguments and throws an error
message indicating the exact problem if there are serious issues with the arguments. If the arguments
have only minor issues, RespVis makes small adjustments and continues without throwing an error. After
validation, the data is attached to the originally empty <div> element, which now becomes the Window
component of the chart.



RespVis Core 57

heading

padding-wrapper legend

Figure 5.10: Typical layout structure of a RespVis chart and its child elements. [Image created by the
author of this thesis.]

1 .chart {
2 display: grid;
3 grid-template: auto 1fr / 1fr auto;
4 grid-template-areas:
5 ’header header’
6 ’padding-wrapper legend ’;
7 }

Listing 5.7: CSS for laying out the components of a chart in a typical arrangement.

Finally, by calling chart.buildChart() all necessary actions are executed to set up the layout structure
of the chart. This includes:

• The first render of the chart including rendering the Window, Layouter, and Chart components.

• The first execution of the custom layout mechanism.

• The installation of all necessary listeners responsible for triggering layout updates and re-renderings
of the chart. These listeners are invoked if:

– the width and/or height of the chart change.

– an interaction with the chart requires an immediate re-rendering (such as filtering data).

– a pointing device is hovering over the chart and is not conflicting with any ongoing D3
transitions. A re-rendering of a chart becomes thereby necessary, since CSS styles can be
conditionally applied on hovering, eventually leading to changing bounds of arbitrary elements
inside a chart.

5.3.4.1 Chart Layout

The Chart component comes with the functionality to handle the layout mechanisms discussed in Sec-
tion 5.3.3. This means the layout of a chart can be controlled via CSS. For this reason, RespVis comes with
default styles to provide good-looking charts out of the box. If a chart creator desires to change the layout
in general, or via media or container queries, the chart creator can conveniently do so by overriding the
default CSS of RespVis. The chart element contains three child elements: heading, padding-wrapper,
and legend. A typical arrangement is shown in Figure 5.10. The CSS responsible for it is shown in
Listing 5.7, making use of a CSS Grid.

The chart itself is contained within the padding-wrapper. The layout of the padding-wrapper is shown



58 5 RespVis v3

.

..

.padding-container-top

padding-container-bottom

draw-area

padding-container-rightpadding-container-left

Figure 5.11: Layout structure of the padding wrapper and its child elements. [Image created by the author
of this thesis.]

1 .padding-wrapper {
2 display: grid;
3 grid-template: auto 1fr auto / auto 1fr auto;
4 grid-template-areas:
5 ’. padding-container-top .’
6 ’padding-container-left draw-area padding-container-right ’
7 ’. padding-container-bottom .’;
8 }

Listing 5.8: CSS for laying out a padding wrapper.

in Figure 5.11. Listing 5.8 shows the styles responsible for laying out the padding-wrapper. As can be
seen, the padding wrapper’s child elements are laid out with a CSS Grid. The drawing area of the SVG
node tree is a <g> element containing the graphical elements of the chart. Depending on the chart type
and data, it may contain many elements, which are constrained to specific locations and sizes. There is no
sense laying out these elements with CSS techniques like Flexbox or Grid. Instead, this is the point were
the custom layout of RespVis stops and JavaScript and D3 take care of positioning and resizing elements
in standard SVG layout.

Since <g> elements are only intended for grouping and do not have bounds themselves, the drawing
area needs a background <rect> element with the same size and position of the drawing area layout
element. The bounds of the background element will always match with the bounds of the drawing area
layout element.

Nonetheless, since the custom layout stops at the drawing area, there may be cases of elements
overflowing the bounds of the drawing area layout. Imagine a scatter plot with labeled points. If a point
is located at the edge of the drawing area, its corresponding label may partially lie outside the drawing
area’s bounds and may potentially intersect with elements of the heading or the legend.

For this reason, the drawing area contains a <clipPath> element. It limits the visible area of the drawing
area and cuts off any overflowing elements. This solves the problem of overflowing content intersecting



RespVis Core 59

1 .padding-container--left {
2 width: var(--chart-padding-left , 0);
3 }
4
5 .padding-container--top {
6 height: var(--chart-padding-top , 0);
7 }
8
9 .padding-container--right {

10 width: var(--chart-padding-right , 0);
11 }
12
13 .padding-container--bottom {
14 height: var(--chart-padding-bottom , 0);
15 }

Listing 5.9: The padding around a chart is defined by CSS variables, which can easily be overridden
by chart creators.

with other layout areas of the chart. However, this approach comes with a new issue. Overflowing
elements would simply be cut off, and become partly or completely invisible. This is where the padding
wrapper and the padding containers come into play. The padding containers reserve space in the grid for
overflowing content of the drawing area. The <clipPath> element of the drawing area respects the sizes
of the padding containers when calculating the bounds of the drawing area’s visible content. The size of
the padding containers can be adjusted via CSS variables, as shown in Listing 5.9.

5.3.4.2 Extending the Chart Class

The abstract Chart class of the respvis-core package cannot be instantiated on its own. Instead, it is
intended to be used as a base class to create derived classes representing more advanced charts. The Chart
class provides the abstract Chart.renderContent method, which must be implemented by a derived chart
with a custom render function. The complex re-rendering and layouting tasks, on the other hand, are
abstracted away. Furthermore, the Chart class implements the Renderer interface, which provides useful
getter functions for accessing its components as D3 selections. Derived classes can reliably use these
functions, which must be part of all RespVis charts. If a chart developer decides to construct a custom
version of the base class, it must implement the Renderer interface too to work properly.

RespVis makes use of TypeScript mixins, to take advantage of multi-inheritance and behavioral
composition. The Chart modules include the DataSeriesChartMixin, which is mixed into all advanced
charts of RespVis. The DataSeriesChartMixin ensures that it can only be mixed into chart classes providing
validated series objects by defining abstract properties which must be implemented by such charts. If a
chart class uses the DataSeriesChartMixin, it will be able to invoke methods for creating Legends, Toolbars,
Data Series, Data Series Tooltips, Data Series Labels, and highlighting of Data Series.

5.3.5 Data Series Modules

A data series in RespVis v3 is a set of data points which belong together, and can be specifically grouped
into categories. For example, a multi-line chart with measurements from three regions would be handled
as one data series with three categories. The purpose of Data Series modules is to provide structured
solutions for validating data values passed by a chart creator and rendering the validated data as Data
Series components in a chart. The Data Series modules are located in the ts/render/data-series/ directory
of Listing 5.6. Instead of providing a concrete data series type, the modules define the DataSeries
interface, which all data series implementations must adhere to. Among its properties are originalData



60 5 RespVis v3

and renderData, which are both of type DataSeriesData. The former represents the stable series state,
while the latter is a transformed version with the current filtering, zooming, and inversion effects applied
to it during each render cycle. The reason for introducing a separate property to apply these effects was
that changing the original scale objects led to bugs in earlier versions. The current implementation, in
contrast, avoids changing the original scale.

Objects of type DataSeriesData are created by calling the validation function validateDataSeriesArgs,
which is intended to be called by concrete Data Series modules. All modules defining implementations of
the DataSeries interface must provide the functionality to:

• create marker primitives conforming to axes and scales of the series.

• categorize marker primitives and represent their categories visually using categorical color encoding.

• maintain and manipulate a map of the currently active categories (filtering).

• apply sequential color encoding.

• support using a Data Series Tooltip.

• alter the state of the renderData property by applying zooming.

• maintain a responsive state object, which updates all responsive properties before rendering the Data
Series. The responsive properties maintained by all types of data series are: the current flip state,
drawing area dimensions, and drawing area scale ranges (inverted and non-inverted).

5.3.6 Axis Modules

Axis components act as reference elements [Kirk 2019, page 12] to indicate the mapping between data
values and their spatial positions in a chart. The Axis modules are located in the ts/render/axis/
directory of Listing 5.6, and provide two types of axes. A further two axis types are provided by the
respvis-cartesian and respvis-parcoord packages.

The first axis type of respvis-core is the BaseAxis, which contains functionality shared by all other
axis types. A validated BaseAxis contains the properties:

• renderer, series, and scaledValues, referencing the associated chart, DataSeries, and ScaledValues
objects.

• title and subtitle.

• configureAxis, referencing a callback for making adjustments to the D3Axis object, which is generated
during the render phase. If no callback is provided, the property defaults to an empty function.

• breakpoints, referencing a ComponentBreakpoint object holding breakpoint information for the width
and height of the Axis component.

• horizontalLayout and verticalLayout, defining the orientation of an Axis based on the current
orientation of its associated Data Series. Valid values are bottom and top for a horizontal axis layout,
and left and right for a vertical axis layout. The default values are left and bottom. The chart
in Figure 5.12 demonstrates how an Axis can use the properties when being flipped. The example
contains two Axes. The population Axis is left-aligned for the wide version of the chart, and is
top-aligned for the narrow version. The cities Axis, on the other hand, is bottom-aligned for the wide
version of the chart, and is right-aligned for the narrow version.

• tickOrientation and tickOrientationFlipped, defining the desired orientation of tick labels in
degrees for specified layout breakpoint widths. The tick orientation between two defined layout



RespVis Core 61

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p

u
la

ti
o
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

(a) Wide.

C
itie

s

Vienna

Graz

Linz

Salzburg

Innsbruck

Klagenfurt

Villach

Population

0 200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

(b) Narrow.

Figure 5.12: Flipping Axes when transitioning between wide and narrow screens. [Images created with
RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

breakpoint widths is linearly interpolated. Figure 5.13 demonstrates how the tickOrientation
property is used to rotate the tick labels of both horizontal and vertical axes. The example chart in
Figure 5.12 demonstrates the result of defining two separate tick orientations for flipping axes.

The second axis type provided by respvis-core, Axis, is a union type of the discussed BaseAxis, the
KeyedAxis defined in respvis-parcoord, and the CartesianAxis defined in respvis-cartesian. Using type
narrowing in TypeScript makes it possible to determine the real underlying type, which simplifies the
initiation of additional steps on certain occasions, like the filtering of inactive axes for parallel coordinates
charts.

5.3.7 Legend Modules

Legends are used to provide visual explanations of the colors, shapes, and sizes used in a chart [Kirk 2019,
page 12]. The Legend modules of RespVis are located in the ts/render/legend/ directory of Listing 5.6.
They currently support two types of Color Legend and one Size Legend.

The first Color Legend is the Category Legend, describing the mapping of colors and categories of a Data
Series. This Legend consists of colored pairs of Symbols and Labels, where each pair describes one category.
Symbols are <path> elements with their shapes specified by callback functions, while Labels display the
name of a category. By default, the order of items corresponds to the order of categories and can be
reversed by a chart creator. The functionality to highlight Marker Primitives when hovering over a Legend
Item with a matching category is located in the Legend Highlighting module and is built into all charts by
default. The Legend Items can also be operated via a pointer device to filter out desired categories. Inactive
categories are displayed half opaque. The Category Legend is only rendered if categories for Data Series are
passed by a chart creator. Figure 5.26 shows the Category Legend of a Scatter Plot.

The second Color Legend is the Sequential Color Legend, which describes the sequential color encoding of
a Data Series. It is only rendered if a chart creator passes the color argument, making it possible to add
an additional numerical dimension to a visualization, which is independent of spatial scaling. It contains
a <rect> element filled with a gradient color and an Axis for displaying the mapping of colors to their
corresponding domain values. Currently, the Axis can only be positioned at the bottom of the <rect>



62 5 RespVis v3

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p
u
la

ti
o
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p
u
la

tio
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

(a) Wide and tall.

Cities

Vienna

G
raz

Linz

Salzburg
Innsbruck
Klagenfurt
Villach

Po
p
u
la

ti
o
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Cities

Vi
en

na

G
ra

z

Li
nz

Sa
lz
bu

rg
In

ns
br

uc
k

Kl
ag

en
fu

rt
Vi

lla
ch

Po
p
u
la

tio
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

(b) Narrow and tall.

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p
u
la

ti
o
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p
u
la

tio
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

(c) Wide and short.

Figure 5.13: Rotating axis labels when transitioning to narrower widths or shorter heights. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

element, but in future versions it will be possible to position it also at the left, right, or top. An example
of a Sequential Color Legend can be seen in Figure 5.16.

Currently, there exists only one type of size legend in RespVis, the Bubble Radius Legend. It is only
rendered in Scatter Plots if a chart creator passes a bubble radii argument, transforming the standard Scatter
Plot into a Bubble Plot. It exhibits the same structure as the Sequential Color Legend but contains two circles
instead of the gradient rectangle. The hollow, uncolored circles show the difference between bubbles
with the minimum and maximum radii, as can be seen in Figure 5.26

5.3.8 Marker Primitive Module

A marker primitive is the visual representation of a single data point. The Marker Primitive module is located
in the ts/render/marker-primitive/ directory of Listing 5.6. It defines the MarkerPrimitive interface,
which concrete implementations must adhere to. The interface requires marker primitives to have the
following properties:

• category, an optional property defining the category of the marker primitive.



RespVis Core 63

• categoryFormatted, an optional property defining the display value of the marker primitive’s category.

• styleClass, defining the value of the style class the marker primitive belongs to. Marker primitives
sharing style classes can be selected and styled collectively via CSS.

• key, defining the composite unique key of the marker primitive.

• getLabel, a method for retrieving a new label data object, with positioning adapted to the specific
requirements of the marker primitive.

• polarity, an optional property indicating the polarity of the marker primitive.

Currently, there exist two classes in RespVis implementing the MarkerPrimitive interface: the Bar class
of the respvis-bar package and the Point class of the respvis-point package. The render functions of
these two marker primitives are located in the aggregated modules of their respective packages.

5.3.9 Label Modules

Labels are used to facilitate the comprehension of visualizations by providing additional textual informa-
tion to accompany visual components. Labels are traditionally used to describe axes and legends, but can
also be assigned directly to data points [DVS 2024]. The Label modules, located in the ts/render/label/
directory of Listing 5.6, are dedicated modules for the latter type of labels, those assigned to data points.
These modules define the Label interface and provide a function for rendering a series of labels.

Labels implement the Position interface and, therefore, contain x and y properties for defining an exact
position. Furthermore, labels contain a text property defining their content and a marker reference. The
reasoning behind the marker reference is that a label should only exist for describing a corresponding
marker primitive. Therefore, the VisualPrimitive interface requires the implementation of a getLabel
method, which creates a label for a specific marker primitive instance. The render function for a Label
Series component then calls the getLabelmethod of all passed marker primitives and renders each retrieved
label as a <text> element.

5.3.10 Element Modules

The Element modules, located in the ts/render/element/ directory of Listing 5.6, contain useful functions
for rendering simple elements not coupled to any data. The svg.ts file provides the renderSVGs function,
which renders an arbitrary number of complete SVGs specified as a string array. The bg-svg-only.ts
file contains the two functions renderBgSVGOnlyBBox and renderBgSVGOnlyByRect, which both create a
background <rect> element around an argument, typically to provide interactivity. The first is based
on the bounding box of a reference element, while the second is passed the position and extent of the
rectangle as an argument.

5.3.11 Scale Modules

D3 provides many types of scales. The purpose of the Scale modules, which are located in the ts/data/
scale/ directory of Listing 5.6, is to restrict which combinations of values and scale types are specifiable
by chart creators, and to provide constructs for handling scales and their corresponding domain values.
The restriction of types of input values for scales was conceived to guide chart creators and immediately
display error messages, if scale arguments do not match the expected type.

The most used constructs in Scale modules are of type ScaledValuesSpatial. These constructs are
used to map data series values to their corresponding positions, sizes, and shapes in the drawing area.
Furthermore, they provide the scales used for the creation and update process of the corresponding
Axes. Currently, there are three kinds of spatial scaled values: numerical, temporal, and categorical.



64 5 RespVis v3

Numerically and temporally scaled values behave similarly, and can be filtered by specifying a valid range
of numbers inside the domain. They are also capable of applying zooming by rescaling. Categorically
scaled values on the other hand provide a different way of filtering by controlling the filter state of each
category. Zooming is not applicable to categorically scaled values. Another type of scaled values is
defined by the ScaledValuesSequential interface, which is used to apply sequential color encoding to a
Data Series.

Moreover, the Scale modules provide a helper class for applying cumulative aggregation. The Scaled
ValuesCumulativeAggregator requires a Data Series having one numerical and one categorical dimension.
The aggregator calculates the cumulative sum of all records by iterating over all domain values, taking
into account the order of categories. Currently, the only practical use case of the aggregator is the Stacked
Bar Chart. In future versions it might be reused to add stacked area charts or waterfall charts to RespVis.

5.3.12 Categories Module
The Categories module is located in the ts/data/categories/ directory of Listing 5.6. The module provides
a clear definition of the required user arguments for the categorization of Data Series. If categories are
included, each record of a series must be assigned a corresponding category. To ensure fast access during
the render phase, the module contains a factory function, which returns validated Categories objects.
These objects contain the properties categoryArray, which is an ordered array of Category objects, and a
Category mapping with the original category strings as keys. A Category object has the properties:

• key, enabling the filtering of categories via the Legend or the Filter Menu of the Toolbar.

• styleClass, for the visualization of category differences in the Legend and marker primitives.

• order, representing the category order related to the other categories in the same category array. The
exact value depends on the first appearance of the category in the originally passed category array.

• formatValue, the result of applying the formatting specified by a chart creator to the original category
value.

• value, the original category value.

5.3.13 Breakpoints Modules
For a visualization to be responsive, it must be capable of adapting its layout and content depending on
the available space. In responsive web design, a breakpoint is a specific width value (e.g. 20rem) where
a layout may change. The ranges between breakpoints are called layout widths (e.g. narrow, medium,
and wide, if two breakpoints are defined). Breakpoints are typically defined using media or container
queries in CSS. However, for visualizations, there are times when the currently active layout width must
be available in JavaScript too. One example is the shortening of tick labels for narrow layout widths.
This cannot really be achieved in CSS alone, but has to be done in JavaScript.

To make the current layout width information accessible from both JavaScript and CSS, RespVis
introduces a novel approach to defining breakpoints for components, using the Breakpoints modules located
in the ts/data/breakpoints/ directory of Listing 5.6. Listing 5.10 shows how ComponentBreakpoints
can be defined. Breakpoints can be specified for both width and height at the same time. Currently,
component breakpoints can be assigned to Axis and Chart components. In future versions, component
breakpoints will also be specifiable for the Legend component and the drawing area.

When defining component breakpoints, RespVis takes the specified values, validates them, and defines
CSS variables to hold the current layout width. During each render cycle, the Breakpoints.updateLayout
CSSVars method updates the CSS variables of assigned elements in the DOM. For the example given in
Listing 5.10, there are three breakpoints and hence four layout widths, resulting in the following layout
width indices:



RespVis Core 65

1 breakpoints: {
2 width: {
3 values: [20, 30, 50],
4 unit: ’rem’
5 }
6 }

Listing 5.10: An argument passed by a chart creator to define component breakpoints at widths
20rem, 30rem, and 50rem.

1 .window-rv {
2 container-type: inline-size;
3 @container style(--layout-width: 0) or style(--layout-width: 1)
4 or style(--layout-width: 2) {
5 .chart {
6 grid-template: auto 1fr auto / 1fr;
7 grid-template-areas:
8 ’header’
9 ’padding-wrapper ’

10 ’legend ’;
11 }
12 }
13 }

Listing 5.11: Practical usage of component breakpoints in style container queries to rearrange CSS
Grid layout for specific layout widths.

1. --layout-width = 0: chart width <=20rem.

2. --layout-width = 1: chart width >20rem and <=30rem.

3. --layout-width = 2: chart width >30rem and <=50rem.

4. --layout-width = 3: chart width >50rem.

Since CSS variables are inherited, the current layout width is available to all nested child elements of a
chart. It is possible to set separate breakpoints for an Axis component within a chart, overriding any chart
breakpoints which would otherwise apply to nested child elements like an Axis.

For browsers which support style container queries, the --layout-width variable can be used inside a
style container query to adapt the layout for various widths, as shown in Listing 5.11. This approach helps
avoid bugs, since breakpoints are only defined once. At the time of writing, Firefox does not yet support
style container queries [Deveria 2024], so best practice to support all modern web browsers currently
involves hard-coding the breakpoint values within a size container query, as shown in Listing 5.12. This
approach necessitates duplication of breakpoint values, and hence is more error-prone when changes are
made.

Another advantage of storing the current state of layout width in CSS variables is the capability of
scaling and shifting all responsive transformations of a visualization at once. RespVis again makes use of
CSS variables to provide this feature. Given the example breakpoints defined previously in Listing 5.10,
and defining the CSS variables --layout-width-factor: 1.8; and --layout-width-offset-factor:
0;, the original breakpoint widths are scaled, and the final breakpoint positions are adapted accordingly.

For the given example, the following width breakpoints emerge:



66 5 RespVis v3

1 .window-rv {
2 container-type: inline-size;
3 @container (width < 50rem) {
4 .chart {
5 grid-template: auto 1fr auto / 1fr;
6 grid-template-areas:
7 ’header’
8 ’padding-wrapper ’
9 ’legend ’;

10 }
11 }
12 }

Listing 5.12: Practical usage of hard-coded breakpoint values within a size container query to
rearrange CSS Grid layout for specific layout widths.

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

C
a
r 

P
ri

ce
 [

E
U

]

0

40,000

80,000

120,000

160,000

200,000

240,000

Car Characteristics from AutoScout24 in Germany

Legend
Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

Mileage

0.0 200k 400k

(a) Original breakpoints. (b) Breakpoint positions scaled by a factor of 1.8.

Figure 5.14: Shifting the positions of all breakpoints by changing only a single CSS variable. [Images
created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

1. breakpoint 0: 20rem ∗1.8 + 0 = 36rem.

2. breakpoint 1: 30rem ∗1.8 + 0 = 54rem.

3. breakpoint 2: 50rem ∗1.8 + 0 = 90rem.

Figure 5.14 demonstrates the difference with two Scatter Plots, which only differ in the above described
CSS variables. As can be seen, the scaled breakpoint positions affect the title content, x-axis tick count,
bubble radius, and legend position. The RespVis library automatically accounts for the adapted positions
of layout breakpoints. For style sheets to automatically consider the changes too, the use of style container
queries is necessary.

5.3.14 Responsive Property Modules

The Responsive Property modules, located in the ts/data/responsive-property/ directory of Listing 5.6,
consist of generic types and classes, which are used to extend selected chart arguments and provide
responsive functionality. If an argument is declared as a responsive property, a chart creator is still able
to ignore the responsive capabilities and pass a static argument in the chart creation process. However,



RespVis Core 67

1 title: {
2 dependentOn: ’width’,
3 scope: ’chart’,
4 mapping: {
5 0: ’Short Title’,
6 1: ’A Medium Length Title’,
7 3: ’A Really Long Title with Extra Bells’
8 }
9 }

Listing 5.13: An argument passed by a chart creator to define a responsive chart title based on layout
widths. Note that layout width 2 has been deliberately omitted.

the real benefits of responsive properties come into play when they are specified in their responsive form.

There are two types of responsive property. The first is the ResponsiveValue, which is assigned to
the arguments title, subtitle, configureAxis, and flipped. A classic use case for this type is the
creation of responsive chart titles. Listing 5.13 shows an example of a responsive chart title argument.
The dependentOn property defines which layout dimension should be queried (width or height). The
scope property is optional and defines which component breakpoints should be used. Finally, the mapping
property maps available layout widths to the respective values of the responsive property. Layout widths
are sorted from narrow to wide in ascending order. If no property value is specified for a layout width,
as is the case for layout width 2 in the given example, the current property value is derived from the first
valid previous layout width. The property for layout width 0 is required to be always defined. Given the
same chart breakpoints of 20rem, 30rem, and 50rem previously defined in Listing 5.10, the following chart
titles will be used:

1. --layout-width = 0: ’Short Title’

2. --layout-width = 1: ’A Medium Length Title’

3. --layout-width = 2: ’A Medium Length Title’

4. --layout-width = 3: ’A Really Long Title with Extra Bells’

The second responsive property type is BreakpointProperty, which is assigned to the arguments
tickOrientation, tickOrientationFlipped, and radii. Breakpoint properties are specified similarly to
responsive values. Breakpoint properties define breakpointValues properties, which map breakpoints
to values. Since breakpoints define exact values rather than ranges, the current value of a responsive
property is interpolated between the defined breakpoint values. This allows for the continuous change of
a responsive property.

A classic use case for this type is the specification of axis tick rotations. Listing 5.14 shows an example
of a responsive tickOrientation argument. If no value is specified for a breakpoint index, as is the case for
breakpoint 1 here, the breakpoint is ignored for the interpolation process. Before the first breakpoint, and
after the last breakpoint, the corresponding value is simply propagated and returned as the current active
value. The property for breakpoint 0 is required to always be defined. Given the same chart breakpoints
of 20rem, 30rem, and 50rem previously defined in Listing 5.10, Figure 5.15 shows how RespVis computes
the current tick orientation for an Axis.

5.3.15 Sequential Color Module

The Sequential Color module, located in the ts/data/sequential-color/ directory of Listing 5.6, contains
the interfaces required for adding a continuous color encoding to a Data Series. It is based on D3’s



68 5 RespVis v3

1 tickOrientation: {
2 dependentOn: ’width’,
3 scope: ’chart’,
4 breakpointValues: {
5 0: 90,
6 2: 0
7 }
8 }

Listing 5.14: Argument passed by a chart creator to define a responsive, interpolated tick orientation
for an Axis, based on breakpoints.

breakpoint: 0 breakpoint: 1 breakpoint: 2

20rem 30rem 50rem

propery value: 90° property value: - property value: 0°

0

property value: 90°

20rem

property value: 90°

25rem

property value: 90°
+ (25rem - 20rem) 
/ (50rem - 20rem) 
* (0° - 90°) = 75° 

30rem

property value: 90°
+ (30rem - 20rem) 
/ (50rem - 20rem) 
* (0° - 90°) = 60° 

40rem

property value: 90°
+ (40rem - 20rem) 
/ (50rem - 20rem) 
* (0° - 90°) = 30° 

50rem

property value: 0°

>50rem

property value: 0

Figure 5.15: Sampled tick orientations interpolated between defined breakpoint values. [Image created
by the author of this thesis.]



RespVis Core 69

C
a
r 

P
ri

ce
 [

E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Car Characteristics from AutoScout24 in Germany

Mileage

0.0 50k 100k 150k 200k 250k 300k 350k 400k

Figure 5.16: Scatter Plot with sequential color encoding. [Image created with RespVis [Egger and Oberrauner
2024a] by the author of this thesis.]

scaleSequential function. The enclosed factory function validates user arguments and produces objects
containing the domain values, a continuous scale for mapping domain values to their respective color
counterparts, and a BaseAxis object to use in the Legend component to visually explain the mapping of
values to colors. If a continuous color dimension is included, each record of a Data Series must be assigned
a corresponding color, otherwise RespVis throws an error with a dedicated error message. Figure 5.16
shows how continuous color encoding is applied to a Scatter Plot. Continuous color encoding is not reserved
for point markers only, but can also be applied to all other marker primitives.

5.3.16 Zoom Module

Zooming is a crucial tool for overcoming the problems of limited resolutions and narrow screens. The
standard approach, geometric zoom, allows an end user to control the magnification of a visualization,
and thereby trade the space needed for currently less relevant information for more space for areas of
interest [InfoVis:Wiki 2006].

The Zoom module, located in the ts/data/zoom/ directory of Listing 5.6, contains the interfaces required
to enable zooming for Data Series components. The enclosed factory function requires the maximal scale
factors for zooming in and out respectively and returns objects which additionally contain a D3 zoom
behavior and the current zoom transform state. The details of D3 zoom operations are discussed in
Section 2.7.

All concrete RespVis data series types are capable of applying zooming (except Stacked Bar Series).
Zooming can only be applied to scales with a numeric domain (numerically or temporally scaled values),
with different Data Series types leading to different zooming effects. For example, while Point Series change
only positions, their size remains unchanged. Bar Series are the opposite as they do not change positions,
but adapt their size to fit the zoomed state of their scales.

5.3.17 Utilities Modules

The utilities modules are located in the ts/utilities/ directory of Listing 5.6. The D3 modules, located
in subdirectory d3/, contain utility functions and types for interacting with constructs defined in the
D3 visualization library. The drag.ts module exports the functions relateDragWayToSelection and



70 5 RespVis v3

relateDragWayToSelectionByDiff for calculating the covered drag path relative to a reference element.
Furthermore, it includes the attachActiveCursorLocking function, which is used to set up event listeners,
which take care of locking cursor appearances during drag and drop interactions with a chart. The
formats.ts module exports the formatWithDecimalZero function, which enforces D3 format functions to
always include values of 0 unformatted. The re-exports.ts module exports D3 functionality, which is
frequently used by chart creators. Including these exports means the standalone bundle contains parts
of D3, while the dependency-based bundles remain unchanged. The decision to re-export parts of D3
completely was made because of a negligible increase in bundle size compared to a much friendlier chart
creation experience. The selection.ts module provides utility functions for dealing with D3 selections.
This includes mapping, applying a class list, retrieving a set of selected elements, retrieving computed
CSS variables, and creating a selector and a class string from a class list.

The text.ts module contains the positionSVGTextToLayoutCenter function, which is used in the
layouting phase to align the positions of SVG <text> elements with their layout element counterparts,
as explained in Section 5.3.3.3. The throttle.ts module contains a throttle function, which is used
to prevent runtime issues with frequently occurring events. More advanced throttling functionality can
be achieved using the ThrottleScheduled class, which does not stall a function call completely, but
schedules it to be executed after a specified delay. The transition.ts module provides functions for
adding special classes to elements in selections or transitions. Three functions, addD3TransitionClass,
addD3TransitionClassForSelection, and removeD3TransitionClassSelection, are used to indicate if
elements currently undergo a D3 transition. Another three functions, addCSSTransitionEnterClass,
addCSSTransitionExitClass, and cancelExitClassOnUpdate are used to assign special class names, which
can be used to apply simple CSS transitions.

The Dom modules contain useful functions for accessing and manipulating elements in the DOM. The
detectClassChange function in detect-mutation.ts is used to assign a callback function if the class of
an element changes. The element.ts module provides two functions for determining the absolute and
relative bounds of an element, and another function for detecting all non-default computed styles of an
element for a given list of properties. The unit.ts module contains the cssLengthInPx function, which
converts values given in the units px, rem, em, or % into px.

All basic geometric types and constructs of RespVis are located in the Geometry modules in subdirectory
geometry/. The Position module defines the Position type and its utility functions. It is heavily used by
the Shapes modules, which are also part of the geometry modules. The Shapes modules define types
representing graphical SVG elements and utility functions for manipulating, positioning, and querying
attributes of these elements. The Angle module provides utility functions for dealing with angles. Currently,
only a single function is provided, for normalizing a given angle.

The Array module defines the namespace RVArray, which contains additional functions for advanced
use cases of the JavaScript built-in Array object. Chart creators pass data in form of arrays containing
domain values. One use case is the equalization of related domain arrays by shortening the longer one
with the RVArray.equalizeLengths function. To ensure passed arrays are correctly typed, there are type
guards for validating arrays of numbers, strings, Dates and objects containing a valueOf property of
type number (number-like objects). Another use case is the calculation of a number array’s sum with the
RVArray.sum function. The RVArray.mapToRanks function calculates the rank of each element of a number
array and returns a new array of ranks. One usage of the function is the decoupling of the visual order of
Axes in Parallel Coordinates Charts from their original order on drag and drop interactions. The elimination
of duplicated values from an array becomes possible with the Array.clearDuplicatedValues function.
A practical use case of the function is the establishment of an ordered category array from all category
values passed by a chart creator.

The Key module defines the Key class, which is used to define the keys of marker primitives. The class
provides useful methods for retrieving the data series key, categorical keys, and individual key of a marker
primitive. Moreover, the Key module provides utility functions for splitting composite keys and merging



RespVis Tooltip 71

respvis-tooltip/
css/

index.css
package/ (generated)
ts/

render/
data-series-tooltip.ts
index.ts
movable-cross-tooltip.ts
render-tooltip.ts
tooltip.ts

index.ts
package.json

Listing 5.15: The file and directory structure of the respvis-tooltip sub-package.

and combining sub keys. The getActiveKeys function returns all active keys of a given ActiveKeyMap
object. The current RespVis key schema defines:

• s-<index>: A series key.

• a-<index>: An Axis key.

• ac-<index>: A Sequential Color Axis key.

• ar-<index>: A Radii Axis key.

• s-<index>-c-<index>: A category key of a Data Series independent of an Axis.

• a-<index>-c-<index>: A category key of a Data Series visually presented as an Axis.

The Test, Math, Typescript, and Unique modules comprise the remaining utility modules. The Test module
contains the measureFunctionPerformance function, which is not exported, but can be used for internal
performance tests. The Math module is conceived to provide useful math utility functions. Currently, it
provides only the calcLimited function, which limits a calculation to avoid underflows and overflows. The
Typescript module contains the applyMixins function which enables the usage of TypeScript mixins, and is
described in the official TypeScript documentation [Microsoft 2024a]. The Unique module contains the
function uniqueId for generating unique identifiers, and avoiding naming collisions for certain elements,
which is useful in case multiple RespVis charts are included in a page.

5.4 RespVis Tooltip
The respvis-tooltip package provides the functionality to render and manipulate the Tooltip component.
Its directory structure is shown in Listing 5.15. The Tooltip component is the only component rendered
outside the Window component. The render function, which is only called if at least one chart with active
Tooltips is created, attaches the Tooltip component to the document’s <body> element. It is shared by all
RespVis charts of a web site. Only one Tooltip component is needed, since an end user can only inspect one
chart at once. Furthermore, the render function attaches a pointermove event listener at the document’s
window to consistently check if the tooltip state of any chart must be changed, since each chart maintains
a dedicated Tooltip object.

The Tooltip object is instantiated by calling the constructor of the Tooltip class and holds configuration
properties. Moreover, it provides the two methods isVisible, which checks the current visibility state for
all included tooltip types, and applyPositionStrategy, which makes it possible to have multiple position



72 5 RespVis v3

Figure 5.17: The Data Series Tooltip is used to display information about the currently hovered marker
primitive. [Screenshot taken by the author of this thesis.]

strategies for different types of Tooltip components. Currently, two strategies of positioning are supported.
In the first one, the sticky strategy, the Tooltip is aligned diagonally with an adjustable offset relative to
the current mouse position. Furthermore, the Tooltip is automatically placed such that the available space
around the mouse is optimally used. The second strategy does not position the Tooltip at all and leaves this
task to a chart creator.

Currently, two types of tooltip information are supported. The first is the Inspection Tooltip, which is
activated via the Toolbar as discussed in Section 5.3.2. The second is the Data Series Tooltip, which can
be applied to any selection of elements bound to DataSeries objects containing the optional property
markerTooltipGenerator. This property is a callback function passed by a chart creator as an argument
at the creation time of a chart. The callback accepts two arguments: the first is the currently hovered
element, and the second is the data object of the corresponding marker primitive. With this context, the
callback returns markup code as a string, which is inserted into the Tooltip component as soon as it is
activated. Figure 5.17 shows the Data Series Tooltip for a Grouped Bar Chart.

5.5 RespVis Cartesian
In cartesian charts, components are positioned based on a cartesian coordinate system [Kirk 2019,
page 291]. Currently, respvis-cartesian only supports two-dimensional coordinates with a horizontal
(x) and a vertical (y) dimension. The directory structure of the package is shown in Listing 5.16.

The respvis-cartesian package does not contain any chart class which can be instantiated. Instead,
it provides the interfaces which the cartesian chart classes BarChart, LineChart and ScatterPlot must
adhere to, and a factory function for creating valid CartesianChartData objects. The CartesianChartData
interface extends the SeriesChartData interface and further declares the properties:

• series, the CartesianSeries object.

• x, a CartesianAxis object representing the horizontal Axis of a chart, assuming that the associated
Data Series is not flipped.

• y, a CartesianAxis object representing the vertical Axis of a chart, assuming that the associated Data
Series is not flipped.

CartesianChartData objects are used in the cartesian render functions. These functions can be
invoked by all classes making use of the CartesianChartMixin class. The first render function is the



RespVis Cartesian 73

respvis-cartesian/
css/

axis.css
chart-cartesian.css
index.css

package/ (generated)
ts/

render/
cartesian -chart/

render/
index.ts
render-cartesian -axes.ts
render-grid.ts
render-origin-line.ts

cartesian -chart-mixin.ts
cartesian -renderer.ts
index.ts
validate -cartesian -chart.ts

cartesian -series/
cartesian -responsive -state.ts
cartesian -series.ts
handle-zoom.ts
index.ts
validate -cartesian -series.ts

index.ts
validate -cartesian -axis.ts

index.ts
package.json

Listing 5.16: The file and directory structure of the respvis-cartesian sub-package.

1 .padding-wrapper {
2 display: grid;
3 grid-template: auto auto 1fr auto auto / auto auto 1fr auto auto;
4 grid-template-areas:
5 ’. . axis-top . .’
6 ’. . padding-container-top . .’
7 ’axis-left padding-container-left draw-area padding-container-right axis-right ’
8 ’. . padding-container-bottom . .’
9 ’. . axis-bottom . .’;

10 }

Listing 5.17: CSS for laying out the padding wrapper in cartesian charts.

renderCartesianAxis function. Invoking this function leads to a change in the standard layout structure
discussed in Section 5.3.4.1, since Cartesian Axes are added to the padding wrapper. The adapted layout
structure is illustrated in Figure 5.18 and the styles responsible for the layout can be seen in Listing 5.17.

A call to the second render function, renderOriginLine, places horizontal or vertical lines at the origin
of a chart’s Axes, given that the domain of the underlying data values includes both positive and negative
values. Figure 5.19 shows a Bar Chart with bars representing values, which are either positive or negative.
Letting the bars rest on an origin line helps in understanding the bipolar nature of the bars at first glance.

The third render function, renderGrid, is responsible for adding grid lines to a chart. Grid lines, in
general, should assist an end user in the interpretation of a chart. They come with the benefits of visually



74 5 RespVis v3

draw-area

axis-left

axis-bottom

axis-right

axis-top

. .

. .

padding-container-left

padding-container-bottom

padding-container-right

padding-container-top

Figure 5.18: The layout structure of the padding wrapper and its child elements in cartesian charts.
[Image created by the author of this thesis.]

-1.3

-0.57
-0.5

-1

-0.84

-0.35

-0.08

0.1

-0.25

-1.04

-0.66

-0.16

1.41

1.81

2.17

1.28 1.23

1.39

1.59

1.79

2.27 2.23

2.38
2.24

Months

1850-01

1850-02

1850-03

1850-04

1850-05

1850-06

1850-07

1850-08

1850-09

1850-10

1850-11

1850-12

2023-01

2023-02

2023-03

2023-04

2023-05

2023-06

2023-07

2023-08

2023-09

2023-10

2023-11

2023-12

A
n
o
m

a
lie

s
[°

C
]

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Global Temperature Anomalies

(a) Horizontal origin line.

-1.3

-0.57

-0.5

-1

-0.84

-0.35

-0.08

0.1

-0.25

-1.04

-0.66

-0.16

1.41

1.81

2.17

1.28

1.23

1.39

1.59

1.79

2.27

2.23

2.38

2.24

M
o
n
th

s

1850-01

1850-03

1850-05

1850-07

1850-09

1850-11

2023-01

2023-03

2023-05

2023-07

2023-09

2023-11

Anomalies
[°C]

−
2

−
1

.5

−
1

−
0

.5

0 0
.5

1 1
.5

2 2
.5

3

G lobal Temperature Anomalies

(b) Vertical origin line.

Figure 5.19: The origin line indicates the bipolarity of bar markers. [Images created with RespVis [Egger
and Oberrauner 2024a] by the author of this thesis.]

aligning data elements far away from axes, highlighting differences between data elements far away from
axes, and dividing a chart into specific sections, which could optionally be further analyzed with the help
of interaction tools [Choudhury 2014].

To function properly, the renderGrid function is dependent on the CartesianAxis objects representing
the horizontal and vertical Axes of a cartesian chart. These objects provide, in addition to the BaseAxis
properties, a reference to their corresponding CartesianSeries and optional configuration properties for
the distance between grid lines (gridLineFactor), and the inversion state of the Axis (inverted).

The gridLineFactor is specifiable by a chart creator and can be chosen as any positive number > 0.01.
If a chosen value differs from this restriction, undefined will be assigned to the property. There are four
possible scenarios depending on the value of the property as illustrated in Figure 5.20:

• gridLineFactor < 1: Grid lines are created at the position of each axis tick and, furthermore, in
between two ticks according to the factor. A factor of 0.5 would, for example, lead to one additional
line exactly between each two ticks.



RespVis Cartesian 75

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(a) Grid line factor < 1.

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(b) Grid line factor = 1.

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(c) Grid line factor > 1.

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(d) Grid line factor undefined.

Figure 5.20: The appearance of grid lines depends on the chosen grid line factor. Here, the grid line
factor of the Y-Axis is varied. [Images created with RespVis [Egger and Oberrauner 2024a] by the author of this
thesis.]

• gridLineFactor = 1: Grid lines are created at the position of each axis tick.

• gridLineFactor > 1: First, the two neighboring axis ticks with the greatest distance are determined.
Then, the distance is multiplied with the gridLineFactor, resulting in the grid line distance. Lastly,
grid lines are created in intervals of the calculated grid line distance, starting at the first of the two
originally retrieved axis ticks, in both directions until no further grid line can be accommodated.

• gridLineFactor = undefined: No grid lines are created.

The boolean property invertedmay be specified by a chart creator and can be chosen to be a responsive
property, which are discussed in Section 5.3.14. If the inverted property is true, the mapping between
the domain and range of the underlying axis scale is inverted, as can be seen in Figure 5.21.

Another essential part of the package is the abstract CartesianSeries class. The purpose of the class
is to serve as a blueprint for other classes, which hold the data necessary for rendering Cartesian Series
components. It implements the DataSeries interface discussed in Section 5.3.5 and is inherent to the
derived classes BarBaseSeries, PointSeries and LineSeries. The data properties held by CartesianSeries
objects must be of type CartesianSeriesData, which defines:

• an x property, the scaled values object representing the horizontally scaled values of the Data Series,



76 5 RespVis v3

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Country

Austria Italy France Germany Netherlands

To
ta

l 
R

e
m

u
n
e
ra

ti
o
n

[E
U

]

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

Year

2020

2021

2022

(a) Standard Axis.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Country

Austria Italy France Germany Netherlands

To
ta

l 
R

e
m

u
n
e
ra

ti
o
n

[E
U

]

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

Year

2020

2021

2022

(b) Inverted Axis.

Figure 5.21: A Grouped Bar Chart with a standard Y-Axis compared to an inverted Y-Axis. [Images created
with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

assuming the series is not flipped.

• a y property, the scaled values object representing the vertically scaled values of the Data Series,
assuming the series is not flipped.

• an optional zoom property, representing the current zoom state of the Data Series.

The CartesianSeries class furthermore requires derived classes to hold a responsiveState property of
type CartesianResponsiveState, which provides:

• an update function for maintaining the Data Series’ x and y scales and setting up zoom event listeners,
which take care of maintaining the zoom object.

• helper functions for retrieving the current horizontally and vertically scaled values, depending on
the flip state of the Data Series.

5.6 RespVis Bar
Bar charts are used to compare numerical variables of dataset items by visualizing categorized bars in a
cartesian coordinate system. The bar length represents the magnitude of the numerical variable, which
is compared. The bar position represents its categorical value. Bars always rest on the categorical axis.
If the categorical variable is displayed along the horizontal axis, the chart can be referred to as a column
chart. If the other way around, the chart can be referred to as a row chart [Kirk 2019, pages 140–141,
159]. Both chart types are supported by respvis-bar, RespVis’ sub-package for creating bar charts.
Furthermore, the creation of Grouped Bar Series and Stacked Bar Series, which are more complex variations
of Standard Bar Series, is possible using respvis-bar. The directory structure of the package is shown in
Listing 5.18.



RespVis Bar 77

respvis-bar/
css/

index.css
package/ (generated)
ts/

render/
bar-chart/

bar-chart.ts
index.ts
validate -bar-chart.ts

bar-series/
bar-base/

bar-base-responsive -state.ts
bar-base-series.ts
bar-standard -series.ts
validate -bar-base-series.ts

bar-grouped/
bar-grouped-creation.ts
bar-grouped-series.ts

bar-stacked/
bar-stacked-creation.ts
bar-stacked-series.ts

bar-series.ts
index.ts
join-bar-series.ts
render-bar-series.ts

bar-label.ts
bar.ts
index.ts

index.ts
package.json

Listing 5.18: The file and directory structure of the respvis-bar sub-package.

5.6.1 Bar Chart Modules

The Bar Chart modules, located in the ts/render/bar-chart/ directory of Listing 5.18, enable the creation
of Bar Charts by providing the BarChart class. The BarChartUserArgs interface acts as a contract between
RespVis and a chart creator, and the validateBarChart function returns a validated BarChartData object in
the validation phase of the chart.

The optional BarChartUserArgs.series.type property must be specified by a chart creator to choose the
desired Bar Series variation. If the property is omitted, by default a Standard Bar Series will be created. As
soon as the property is specified, a good Integrated Development Environment (IDE) is able to narrow
down the desired bar series type, supporting a chart creator by revealing additional parameter options
based on the chosen type.

The render routine of a Bar Chart is defined in the renderContent method. This method invokes the
render functions of the incorporated mixins DataSeriesChartMixin and CartesianChartMixin to render
all cartesian chart components. Calling the function renderBarSeries completes the render process by
deriving all Bar data objects from the underlying BarSeries, binding the data objects to <rect> elements,
and subsequently calling joinBarSeries. The joinBarSeries function ultimately takes care of updating the
enter, update, and exit selections of a Bar Series by using the bound data objects to perform the necessary
DOM manipulation operations on the <rect> elements.



78 5 RespVis v3

1973403

289440

210165
155021

132493
101403

65127

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p
u
la

ti
o
n

0
.0

2
0

0
k

4
0

0
k

6
0

0
k

8
0

0
k

1
.0

M
1

.2
M

1
.4

M
1

.6
M

1
.8

M
2

.0
M

Population of Austrian Cities

(a) Wide.

1973403

289440

210165

155021

132493

101403

65127

C
it

ie
s

V
ie

n
n
a

G
ra

z
Lin

z
S

a
lzb

u
rg

In
n
sb

ru
ck

K
la

g
e
n
fu

rt
V

illa
ch

Population

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M
Population of Austria

(b) Narrow.

Figure 5.22: Wide and narrow versions of a Bar Chart. [Images created with RespVis [Egger and Oberrauner
2024a] by the author of this thesis.]

5.6.2 Bar Base Series Modules

The Bar Base Series modules, located in the ts/render/bar-series/bar-base/ directory of Listing 5.18,
define the BarBaseSeries class, a super class of CartesianSeries and the abstract base class of all
concrete bar series classes. The main purpose of BarBaseSeries is to act as a template for its concrete
implementations. It enforces categorical x-axis values and provides a getBarsmethod for deriving all Bar
marker primitive objects from the data records.

Since each Bar Series variation has a different strategy for calculating the lengths and positions of its
bars, each variation must provide a getRect method for retrieving Rect shape objects for the creation of
its bars. This is enforced by the abstract BarBaseSeries.getRect method, which all descendants must
implement.

Another class defined in the Bar Base Series modules is BarBaseResponsiveState. It is a derived class
of CartesianSeriesResponsiveState and provides the getBarBaseRect method, which takes the index of a
data record and returns the currently valid corresponding Rect shape object. This is achieved using a band
scale to determine the width and position of a bar along its categorical Axis. The width and position of a
bar along its numerical Axis is determined using a numerical scale. The getBarBaseRectmethod takes into
account the responsively changing flip state of the Bar Series and applies different strategies for vertically
and horizontally aligned bars.

BarStandardSeries represents an instantiable version of BarBaseSeries and directly calls getBarBaseRect
to create bar markers. Figure 5.22 illustrates how a Standard Bar Chart can be rendered as a Column Chart for
wide spaces and as a Row Chart for narrow spaces.

5.6.3 Bar Grouped Series Modules

A grouped bar chart requires data records to provide a secondary categorical value. Bars with the same
primary category but different secondary category form a group and are located directly next to each
other, which enables local comparison of the bars. Bars typically exhibit color coding based on the
secondary category [Kirk 2019, pages 140, 141, 159].

The Bar Grouped Series module, located in the ts/render/bar-series/bar-grouped/ directory of List-
ing 5.18, defines the BarGroupedSeries class, which is a concrete class derived from BarBaseSeries. It



RespVis Bar 79

(a) Wide.

190k

200k

220k

680k

730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k

420k

450k

C
o
u
n
tr

y

Austria

Italy

France

Germany

Netherlands

Total Remuneration
[EU]

0.0

400k

800k

1.2M

1.6M

2.0M

2020 2021 2022

(b) Narrow.

Figure 5.23: Wide and narrow versions of a Grouped Bar Chart. [Images created with RespVis [Egger and
Oberrauner 2024a] by the author of this thesis.]

only differs by its strategy for creating bars. Instead of one bar using the whole width provided by the
corresponding band scale, the available space is split up between bars of the same primary but differing
secondary category. This is achieved using another band scale responsible for splitting up the available
space provided by the first band scale. The local position of the bars is thereby determined by the order of
the secondary category. The position and width along the numerical axis stay the same as for a Standard
Bar Series. A Grouped Bar Chart example is shown in Figure 5.23.

5.6.4 Bar Stacked Series Modules

A stacked bar chart requires data records to provide a secondary categorical value. Bars with the same
primary but different secondary category are stacked on top of each other, representing parts of a whole
bar. Bars typically exhibit color coding based on their secondary category [Kirk 2019, pages 140, 141,
159].

The Bar Stacked Series module, located in the ts/render/bar-series/bar-stacked/ directory of List-
ing 5.18, defines the BarStackedSeries class, which is a concrete class derived from BarBaseSeries.
Instead of one bar using the whole height, which is provided by the corresponding numerical scale, the
available space is split up between bars of the same primary but differing secondary category. This
is achieved by calculating the cumulative sums of the numerical values of data records with the same
primary but different secondary category. Calculating cumulative sums is an important detail in the
summation process, since the start position of a bar along the numerical axis is defined by the cumulative
sum of all previous bars with the same primary category. An example of a Stacked Bar Chart is shown in
Figure 5.24.

5.6.5 Bar Module

The Bar module, defined in the ts/render/bar.ts file of Listing 5.18, contains the definition of the marker
primitive class Bar. Bar objects are designed to be bound to <rect> element selections upon which the
D3 data join function joinBarSeries can be performed. Furthermore, bar markers hold additional data
relevant for the creation of bar tooltips and bar labels.



80 5 RespVis v3

99 97
94

88

79

67

59

51

44 45 46 46

2.9
6.1

11

16

27

35

44

52
51 50 52

4.6 6.3 5.7 5.0 4.7 4.0 3.6 2.8

Year

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

M
a
rk

e
t 

S
h
a
re

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Market Share of Device Types

Device Types

Desktop

Smartphone

Tablet

(a) Wide.

99

97

94

88

79

67

59

51

44

45

46

46

6.1

11

16

27

35

44

52

51

50

52

6.3

5.7

Ye
a
r

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

Market Share

0% 20%

40%

60%

80%

100%

Device Types

Desktop Smartphone Tablet

(b) Narrow.

Figure 5.24: Wide and narrow versions of a Stacked Bar Chart. [Images created with RespVis [Egger and
Oberrauner 2024a] by the author of this thesis.]

5.6.6 Bar Label Module

The purpose of the Bar Label module, which is defined in the ts/render/bar-label.ts file of Listing 5.18,
is to declare interfaces for the creation and use of bar labels. This includes an interface for the user
arguments, allowing library users to specify the desired labels, format function, and position strategies.
Furthermore, an interface for valid bar label objects is defined. Labels generated by the Bar.getLabel
method must adhere to this structure to make it possible to map bar markers to bar labels.

The four available position strategies for bar labels are center, positive, negative, and dynamic.
Strategy center places the bar label at the center of each bar. If a chart creator chooses the positive or
negative strategy, the bar label will be located at the positive or negative end of each bar, respectively.
The underlying algorithm automatically takes into account if the Bar Series is flipped or scales are inverted.
The dynamic position strategy extends the two previous approaches by automatically detecting if a bar
represents a positive or negative value and positions the label at the appropriate end. Figure 5.19
demonstrates the dynamic position strategy for a Standard Bar Chart with positive and negative values.

5.7 RespVis Point
Scatter plots visualize the relationship between two numerical data dimensions by plotting points in a
cartesian coordinate system. They may support the categorization of data records by mapping distinct
color attributes to the points. Another option of using colors in scatter plots is to introduce an additional
dimension by applying sequential color encoding. Also the size of the points can be encoded to add
a further dimension. This variation of a scatter plot is called a bubble chart. Scatter plots with one
categorical and one numerical dimension are called dot plots and serve the purpose of representing
comparable distributions [Kirk 2019, pages 152, 166–177]. All the discussed scatter plot variations are
supported by respvis-point, RespVis’ sub-package for creating scatter plots. The directory structure of
the package is shown in Listing 5.19.



RespVis Point 81

respvis-point/
css/

index.css
scatterplot.css

package/ (generated)
ts/

data/
radius/

base-radius.ts
bubble-radius.ts
extrema.ts
index.ts
radius.ts

index.ts
render/

point-series/
create-points.ts
join-point-series.ts
point-responsive -state.ts
point-series.ts
render-point-series.ts
render-radius-scale.ts
validate -point-series.ts

scatter-plot/
scatter-plot.ts
validate -scatter-plot.ts

index.ts
point-label.ts
point.ts

index.ts
package.json

Listing 5.19: The file and directory structure of the respvis-point sub-package.

5.7.1 Scatter Plot Modules

The Scatter Plot modules, located in the ts/render/scatter-plot/ directory of Listing 5.19, enable the
creation of charts with all the discussed features by providing the ScatterPlot class. The ScatterPlotU
serArgs interface acts as a contract between RespVis and a chart creator when creating a new Scatter Plot.
The validateScatterPlot function returns a validated ScatterPlotData object in the validation phase of
the chart.

The render routine of the Scatter Plot is defined in the renderContent method. This method invokes the
render functions of the incorporated mixins DataSeriesChartMixin and CartesianChartMixin to render all
cartesian chart components. Calling the function renderScatterPlotContent completes the render process
by deriving all Point data objects from the underlying PointSeries, binding the data objects to <circle>
elements, and subsequently calling the joinPointSeries function.

5.7.2 Point Series Modules

Point Series are the visualization of related data records as points in a chart. The Point Series module, located
in the point-series/ directory shown in Listing 5.19, provides concrete implementations for the abstract
constructs defined in the Cartesian Series modules. Apart from the characteristics of all Cartesian Series, a
Point Series additionally provides:

• a PointSeriesData.radii property, defining the potentially responsive radii of the Point Series.



82 5 RespVis v3

Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

Other

Other

H
P
 i
n
 [

P
S
]

40

60

80

100

120

140

160

180

200

Car Make

Mercedes-Benz Renault Ford Other Volkswagen Opel

Car Characteristics

Car Make
Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

Prices

20k 40k 60k

(a) Point labels positioned right and top.

Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

Other

Other

H
P
 i
n
 [

P
S
]

40

60

80

100

120

140

160

180

200

Car Make

Mercedes-Benz Renault Ford Other Volkswagen Opel

Car Characteristics

Car Make
Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

Prices

20k 40k 60k

(b) Point labels positioned center and center.

Figure 5.25: Different point label position strategies are provided to chart creators. [Images created with
RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]

• a PointSeries.responsiveState property for maintaining responsive properties specific to Point Series.
Currently, this solely includes updating and interpolating the radii property.

• a createPoints function for creating an array of point markers from a PointSeries object. The
function takes into account the current filter, zoom, and category state and returns all relevant points,
either as multiple arrays grouped by categories, or as a single array.

• a joinPointSeries function taking care about updating the enter, update, and exit selections of a Point
Series using the bound data objects to perform the necessary DOM manipulation operations on the
<circle> elements.

• a renderRadiusScale function for adding a radius scale to the Legend in case a chart creator specified a
bubble radius. If the bubble radius is responsive, the corresponding Size Legend adapts automatically.

5.7.3 Point Module

The Point module, defined in the ts/render/point.ts file of Listing 5.19, contains the definition of the
marker primitive class Point. Point objects are designed to be bound to <circle> element selections upon
which the D3 data join function joinPointSeries can be performed. Furthermore, point markers hold
additional data relevant for the creation of point tooltips and point labels. RespVis v3 only supports circles
as markers for data points. In future, other kinds of markers could be supported, including triangles,
squares, crosses, and potentially custom shapes.

5.7.4 Point Label Module

The purpose of the Point Label module, which is defined in the ts/render/point-label.ts file of Listing 5.19,
is to declare interfaces for the creation and use of point labels. This includes an interface for the user
arguments, allowing chart creators to specify the desired labels, format function, and position strategies.
Furthermore, an interface for valid point label objects is defined. Labels generated by the Point.getLabel
method must adhere to this structure to make it possible to map point markers to point labels.

The available horizontal position strategies for point labels are left, center, and right, and the available
vertical position strategies are top, center, and bottom. Horizontal and vertical position strategies can be
mixed arbitrarily. Figure 5.25 illustrates two possible combinations.



RespVis Line 83

C
a
r 

P
ri

ce
 [

E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Car Characteristics from AutoScout24 in Germany

Makes
Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

Mileage

0.0 200k 400k

(a) Wide.

C
a
r 

P
ri

ce
 [

E
U

]

0

40k

80k

120k

160k

200k

240k

Horse P. [PS]

0 50 150 250 350 450 550 650

Car Characteristics

Other Mercedes-Benz Renault

Ford Volkswagen Opel

Mileage

0.0 200k 400k

(b) Narrow.

Figure 5.26: The radii of data points in a Bubble Chart can be responsively linearly interpolated when
transitioning between wide and narrow spaces. [Images created with RespVis [Egger and Oberrauner 2024a]
by the author of this thesis.]

5.7.5 Radius Modules

The Radius Modules, located in the ts/data/radius/ directory of Listing 5.19, contain the definition of
two radius types used for the creation of Point Series. The first one is the BaseRadius type, which expects
radii to be specified as numbers, effectively leading to the same radius for all points. Since BaseRadius
is a breakpoint property, the specification of different radii for different breakpoints is possible, leading
to a responsive point radius based on the respective layout width. The radius length in between the
breakpoints is linearly interpolated.

The second radius type is BubbleRadius, which requires the definition of a corresponding Axis and
extrema. Like BaseRadius, BubbleRadius is a breakpoint property and enables the creation of responsive,
linearly interpolated bubble radii, which can be seen in Figure 5.26. Since bubble radius domains are
numerical, they can also be filtered in the Filter Menu of the Toolbar.

5.8 RespVis Line
Line charts are typically used to visualize the trend of a numerical variable (y-axis) over a temporal
variable (x-axis) in a cartesian coordinate system. Another option is to use categorical data for the x-axis
which results in the chart communicating a similar message to a bar chart (comparison of categorized
items by a numerical dimension). In line charts, data is visualized by plotting related data points as
markers and connecting them with a polyline, resulting in a related sequence of values. Including
multiple independent line sequences is typically achieved via categorical color encoding [Kirk 2019,
page 171]. All the discussed line chart variations are supported by respvis-line, RespVis’ sub-package
for creating line charts. The directory structure of the package is shown in Listing 5.20.

5.8.1 Line Chart Modules

The Line Chart modules, located in the ts/render/line-chart/ directory of Listing 5.20, enable the creation
of Line Charts by defining the LineChart class. The LineChartUserArgs interface acts as a contract between
RespVis and a chart creator when instantiating a new LineChart. The validateLineChart function returns
a validated LineChartData object in the validation phase of the chart. The render routine of the Line Chart
is defined in the renderContent method. This method invokes the render functions of the incorporated



84 5 RespVis v3

respvis-line/
css/

chart-line.css
index.css

package/ (generated)
ts/

render/
line-chart/

index.ts
line-chart.ts
validate -line-chart.ts

line-series/
index.ts
join-line-series.ts
line-series.ts
line.ts
render-line-series.ts

index.ts
index.ts

package.json

Listing 5.20: The file and directory structure of the respvis-line sub-package.

mixins DataSeriesChartMixin and CartesianChartMixin to render all cartesian chart components. Calling
the function renderLineChartContent completes the render process by rendering a Line Series component.
Figure 5.27 illustrates how a Multi-Series Line Chart is rendered for wide and narrow spaces.

5.8.2 Line Series Modules
The Line Series Modules, located in the ts/render/line-series/ directory of Listing 5.20, define the
LineSeries class, which extends the PointSeries class. A Line Series component consists of two series
components. The first one contains the point markers, where markers of the same category are grouped
in dedicated <g> elements. The creation of the markers is achieved reusing the createPoints function
located in the respvis-point package. The second component contains polylines of all categories,
with one polyline connecting all markers of one category. The creation of the second component is
conducted in the functions renderLineSeriesLines and joinLineSeries. The renderLineSeriesLines
function is responsible for deriving Line objects from the previously created Point objects by extracting
positions, keys, and style classes and passing the generated data objects to the second function. Finally,
the joinLineSeries takes care of performing a D3 data join of the created Line objects with <path>
elements and setting all attributes of the created elements.

5.9 RespVis Parcoord
Parallel coordinate charts are useful tools for visualizing multivariate data [Ribecca 2024; Inselberg
2009]. Each dimension of a dataset is represented by a dedicated axis, scaled according to the domain
values of the variable. The axes are aligned in parallel, either all horizontally or all vertically, such that
every two neighboring axes can be connected by straight line segments. A data record is represented by
a polyline, i.e. multiple, connected, straight line segments, touching each axis once at the corresponding
data value.

Parallel coordinates charts tend to become cluttered and confusing if too many records are included.
Interactivity can be used to ameliorate this. Filter interactions can be used to reduce the number of
displayed data records to overcome the problem. Another way of coping with overplotting would be to
provide interactive zoom for an axis, to focus in on a particular range of interest.



RespVis Parcoord 85

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(a) Wide.

C
o
n
su

m
p

ti
o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970
1972

1974
1976

1978
1980

1982
1984

1986
1988

1990
1992

1994
1996

1998
2000

2002
2004

2006
2008

2010
2012

2014

Power Consumption (kWh)

USA Europe Asia

(b) Narrow.

Figure 5.27: Wide and narrow versions of a Multi-Series Line Chart. [Images created with RespVis [Egger and
Oberrauner 2024a] by the author of this thesis.]

respvis-parcoord/
css/

chart-parcoord.css
index.css

package/ (generated)
ts/

render/
parcoord -chart/
parcoord -series/
index.ts
validate -keyed-axis.ts

index.ts
package.json

Listing 5.21: The file and directory structure of the respvis-parcoord sub-package.

If too many dimensions are contained in a dataset, it is useful to be able to (temporarily) hide one or
more dimensions. To compare two dimensions, they must be next to one another in the visualization.
Hence, a chart end user must be able to reposition axes within the visualization; typically by drag-and-
drop. To visually confirm a suspected correlation, it is often useful for the end user to be able to invert
an axis. All the discussed parallel coordinates features are supported by respvis-parcoord, RespVis’
sub-package for creating parallel coordinates charts. The directory structure of the package is shown in
Listing 5.21.

5.9.1 Parallel Coordinates Chart Modules

The purpose of the Parallel Coordinates Chart modules, which are located in the ts/render/parcoord-chart/
directory of Listing 5.21, is to provide a comfortable way for chart creators of all experience levels to
create customized Parallel Coordinates Charts. This is achieved by instantiating the ParcoordChart class and
passing a desired configuration of the chart in form of a ParcoordUserArgs typed object along with an
empty container element. The ParcoordUserArgs interface acts thereby as a contract between RespVis and



86 5 RespVis v3

Horsepower
[PS]

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Price
[EU]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Mileage
[km]

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Fuel

Gasoline

Diesel

Electric

LPG

Electric/Gasoline

Car data

Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

(a) Wide.

Horsepower
[PS]

0.0
100

200
300

400
500

600

Price
[EU]

0.0
40k

80k
120k

160k
200k

240k

Mileage
[km]

0.0
50k

100k
150k

200k
250k

300k
350k

400k

Fuel

Gasoline

Diesel

Electric

LPG
Electric/Gasoline

Car data

Other Mercedes-Benz Renault

Ford Volkswagen Opel

(b) Narrow.

Figure 5.28: Wide and narrow versions of a Parallel Coordinates Chart. [Images created with RespVis [Egger and
Oberrauner 2024a] by the author of this thesis.]

a chart creator. The constructor of the ParcoordChart class conducts the validation of the user arguments
by calling the factory functions validateParcoordChart and validateWindow imported from the Window
modules. The validated data objects are merged and the resulting object, representing the state of the
chart, is bound to the Window component of the chart, which completes the validation phase.

The ParcoordChart class inherits functionality for all types of charts from the Chart class, which is
discussed in Section 5.3.4. This includes getter functions for frequently used selections, methods for
setting up event listeners triggering layout updates and re-renders, and the buildChart method, which
must be called by a chart creator to start the render phase of a chart. The ParcoordChart class further
incorporates the DataSeriesChartMixin, discussed in Section 5.3.4.2, to have access to methods for
creating a Legend and a Toolbar component, setting up filtering, and then setting up highlighting listeners
for its contained polylines (each implemented as a Line Series component). The methods are called in the
render phase of the chart, concretely in the renderContentmethod, which also calls the render routines of
the Parallel Coordinates Series. Once the render phase finishes, the initially empty container element contains
a fully rendered Parallel Coordinates Chart. An example of a Parallel Coordinates Chart in wide and narrow
versions is shown in Figure 5.28.

5.9.2 Parallel Coordinates Series Modules

The central part of the Parallel Coordinates Series modules, which are located in the ts/render/parcoord
-series/ directory of Listing 5.21, is the ParcoordSeries class. The main purpose of the class is to
hold the data necessary for rendering a composite series component, consisting of a Line Series, where
each line represents a data record, and an Axis Series, where each Axis represents one data variable. By
implementing the DataSeries interface, which is discussed in Section 5.3.5, a ParcoordSeries object
adheres to the general structure of all data series types. This includes maintaining two data properties
of type ParcoordSeriesData, originalData and renderData, where the former represents the stable series
state, and the latter is changed during each render cycle by applying filtering, zoom, and inversion to the
original data. The ParcoordSeries class also contains a responsiveState property, which is responsible
for updating and accessing responsive properties of the data.

The render routine of a Parallel Coordinate Series is defined in the renderParcoordAxisSeries function.
The order of rendering matters, since the Axes should not be occluded by the lines. First, the Line Series
component is rendered. This is achieved by transforming the data stored in ParcoordSeriesData.axes into



RespVis Parcoord 87

an array of Line objects, where one line connects all Axes from left to right. Since Axes can be moved by
drag and drop, the visual and original order may differ. To ensure only neighboring Axes are connected
by lines, Axes are iterated in visual order when calculating the line positions. The transformation process
further ensures filtering is applied for data records, by not creating lines for records containing a filtered
value. The render process of the Line Series is completed by performing a data join upon the created Line
objects.

Next, the Axes Series component is rendered. The ParcoordSeriesData.axes property holds an array of
KeyedAxis typed objects, upon which a data join is performed with <g> elements. Axes of this type are
currently only part of the respvis-parcoord package and provide additional properties and methods for
filtering the Axis itself via the Filter Menu and setting an active value range. After the data join, the content
of the Axes is rendered using the render functionality provided by the Axis modules, which are discussed
in Section 5.3.6. After the Axes are rendered, they are enhanced to provide the additional zoom, drag and
drop, filtering, and inversion interactions. This is accomplished either by enhancing existing elements of
the Axis components, or by the addition of interaction elements.

Zoom and pan is enabled by adding a corresponding event listener for the outermost element of an Axis,
making it possible to apply the interactions for the whole area of the component. If a zoom interaction
event is fired, a corresponding ZoomTransform object is part of the event parameters. The object represents
the current zoom state of an Axis and is stored in the ParcordSeries.zooms property, which stores the current
zoom state of all Axes as an array. With zooming, Axes can be modified to show specific domain ranges of
interest. With panning, the displayed domain range can be changed without changing the current zoom
factor.

Dragging and dropping an Axis is enabled by adding a corresponding event listener to the <g> element
containing the title and subtitle elements. If a drag event is fired, the Axis position is calculated based on
the distance of the pointer position to the edges of the drawing area. Depending on whether the Parallel
Coordinates Series is flipped or not, the Axis moves only horizontally or vertically. The relative distance
to the top or left edge of the drawing area is updated in the ParcoordSeriesData.axesPercentageScale
property, which is an ordinal scale holding the positions of all Axes as percentages relative to the drawing
area bounds. If two Axes have the same position because of drag and drop, the position of the resting Axis is
adjusted slightly such that two Axes never have the exact same position. By default, when a drop end event
is fired, the space between all Axes is equally distributed and the axesPercentageScale property is updated
accordingly. This behavior can be turned off by disabling the checkbox with the label EquidistantAxes in
the Chart Tool Menu, which is described in Section 5.3.2. If deactivated, the distance between Axes remains
unchanged when dropping an Axis.

Additional elements are included to provide filter interactions. Each Axis is equipped with a double-
edged range slider comprised of two value limiters (triangles represented by <path> elements) and an
enclosed range (a rectangle represented by a <rect> element), making it possible to control the range
of active domain values on that Axis. Each limiter and the enclosed range can be moved by dragging.
Position updates during dragging are achieved by event listeners. To make the control surface slightly
larger than the graphical representation, additional background <rect> elements are included around each
value limiter and the enclosed range to increase the area for detecting drag events.

Inversion of an Axis is possible by clicking its inversion arrow, which is implemented as a nested <svg>
element containing a <path>. As for the limiter elements, a background element is included to increase
the area for click events. Upon interaction, the arrow rotates and changes the corresponding Axis entry in
the ParcoordSeriesData.axesInverted property, which is a boolean array. Hover interactions are indicated
by dedicated cursor icons, which appear when hovering over corresponding interaction areas.



88 5 RespVis v3



Chapter 6

Outlook and Future Work

Nowadays, data is available in multiple forms, and is collected more rapidly than ever before, leading to
an enormous amount of data being collected and stored all over the world [Sethi 2024]. To make sense out
of this vast amount of data, it must be presented in a human-readable way, which makes data visualization
more important than ever. The web, which constantly advancing, is the main medium for the creation and
distribution of data visualizations. Nowadays, modern CSS provides powerful layout techniques like size
and style container queries, and CSS subgrid. SVG is evolving much more slowly than CSS. SVG 2.0 has
been a Candidate Recommendation since 2018 [W3C 2018]. Some browsers have implemented parts of
SVG 2.0, but support is currently patchy. A core feature coming with SVG 2.0 will be the adoption of
the attributes cx, cy, r, rx, ry, x, and y as geometry attributes, which will make it possible to style them
via CSS.

There are many concrete features, which could be implemented in future versions of RespVis beyond
RespVis v3:

• Extending RespVis’ chart API with the possibility to mix different types of series in one chart.

• In the case of overlapping elements, bringing currently highlighted elements to the foreground.

• Improving RespVis’ current implementation of optional text wrapping, which is currently only
applied to chart titles.

• Extending RespVis to provide an attribution feature.

• Extending RespVis’ inspection tool to render a vertical and a horizontal line for cartesian charts.
The lines should start at the horizontal and vertical axis respectively, and end at the current pointer
position. The lines will give a visual reference for aligning and comparing marker primitives.

• Adding other kinds of markers for data points, such as triangles, squares, crosses, and potentially
custom shapes.

• Extending RespVis’ scatter plot API to support optional hierarchical clustering for intersecting
markers. The cluster information can be displayed in a separate window at the side or bottom
(mobile) of a web site. A button can be provided for manually splitting clusters up into original
points or merging points into clusters.

• Extending the RespVis API to handle multiple category arrays for axes. Categorical axes can switch
their domain by swiping, as implemented in the scatter plot example of Andrews [2018a].

• Extending the RespVis API to handle multiple category arrays for data series. The currently used
category can be specified when navigating to the toolbar settings.

89



90 6 Outlook and Future Work

• Extending the RespVis toolbar to provide a fisheye view tool, as implemented in the scatter plot
example of Andrews [2018a].

• Displaying explanations about charts in general, chart interactions, and custom descriptions of a
chart creator. These explanations can be displayed in a separate window at the side or bottom
(mobile) of a web site. The visibility of the window can be toggled by a small button in the toolbar.

• Extending RespVis’ line chart to support auto interpolation when hovering over a line segment to
estimate values between two data points.

• Extending RespVis with CSS Variables indicating the current transition level between two break-
points in percent from 0 to 1. This is useful for interpolating e.g. font sizes between two breakpoints
in a controlled way.

• Extending RespVis’ toolbar with an option for toggling the visibility of either categorical or sequen-
tial color encoding (if both are defined by the chart creator).

• Improving RespVis’ default styling of the toolbar on mobile devices. A viable option would be to
let tools slide in vertically instead of horizontally.

• Extending RespVis’ download tool by providing an option to remove interaction elements like the
range sliders used in the parallel coordinates chart.

• Adding the option to downlaod a chart as a PNG file, in addition to SVG.

Since the implementation of RespVis v3 mainly focused on refactoring and documentation, improving
and unifying the existing API, and adding many features to existing charts, the only new chart type is
the parallel coordinates chart. There is plenty of room for the implementation of further new chart types
like pie charts, area charts, heatmaps, and many more. The accomplishments of RespVis v3, including
adding the first non-cartesian chart type with parallel coordinates charts, and providing reusable code
templates for RespVis charts, will make the implementation of such charts much easier. Also, the creation
of packages for new charts is now more conveniently achievable, without further major restructuring or
refactoring.

Regarding the usage of modern CSS technologies, future versions may be able to make use of the
@scope selector, which allows for selecting elements in DOM subtrees without increasing specificity
[MDN 2024a]. The @scope selector will be useful for making RespVis’ default CSS easily overridable.
CSS style container queries, once they are supported by all major browsers (at time of writing, support
is still missing in Firefox), will greatly ease the process of writing CSS for chart creators. They are
discussed in Section 2.12.2.

RespVis’ layout mechanism may or may not be improved in future versions of RespVis. While the
current mechanism works perfectly fine, it is rather complex and comes with computational costs, as
explained by Oberrauner [2022b, page 91]. In certain cases, it also makes writing CSS more verbose,
since certain styles need to be applied to the SVG elements, and others to the replicated HTML elements.



Chapter 7

Concluding Remarks

This thesis presented RespVis v3, an open-source JavaScript library for creating responsive visualizations
[Egger and Oberrauner 2024b]. Many major changes and improvements were made in the course of this
work. First, all charts now have a consistent, structured calling interface with fully typed arguments, so
chart creators can more easily instantiate a particular chart. A core component of RespVis is its custom
layouter, which enables the use of powerful CSS layout techniques like CSS Flexbox and CSS Grid in
SVG namespaces. The custom layout mechanism was extended to support alternating between SVG
standard layout and RespVis’ custom CSS layout within a chart. Responsive properties were introduced
to allow chart titles, tick label orientation, and other elements of a chart to be specified in a responsive
manner. The toolbar was restyled and toolbar interactions for all charts were improved and extended to
support zooming, numerical filtering, and data inspection.

A significant improvement was the introduction of layout breakpoints within charts, which are specified
as JavaScript objects and passed as an argument at chart creation, and are made available as CSS variables.
Facilities were added to enable axis positioning and flipping, as well as the rotation of axis tick labels.
Furthermore, downloading a chart to an SVG file was made much more configurable, with options to add
margins, prettify the output, specify the number of decimal places, and choose how styling is embedded,
among others. In terms of project improvements, RespVis v3 was split into modular sub-packages
published separately, as well as still being available as a single monolithic package. Significant effort was
also put into creating a comprehensive set of live documentation with Storybook.

Chapter 1 of the thesis introduced RespVis and responsive visualizations in general. Chapter 2
described the web technologies the library is built upon, and Chapter 3 discussed the field of responsive
visualization. Chapter 4 covered previous versions of RespVis which served as a starting point for this
work. RespVis v3, the current version of RespVis, was described in detail in Chapter 5. Finally, Chapter 6
presented some concrete ideas for future work. Four appendices contain a User Guide, a Chart Creator
Guide, a Chart Developer Guide, and a Maintainer Guide.

91



92 7 Concluding Remarks



Appendix A

User Guide

This guide presents detailed information about the usage of RespVis visualizations from the perspective
of a chart end user. An end user is a person who does not necessarily know anything about the technical
details of RespVis, but views and interacts with visualizations created with RespVis. The main focus
of this guide lies on the interactions provided by RespVis, and how they can be used by an end user to
explore a RespVis chart.

A.1 PC and Mobile Interactions
Charts created with RespVis are inherently responsive. The shape and format of a chart can change
according to how much space is available for the chart. The possible interactions can also vary depending
on the type of device. Interactions on PCs (laptops and desktops) are sometimes different to interactions
on mobile devices (tablets and smartphones):

• Hover Interactions: An entity is hovered by moving the pointer of a device above the entity. In PC
environments, the position of the pointer is typically changed using a mouse or trackpad device.
Hover interactions are typically not available on mobile devices. This limits the applicability and
discoverability of hover interactions like displaying Tooltips or highlighting Data Series to a certain
extent.

• Click or Tap Interactions: An entity is clicked by moving the pointer of a device above the entity and
conducting a click interaction. In PC environments, this is typically achieved with mouse devices,
by pressing and immediately releasing the left, middle, or right mouse key. On mobile devices,
tapping an entity is typically considered equivalent to a single left-click.

• Zoom Interactions: On a PC device, zooming is often achieved by scrolling the mouse wheel up
(zoom in) or down (zoom out). On a mobile device, zooming is typically achieved by pinching with
two fingers on the touch screen: moving the two fingers apart zooms in, moving them towards each
other zooms out.

• Drag-and-Drop Interactions: On a PC device, an entity is dragged by left-clicking it without
releasing the mouse key and moving it. The entity is dropped when the mouse key is released. On a
mobile device, an entity is dragged by tapping it without lifting the finger and then moving it. The
entity is dropped when the finger is lifted.

For convenience, whenever this guide explains an interaction using the terms hover, click, zoom, or drag-
and-drop, the corresponding interactions for both kinds of devices are referred to. Differences between
PC and mobile devices are discussed explicitly.

93



94 A User Guide

(a) Collapsed. (b) Expanded.

Figure A.1: The two states of the RespVis Toolbar. [Screenshots taken by the author of this thesis.]

A.2 Toolbar Interactions
Toolbars make visualizations more interactive by providing a set of tools, selectable from a bar. The
RespVis Toolbar is located at the top right of a chart and can be expanded and collapsed by clicking the
Toolbar Button, or respectively, as shown in Figure A.1. When expanded, the Toolbar displays three
or four buttons, depending on the chart type, with icons indicating the corresponding tool. When a user
hovers over a button, a Tooltip with the corresponding tool name is displayed. All tools are activated by
clicking their corresponding button. From left to right, the tools are: Filter Tool, Download Tool, Inspection Tool,
and for some charts the Chart Tool.

A.2.1 Filter Tool

The possibility to interactively filter data can be very useful to locate data of interest in a visualization.
The Filter Tool is activated with the Filter Button . When activated, the Filter Menu slides in and docks at the
bottom of the Toolbar. The Filter Menu contains multiple fields giving control of the active filter settings.
A field can be expanded and collapsed by clicking on its caption. Each field provides filter options for
one data dimension. This dimension may be either categorical, numerical, or temporal. For a categorical
dimension, a field contains a series of checkboxes giving control of each category. For numerical and
temporal dimensions, the field contains a double range input, allowing an end user to specify the active
range of values for the corresponding dimension. The double range slider is manipulated by dragging and
dropping handles to set minimum and maximum values. Figure A.2 shows a Filter Menu for a multi-line
chart containing all types of fields.

A.2.2 Download Tool

The possibility to download and save a visualization can be of much value to an end user. RespVis
supports this feature with the Download Tool. It enables an end user to download the current state of a chart
as a static SVG (Scalable Vector Graphic) file. SVGs can be freely scaled without loss of quality. The
Download Tool is activated with the Download Button . When the Download Tool is activated, a modal dialog
pops up in the center of the page. Figure A.3 shows the modal with five fields for specifying the desired
download options.

The first field allows margins to be added to the downloaded version of the chart. The second
field contains download options regarding prettification. An end user can check or uncheck whether
prettification is applied to the downloaded SVG. If unchecked, the option will not have any effect on the



Toolbar Interactions 95

Figure A.2: The Filter Menu for a multi-line chart with configurations for a categorical dimension
(Continents), a numerical dimension (Consumption), and a temporal dimension (Year). [Screenshot
taken by the author of this thesis.]

Figure A.3: The scrollable Download Modal with options for configuring the downloaded SVG file.
[Screenshot taken by the author of this thesis.]



96 A User Guide

downloaded SVG. If checked, an end user can specify a desired number of indentation spaces for the code
of the downloaded SVG.

The third field allows choosing between two approaches of including styles. The only important thing
for an end user with no technical experience is that there are two options here. Choosing the InlineCSS
option will always result in correct files, but may lead to large file sizes for complex visualizations.
Choosing the EmbeddedCSS option does not guarantee flawless results, but leads to smaller file sizes for
complex visualizations. In doubt, an end user should probably choose the first option, Inline CSS.

The fourth field contains options for the removal of RespVis-specific attributes, which are not of
importance for an end user. Checking the options reduces the file size of the downloaded SVG.

The fifth field allows changing the number of decimal places used in the static SVG file. Checking the
option and setting the number field to, say, 1 may be the best choice, since this reduces the file size of the
downloaded SVG without generally affecting the appearance of the chart.

At the bottom of the modal, there are two buttons for canceling or confirming the download. If the
cancel button is clicked, the download modal closes without downloading the chart. If the confirm button
is clicked, the download modal closes and the chart is downloaded according to the specified download
options.

A.2.3 Inspection Tool

The possibility to inspect data at specific coordinates of a visualization can be useful to end users when
interpreting data. RespVis supports this feature by providing the Inspection Tool. The Inspection Tool is
activated with the Inspection Button . When the Inspection Tool is activated, the Inspection Tooltip is displayed.
It is discussed in Section A.3.

A.2.4 Chart Settings Tool

Custom options based on the chart type are supported by the Chart Settings Tool. It is only shown for charts
which need to display additional options specific to their chart type. The Chart Settings Tool is activated
with the Chart Settings Button . When activated, a modal pops up in the center of the page, providing
chart-specific settings. Currently, only Parallel Coordinates Charts, discussed in Section A.6, make use of this
tool.

A.3 Tooltip Interactions
Tooltips are user interface (UI) elements used to provide additional contextual information about an entity.
Typically, they are visually represented by small text boxes, which appear when hovering over certain
elements. In RespVis there are currently three types of tooltips: Toolbar Tooltip, Inspection Tooltip, and Data
Series Tooltip.

A Toolbar Tooltip appears when hovering over a tool in the Toolbar, as can be seen in Figure A.4. This
Tooltip displays the name of the currently hovered tool.

The Inspection Tooltip of a chart is activated and deactivated by clicking on the Inspection Tool in the Toolbar.
If activated, the Inspection Tooltip displays information about the dimension values at the exact coordinates
of the pointer. Figure A.5 shows an active Inspection Tooltip for a Multi-Series Line chart.

The Data Series Tooltip appears when hovering over a data marker, currently bars in bar charts and points
in line charts and scatter plots. The content of a Data Series Tooltip is specified by the chart creator and may
vary from chart to chart. In general, the Data Series Tooltip holds information about the currently hovered
data point marker. Figure A.6 shows an example of a Data Series Tooltip when hovering over an element of
a grouped bar chart.



Tooltip Interactions 97

Figure A.4: The Toolbar Tooltip is used to display the name of the currently hovered tool in the Toolbar.
[Screenshot taken by the author of this thesis.]

Figure A.5: The Inspection Tool provides the Inspection Tooltip, which display information about the
dimension values at the current coordinates of the pointing device. [Screenshot taken by the author of
this thesis.]



98 A User Guide

Figure A.6: The Data Series Tooltip is used to display information about the currently hovered data point
marker. [Screenshot taken by the author of this thesis.]

(a) Not highlighted. (b) Highlighted.

Figure A.7: Hovering over a legend category entry highlights the corresponding marker primitives
in a RespVis chart. Here, the data points in the USA category are highlighted. [Screenshots taken by
the author of this thesis.]



Legend Interactions 99

(a) Unfiltered. (b) Filtered.

Figure A.8: Clicking on a legend category entry filters out the corresponding marker primitives.
[Screenshots taken by the author of this thesis.]

A.4 Legend Interactions
Legends are UI elements providing visual explanations of the colors, shapes, and sizes used in a chart
[Kirk 2019, page 12]. In general, an end user interacts with a legend in a passive way by reading and
comprehending it. RespVis provides two active legend interactions: data highlighting, and data filtering.
Data highlighting is activated by hovering over displayed category items in a Legend. This leads marker
elements (data points) with the same category to be highlighted in the chart, as can be seen in Figure A.7.
Categorical filtering can be turned on and off by clicking category items in a Legend. This changes
the current filter state of a category, leading to marker elements in the category to be filtered out (not
displayed) or in, as can be seen in Figure A.8. Inactive categories are displayed half opaque in the Legend.

A.5 Zooming
Zooming is a crucial tool for overcoming the problems of limited resolution and narrow screens and can
be applied in multiple variations. In RespVis zooming allows an end user to control the magnification of
special areas of interest [InfoVis:Wiki 2006]. It can be applied to all chart types, except Stacked Bar Charts.
In cartesian charts, zooming can be applied in the whole coordinate system of a chart. The position of
the pointer determines the center of the zoom, and thus which area is zoomed in or out, as shown in
Figure A.9.

In Parallel Coordinates Charts, zoom and pan can be applied to Axes. With zooming, Axes can be modified
to show specific domain ranges of interest. With panning, the displayed domain range can be changed
without changing the current zoom factor. Zooming into an Axis also affects the line segments connecting
the Axis to its neighboring Axes. If an Axis is zoomed into, all connecting lines falling out of the displayed
axis range are hidden, as shown in Figure A.10. Zooming only applies to numerical data dimensions.
Cartesian charts with only one numerical dimension will zoom only in one direction. The same holds
true for Parallel Coordinates Charts, where zooming on a categorical Axis has no effect. The final decision
whether zoom interactions are supported at all is up to the author of a chart.



100 A User Guide

(a) Unzoomed. (b) Zoomed.

Figure A.9: A Cartesian Chart is zoomed into. [Screenshots taken by the author of this thesis.]

(a) Unzoomed. (b) Zoomed.

Figure A.10: The Price Axis of a Parallel Coordinates Chart is rescaled by zooming and panning. [Screenshots
taken by the author of this thesis.]



Parallel Coordinates Chart Interactions 101

(a) Dragging Axis. (b) Equidistant Axes after dropping.

Figure A.11: Equidistant Axes of a Parallel Coordinates Chart after dragging and dropping the Mileage Axis.
[Screenshots taken by the author of this thesis.]

(a) Dragging Axis. (b) Dropping Axis does not change axis position.

Figure A.12: Unchanged axis positions of a Parallel Coordinates Chart after dragging and dropping the
Mileage Axis. [Screenshots taken by the author of this thesis.]

A.6 Parallel Coordinates Chart Interactions
RespVis Parallel Coordinates Charts come with built-in interactivity to make their exploration easier: reorder-
ing axes, inverting axes, and filtering records. An Axis can be repositioned by dragging and dropping the
title or subtitle element of the corresponding Axis. Depending on whether the chart content is flipped or
not, the Axis moves only horizontally or vertically. An Axis can only be positioned inside the drawing area
of a chart. When dragging an Axis and dropping it outside the drawing area, the Axis is positioned at the
nearest edge of the drawing area. If two Axes have the same position because of drag and drop, the position
of the resting Axis is adjusted slightly, such that two Axes never have the exact same position. By default,
when an Axis is dropped, the space between all Axes is equally distributed, as shown in Figure A.11. This
behavior can be turned off by disabling the checkbox with the label EquidistantAxes in the Chart Tool Menu,
which is described in Section A.2.4. If deactivated, the distance between Axes remains unchanged when
dropping an Axis, as can be seen in Figure A.12.



102 A User Guide

(a) Initial position of axis range sliders. (b) Dragging and dropping axis range sliders.

Figure A.13: Filtering records of a Parallel Coordinates Chart by adjusting the double-edged range slider
of an Axis. [Screenshots taken by the author of this thesis.]

(a) Not inverted. (b) Inverted.

Figure A.14: Inversion of an Axis in a Parallel Coordinates Chart by clicking the Axis’ inversion button,
here for the Mileage axis. [Screenshots taken by the author of this thesis.]

Additional elements are included to provide filter interactions. Each Axis is equipped with a double-
edged range slider comprising two value limiters (triangles) and an enclosed range (rectangle), making
it possible to control the allowed range of domain values on that Axis. Each limiter and the enclosed
range can be moved by dragging, as shown in Figure A.13. Inversion of an Axis is possible by clicking
its inversion arrow. Upon interaction, the arrow rotates and the corresponding Axis is inverted, as can be
seen in Figure A.14. Dedicated cursor icons appear when hovering over corresponding interaction areas,
as an additional aid for desktop users. Hover cursors are typically not displayed on mobile devices.



Appendix B

Chart Creator Guide

This guide explains how to create charts in RespVis v3, and is addressed to chart creators. In the context
of this thesis, a chart creator is someone who uses the RespVis API to create responsive visualizations.
While a good understand of RespVis’ technical details is advantageous for creating custom charts, it is
not a requirement for making use of the charts already provided as part of the RespVis API. These are
bar charts, scatter plots, line charts, and parallel coordinates charts.

B.1 RespVis Patterns
A curated set of 16 responsive visualization patterns form the basis of RespVis v3 [Egger 2024a]. These
patterns are partly based on the more abstract work of Kim et al. [2021], who list 76 design strategies
for transforming wider visualizations into narrower ones. Ten of the patterns are adopted in the practical
chart examples in this guide. The patterns are divided into two groups: seven visual patterns and three
interaction patterns.

B.1.1 Visual Patterns

Visual patterns change the state and appearance of a visualization’s components, to maximize the user
experience depending on the available space:

• V1: Repositioning Element Labels

• V2: Using Tooltips Instead of Element Labels

• V3: Rotating Axis Tick Labels

• V4: Shortening Labels and Titles

• V5: Scaling Down Visual Elements

• V6: Hiding Elements and Labels

• V7: Rotating Chart 90°

B.1.1.1 V1: Repositioning Element Labels

Repositioning of labels can help avoid intersections and clutter. In web-based visualizations, this can be
achieved using CSS media queries or container queries.

103



104 B Chart Creator Guide

B.1.1.2 V2: Using Tooltips Instead of Element Labels

If a visualization contains many data points, but has only limited space, a helpful pattern is to hide the
labels of all elements and display an element’s label upon hover or selection. In web-based visualizations,
the CSS hover selector can be used to display a tooltip while hovering over an element with a pointer
device. For touch devices, a single touch can be used to toggle the display of a tooltip. The disadvantage
of this pattern is that it is not immediately obvious to users (discoverability).

B.1.1.3 V3: Rotating Axis Tick Labels

An especially useful method for avoiding intersections and clutter of axis labels is to rotate the x-axis
tick labels. As the available horizontal space decreases, this approach helps preserve more of the original
axis label information (rather than thinning out or shortening the axis labels). The rotation of y-axis tick
labels can also be considered, but is typically less useful.

For web-based visualizations, a possible way to achieve rotating tick labels is to use a combination
of JavaScript and CSS. A JavaScript algorithm and event listeners are necessary to detect the currently
appropriate angles of labels, while the styling of the labels themselves can be achieved via the CSS
properties rotate or transform: rotate(). The advantage of this pattern is the preservation of the
original axis information. On the downside, the axis labels are harder to read, since the natural reading
direction is not retained.

B.1.1.4 V4: Shortening Labels and Titles

A common technique for avoiding clutter and overlaps is to have different formats for labels for different
space requirements. Numbers, for example, can be shown in full length if enough space is available
(e.g. 2,200,000), but shortened to well-known abbreviated forms (e.g. 2.2M) when space is limited.
Similar strategies can be applied to other types of text such as dates, organization names, and geographic
locations. However, when using shortened labels in a visualization, any resulting information loss, such
as that caused by the rounding of numbers, should also be considered. Shortened texts should use
well-known and understandable formats, so as not to confuse users.

B.1.1.5 V5: Scaling Down Visual Elements

Selected visual elements can be scaled down in size. This approach varies for different kinds of element.
A bar element, for example, can be scaled in both horizontal and vertical directions without problems.
The same holds for lines in a line chart, since these simply have to update their thickness and target points.
A marker for a data point is more complicated, since it must retain its aspect ratio during scaling to avoid
distortion.

Freely scaling down a selection of elements is applicable only to visualizations with a variable aspect
ratio. Other types of visualization like pie charts, chord diagrams, and maps can only apply this kind of
transformation to their elements when retaining their original aspect ratio.

The advantages of this technique are that much space can be saved without information loss, and
smooth transitions via event listeners appear very natural. On the downside, the pattern is only applicable
to visualizations with a manageable number of elements, since otherwise elements are already quite small
even at larger widths. Another disadvantage is that line elements in line charts appear steeper at narrower
widths and flatter at larger widths, affecting the perception of the original message.

B.1.1.6 V6: Hiding Elements and Labels

One possibility to adapt a visualization to narrower widths is to remove some elements or labels completely.
When applying this technique, care must be taken to not alter the original message of the visualization.



RespVis Patterns 105

The advantage of this pattern is that an arbitrary amount of space can be saved by removing enough
elements. However, this comes at the cost of information loss with respect to all the removed elements.
When removing whole categories or dimensions, it is advisable to offer interactive possibilities, so the
user can choose which dimensions or categories are of interest.

B.1.1.7 V7: Rotating Chart 90°

Transposing or rotating a chart by 90° can be a convenient way to align the dimension which requires
more space vertically rather than horizontally. Even if vertical scrolling is required, it is much more
acceptable than horizontal scrolling. The advantage of this pattern is that no information is lost by the
transformation process. The main disadvantage is the major change of the visualization which may affect
other ongoing transformations.

B.1.2 Interaction Patterns

Interaction patterns support responsiveness by providing interactive functionality such as zooming and
filtering:

• I1: Supporting Toolbar and Menus

• I2: Filtering Dimensions and Records

• I3: Supporting Zooming

By default, the patterns I1 and I2 are part of any RespVis visualization, while pattern I3 can optionally
be implemented for all visualizations except Stacked Bar Charts.

B.1.2.1 I1: Providing a Toolbar or Menu

Interactivity bound to visual elements, such as hovering or a right-click context menu, suffers from poor
discoverability. The user has to know such actions are possible or discover them by trial and error. A
toolbar or menu, on the other hand, is visible to users, and its features can be explored. Typical actions
provided by toolbars or menus include being able to download a chart as SVG, download the data as CSV,
view the chart in full screen, view the data as a table, and show and hide specific records and dimensions
in the data.

The advantages of this pattern are the theoretically unlimited interaction options that can be added to
a visualization and the high likelihood of the toolbar being discovered by the user. Disadvantages of the
pattern include the space needed for the additional control elements and the effort for the user to find
them if they are hidden by default.

B.1.2.2 I2: Filtering Dimensions and Records

If space requirements are very tight, there is often no other solution than removing information from a
visualization. However, when doing so it is a good idea to empower the user to choose which dimensions
or records should be shown or hidden. The user may not be able to see all the data at once, but still has
access to all information if necessary. Possible interaction elements for the filtering of data can be the
legend of a chart, the elements themselves, or separate control elements such as dropdown menu.

B.1.2.3 I3: Supporting Zooming

Zooming is a crucial tool for overcoming the problems of limited resolutions and narrow screens. The
standard approach, geometric zooming, allows a user to control the magnification of a visualization, and
thereby trade the space needed for irrelevant information for more space for areas of interest.



106 B Chart Creator Guide

B.2 Bar Chart
Bar charts are used as a means to compare a numerical variable for a collection of data records by
visualizing bars in a cartesian coordinate system. The bar length represents the magnitude of the
numerical variable, and the bar position represents the value of its categorical variable. Bars always rest
on the categorical axis. If the categorical variable is displayed along the horizontal axis, the chart can be
referred to as a column chart. If the other way around, the chart can be referred to as a row chart [Kirk
2019, pages 140–141, 159]. Since RespVis enables flipping all types of Data Series, both bar chart types
are supported. RespVis also supports the creation of Grouped Bar Charts and Stacked Bar Charts, which are
more complex variations of standard bar charts.

An implementation of a responsive Grouped Bar Chart can be seen in Figure B.1. It is implemented with
the HTML markup shown in Listing B.1, the CSS shown in Listing B.2, and the TypeScript code shown
in Listing B.3. The presented Grouped Bar Chart applies the following visual responsive patterns:

• V1Repositioning Element Labels: RespVis comes with built-in position strategies for element labels.
In the given example, a position strategy of dynamic is specified (Listing B.3, line 58). This results
in labels being automatically positioned by RespVis. For Bar Charts, this is often already sufficient.
In case of overlapping labels, a chart creator could reposition the labels manually using CSS.

• V3 Rotating Axis Tick Labels: When transitioning from a wide to a narrow view, the chart is flipped,
meaning that X-Axis and Y-Axis switch places. To avoid intersecting labels of a horizontally positioned
Y-Axis, the tick labels are rotated (Listing B.3, lines 82–86).

• V4 Shortening Labels and Titles: When transitioning from a wide to a narrow view, the labels of the
Y-Axis (Listing B.3, lines 89–94) are shortened to avoid intersecting or cropped labels.

• V5 Scaling Down Visual Elements: When transitioning from a wide to a narrow view, the drawing
area, the Axes, and the bar elements are scaled down automatically by RespVis during re-rendering.

• V6 Hiding Elements and Labels: When transitioning from a wide to a narrow view, the ticks of the
flipped Y-Axis are thinned out to avoid intersecting or cropped labels. (Listing B.2, line 51).

• V7 Rotating Chart 90°: When transitioning from a wide to a narrow view, the chart is transposed,
since the chart will now have more space vertically than horizontally (Listing B.2, lines 29–52),
(Listing B.3, lines 44–47). This pattern is commonly applied for bar charts, because it prevents bar
labels from intersecting with bar elements, leaves more space for the categorical axis, and ensures a
minimum bar width.

In addition, the presented Grouped Bar Chart also implements all three interactive patterns.



Bar Chart 107

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Country

Austria Italy France Germany Netherlands

To
ta

l 
R

e
m

u
n
e
ra

ti
o
n

[E
U

]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Year

2020

2021

2022

(a) Wide.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Country

Austria Italy France Germany Netherlands

To
ta

l 
R

e
m

u
n
e
ra

ti
o
n

[E
U

]

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

Year

2020

2021

2022

(b) Medium.

190k

200k

220k

680k

730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k

420k

450k

C
o
u
n
tr

y

Austria

Italy

France

Germany

Netherlands

Total Remuneration
[EU]

0
.0

4
0
0
k

8
0
0
k

1
.2

M

1
.6

M

2
.0

M

2020 2021 2022

(c) Narrow.

Figure B.1: Wide, medium, and narrow versions of a Grouped Bar Chart. [Images created with RespVis [Egger
and Oberrauner 2024a] by the author of this thesis.]



108 B Chart Creator Guide

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
3 <head>
4 <title>RespVis - Grouped Bar Chart</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
6 <meta charset="UTF-8"/>
7 <link rel="stylesheet" href="./libs/respvis/respvis.css"/>
8 <link rel="stylesheet" href="./grouped-barchart.css"/>
9 </head>

10
11 <body>
12 <h1>Grouped Bar Chart</h1>
13 <noscript>Please enable JavaScript!</noscript>
14 <div id="chart"> </div>
15
16 <script type="module">
17 import {renderGroupedBarChart} from ’./grouped-barchart.ts’
18 renderGroupedBarChart(’#chart ’)
19 </script>
20 </body>
21 </html>

Listing B.1: HTML markup for a responsive Grouped Bar Chart.



Bar Chart 109

1 #chart {
2 width: 100%;
3 height: 75vh;
4 min-height: 25rem;
5 container-type: inline-size;
6 .window-rv {
7 /* categorical color encoding can be changed as desired */
8 [data-style=categorical-0] { --color-categorical-0: #4f8c9d; }
9 [data-style=categorical-1] { --color-categorical-1: #e23209; }

10 [data-style=categorical-2] { --color-categorical-2: #539322; }
11 }
12 .legend {
13 margin-top: 1.5rem;
14 margin-right: 0.3rem;
15 .title { margin-left: 0.6rem; }
16 .items {
17 .legend-item {
18 width: 5rem;
19 height: 1.5rem;
20 gap: 0.5rem;
21 justify-content: flex-end;
22 &.highlight { font-size: calc(1.4 * var(--font-size-legend-label)); }
23 }
24 align-items: flex-end;
25 }
26 }
27
28 /* for narrow screen widths */
29 @container (width < 45rem) {
30 .window-rv {
31 /* increase size of right padding container so bar label fits */
32 --chart-padding-right: calc(3rem - clamp(0rem, 8vw, 3rem));
33 }
34 .chart {
35 /* move legend below chart */
36 grid-template: auto 1fr auto / 1fr;
37 grid-template-areas: ’header’ ’padding-wrapper ’ ’legend ’;
38 }
39 .legend {
40 margin-top: 0.5rem;
41 margin-right: 0;
42 }
43 .legend .title { display: none; }
44 .legend .items {
45 width: 100%;
46 flex-direction: row;
47 justify-content: space-evenly;
48 }
49 /* thin out y-axis ticks to avoid intersecting tick labels
50 (since y-axis is flipped for narrow widths) */
51 .axis-y .tick:nth-of-type(2n) { display: none; }
52 }
53 }

Listing B.2: CSS for a responsive grouped bar chart.



110 B Chart Creator Guide

1 import {BarChart, BarChartUserArgs , layouterCompute}
2 from ’./libs/respvis/respvis.js’;
3 import {compensations , sites, years} from ’./data/compensation -employees.js’;
4 import * as d3 from ’./libs/d3-7.6.0/d3.js’
5
6 /**
7 * Render Function of a Grouped Bar Chart
8 * @param selector The selector for querying the wrapper of the Grouped Bar Chart
9 */

10 export function renderGroupedBarChart(selector: string) {
11 // horizontal breakpoints for x-axis (y-axis when flipped).
12 // must be specified in ascending order and have same unit
13 const axisBreakPointsWidth = {
14 values: [10, 30, 50],
15 unit: ’rem’
16 } as const
17
18 // using BarChartUserArgs provides type support
19 const barChartArgs: BarChartUserArgs = {
20 breakpoints: {
21 width: {
22 values: [20, 45, 50], // chart breakpoints
23 unit: ’rem’
24 }
25 },
26
27 series: {
28 type: ’grouped’,
29 x: { values: sites }, // array of strings for x values
30 y: { values: compensations }, // array of numbers for y values
31 categories: {
32 title: ’Years’, // used to label the category
33 values: years // array of strings for categories
34 },
35
36 // callback function returning tooltip when bar hovered
37 markerTooltipGenerator: ((e, d) => {
38 return ‘Site: ${d.xValue}<br/>
39 Total Remuneration: $${d3.format(’,’)(d.yValue)}<br/>
40 Year: ${d.categoryFormatted ?? ’’}<br/>‘
41 }),
42
43 // at which layout widths bar chart is flipped
44 flipped: {
45 dependentOn: ’width’,
46 mapping: {0: true, 2: false} // flipped when < 45 rem
47 },
48
49 // maximum scale factors for zooming in and out
50 zoom: {
51 in: 20,
52 out: 1
53 },
54
55 // content and position of bar labels
56 labels: {
57 values: compensations.map(comp => d3.format(’.2s’)(comp)),
58 offset: 6, positionStrategy: ’dynamic’
59 }
60 },

Listing B.3: TypeScript code for a responsive Grouped Bar Chart.



Bar Chart 111

61
62 legend: {
63 title: ’Year’
64 },
65
66 x: {
67 title: ’Country’,
68 breakpoints: {
69 width: axisBreakPointsWidth ,
70 },
71 },
72
73 y: {
74 title: ’Total Remuneration’,
75 subTitle: ’[EU]’,
76 breakpoints: {
77 width: axisBreakPointsWidth
78 },
79
80 // orientation of y-axis tick labels, if y-axis is flipped
81 // rotation is interpolated between 0° (wide) and 90° (narrow)
82 tickOrientationFlipped: {
83 scope: ’self’,
84 dependentOn: ’width’,
85 breakpointValues: {0: 90, 2: 0}
86 },
87
88 // tick formatting for different chart widths
89 configureAxis: {
90 dependentOn: ’width’,
91 scope: ’chart’,
92 mapping: {0: (axis) => axis.tickFormat(d3.format(’.2s’)),
93 3: (axis) => axis.tickFormat()}
94 },
95 }
96 }
97
98 // append empty div for chart window and create new chart instance
99 const chartWindow = d3.select(selector).append(’div’)

100 const renderer = new BarChart(chartWindow , barChartArgs)
101 renderer.buildChart()
102
103 const itemHover = () => {
104 layouterCompute(renderer.layouterS) // legend items grow on hover
105 renderer.render() // recompute layout
106 }
107
108 chartWindow.selectAll(’.legend-item’)
109 .on(’mouseenter’, itemHover)
110 .on(’mouseleave’, itemHover)
111 }

Listing B.3 (cont.): TypeScript code for a responsive Grouped Bar Chart.



112 B Chart Creator Guide

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
3 <head>
4 <title>RespVis - Scatterplot</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
6 <meta charset="UTF-8"/>
7 <link rel="stylesheet" href="./libs/respvis/respvis.css" type="text/css"/>
8 <link rel="stylesheet" href="scatter-plot.css" type="text/css"/>
9 </head>

10 <body>
11 <h1>Scatterplot</h1>
12 <noscript>Please enable JavaScript!</noscript>
13 <div id="chart"> </div>
14
15 <script type="module">
16 import {createScatterplot} from ’./scatterplot.ts’;
17 createScatterplot(’#chart’)
18 </script>
19 </body>
20 </html>

Listing B.4: HTML markup for a responsive Scatter Plot.

B.3 Scatter Plot
Scatter plots visualize the relation between two numerical data dimensions by plotting points in a cartesian
coordinate system. They may also support the categorization of data records by mapping distinct color
attributes to points. Another option of using colors in scatter plots is to introduce an additional dimension
using sequential color encoding. Also, the size of the points can be encoded to add another dimension.
This variation of a scatter plot is called a bubble chart [Kirk 2019, pages 166–167].

An implementation of a responsive Scatter Plot can be seen in Figure B.2. It is implemented with the
HTML markup shown in Listing B.4, the CSS shown in Listing B.5, and the TypeScript code shown in
Listing B.6. The presented Scatter Plot applies the following visual responsive patterns:

• V2 Using Tooltips Instead of Element Labels: Since there are many point elements in the Scatter Plot,
element labels were avoided as they would pollute the visualization with an overwhelming number
of labels. Instead, a Data Series Tooltip (Listing B.6, lines 62–67) is configured to be displayed when
hovering over elements.

• V4 Shortening Labels and Titles: When transitioning from a wide to a narrow view, the title of the
Scatter Plot (Listing B.6, lines 22–26), the title of the X-Axis (Listing B.6, lines 77–81), the labels of
the X-Axis (Listing B.6, lines 92–104), and the labels of the Y-Axis (Listing B.6, lines 111–118) are
shortened to avoid cluttered or cropped text.

• V5 Scaling Down Visual Elements: When transitioning from a wide to a narrow view, the drawing
area and the Axes are scaled down automatically by RespVis during re-rendering. The size of
the point elements is configured to smoothly transition between defined breakpoints (Listing B.6,
lines 51–58).

• V6 Hiding Elements and Labels: When transitioning from a wide to a narrow view, both Axes thin
out their axis ticks to avoid cluttered text.

In addition to the listed visual patterns, the presented Scatter Plot also implements all discussed interactive
patterns. Figure B.2 (c) shows the mobile view of a Scatter Plot, which is zoomed into.



Scatter Plot 113

C
a
r 

P
ri

ce
 [

E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Car Characteristics from AutoScout24 in Germany

Makes

Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

Mileage

0.0 200k 400k

(a) Wide.

C
a
r 

P
ri

ce
 [

E
U

]

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

200k

220k

240k

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

Car Characteristics

Makes

Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

Mileage

0.0 200k 400k

(b) Medium.

C
a
r 

P
ri

ce
 [

E
U

]

12k

14k

16k

18k

20k

22k

23k

Horse P. [PS]

100 105 110 115 120 125 130

Car Characteristics

Other Mercedes-Benz Renault

Ford Volkswagen Opel

Mileage

0.0 200k 400k

(c) Narrow and zoomed.

Figure B.2: Wide, medium, and narrow versions of a Scatter Plot. The narrow version has been zoomed
in. [Images created with RespVis [Egger and Oberrauner 2024a] by the author of this thesis.]



114 B Chart Creator Guide

1 #chart {
2 width: 100%;
3 height: 75vh;
4 min-height: 25rem;
5
6 .window-rv {
7 container-type: inline-size;
8
9 /* for narrow screen widths */

10 @container (width < 40rem) {
11 .chart {
12 /* move legend below chart */
13 grid-template: auto 1fr auto / 1fr;
14 grid-template-areas: ’header’ ’padding-wrapper ’ ’legend ’;
15 --chart-padding-right: 1rem;
16 }
17
18 .legend {
19 margin-top: 1rem;
20 justify-content: center;
21 & > .title { display: none; }
22
23 .legend__categories {
24 width: 100%;
25 }
26 .items {
27 display: grid;
28 width: 100%;
29 justify-content: space-between;
30 grid-template-columns: auto auto auto;
31 }
32 }
33 /* thin out y-axis ticks to avoid intersecting tick labels
34 (since y-axis is flipped for narrow widths) */
35 .axis-y .tick {
36 display: none;
37
38 &:nth-of-type(2n + 1), &:first-of-type , &:last-of-type {
39 display: block;
40 }
41 }
42 }
43 }
44 }

Listing B.5: CSS for a responsive Scatter Plot.



Scatter Plot 115

1 import {formatWithDecimalZero , Point, ScatterPlot , ScatterPlotUserArgs}
2 from ’./libs/respvis/respvis.js’;
3 import * as d3 from ’./libs/d3-7.6.0/d3.js’
4 import {getTopMakesData} from "./data/sold-cars-germany.js";
5
6 /**
7 * Render Function of a Scatter Plot
8 * @param selector The selector for querying the wrapper of the Scatter Plot
9 */

10 export function createScatterplot(selector: string) {
11 const {mileages, horsePower , prices, makes} = getTopMakesData(5)
12
13 // using ScatterPlotUserArgs provides type support
14 const data: ScatterPlotUserArgs = {
15 breakpoints: {
16 width: {
17 values: [40, 60, 90], // chart breakpoints
18 unit: ’rem’
19 }
20 },
21
22 title: {
23 dependentOn: ’width’,
24 mapping: {0: ’Car Characteristics’,
25 2: ’Car Characteristics from AutoScout24 in Germany’}
26 },
27
28 series: {
29 x: {
30 values: horsePower , // array of numbers for x values
31 },
32 y: {
33 values: prices, // array of numbers for y values
34 },
35 categories: {
36 title: ’Makes’, // used to label the category
37 values: makes // array of strings for categories
38 },
39
40 radii: {
41 values: mileages, // array of numbers for radii
42 axis: { // radii axis in legend
43 title: ’Mileage’,
44 horizontalLayout: ’bottom’,
45 configureAxis: (axis => {
46 axis.ticks(2)
47 axis.tickFormat(d3.format(’.2s’))
48 })
49 },

Listing B.6: TypeScript code for a responsive Scatter Plot.



116 B Chart Creator Guide

50
51 extrema: { // radii sizes are interpolated
52 dependentOn: ’width’,
53 breakpointValues: {
54 0: {minimum: 3, maximum: 12},
55 1: {minimum: 5, maximum: 15},
56 2: {minimum: 7, maximum: 20},
57 },
58 },
59 },
60
61 // callback function returning tooltip when point hovered
62 markerTooltipGenerator: ((e, d: Point) => {
63 return ‘Car Price: ${d.yValue}€<br/>
64 Horse Power: ${d.xValue}PS<br/>
65 Make: ${d.categoryFormatted ?? ’’}<br/>
66 Mileage: ${d.radiusValue}km<br/>‘
67 }),
68
69 // maximum scale factors for zooming in and out
70 zoom: {
71 in: 20,
72 out: 1
73 },
74 },
75
76 x: {
77 title: {
78 dependentOn: ’width’,
79 scope: ’self’,
80 mapping: {0: ’HP in [PS]’, 1: ’Horse P. [PS]’, 2: ’Horse Power in [PS]’}
81 },
82
83 breakpoints: {
84 width: {
85 values: [10, 30, 50],
86 unit: ’rem’
87 }
88 },
89
90 // tick formatting for different axis widths
91 // number of ticks is reduced via D3 ticks function
92 configureAxis: {
93 dependentOn: ’width’,
94 scope: ’self’,
95 mapping: {
96 0: (axis) => {
97 axis.tickFormat(d3.format(’.3d’))
98 axis.ticks(7)
99 },

100 2: (axis) => {
101 axis.tickFormat(d3.format(’.3d’))
102 }
103 }
104 }
105 },

Listing B.6 (cont.): TypeScript code for a responsive Scatter Plot.



Scatter Plot 117

106
107 y: {
108 title: ’Car Price [EU]’,
109
110 // tick formatting for different chart widths
111 configureAxis: {
112 dependentOn: ’width’,
113 scope: ’chart’,
114 mapping: {
115 0: (axis) => axis.tickFormat(formatWithDecimalZero(d3.format(’.2s’))),
116 2: (axis) => axis.tickFormat(formatWithDecimalZero(d3.format(’,’)))
117 }
118 }
119 },
120
121 legend: {
122 title: {
123 dependentOn: ’width’,
124 scope: ’chart’,
125 mapping: {0: ’’, 1: ’Makes’}
126 },
127 }
128 }
129
130 // append empty div for chart window and create new chart instance
131 const chartWindow = d3.select(selector).append(’div’)
132 const renderer = new ScatterPlot(chartWindow , data)
133 renderer.buildChart()
134 }

Listing B.6 (cont.): TypeScript code for a responsive Scatter Plot.



118 B Chart Creator Guide

B.4 Line Chart
Line charts are typically used to visualize the trend of a numerical variable (y-axis) over a temporal
variable (x-axis) in a cartesian coordinate system. Another option is to use categorical data for the x-axis
which results in the chart communicating a similar message like a bar chart (comparison of categorized
items by a numerical dimension). Data is visualized in line charts by plotting related data points as markers
and connecting them with a polyline, resulting in a related sequence of values. Multiple independent line
sequences are typically distinguished via categorical color encoding [Kirk 2019, page 171].

An implementation of a responsive Multi-Series Line Chart can be seen in Figure B.3. The presented
Line Chart is implemented by providing the HTML markup shown in Listing B.7, the CSS shown in
Listing B.8, and the TypeScript code shown in Listing B.9. The presented Line Chart applies the following
visual responsive patterns:

• V2 Using Tooltips Instead of Element Labels: Since there are many point elements in the Line Chart,
element labels were avoided as they would intersect with each other. The simpler solution was to
configure a Data Series Tooltip to be displayed when hovering over elements (Listing B.9, lines 39–41).

• V3 Rotating Axis Tick Labels: When transitioning from a wide to a narrow view, the tick labels of
the X-Axis are rotated (Listing B.9, lines 69–73).

• V4 Shortening Labels and Titles: When transitioning from a wide to a narrow view, the title of the
Line Chart is shortened to fit into the narrower available space (Listing B.9, lines 50–54).

• V5 Scaling Down Visual Elements: When transitioning from a wide to a narrow view, the drawing
area, and the Axes are scaled down automatically by RespVis during re-rendering.

• V6 Hiding Elements and Labels: When transitioning from a wide to a narrow view, the ticks of
the X-Axis are thinned out to avoid intersecting or cropped labels (Listing B.9, lines 76–79). Also,
point elements representing data points are thinned out to avoid overplotting (Listing B.8, line 16,
lines 22–24, lines 50–52).

In addition to the listed visual patterns, the presented Multi-Series Line Chart also implements all discussed
interactive patterns.



Line Chart 119

C
o
n
su

m
p
ti

o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Electric Power Consumption (kWh per Capita)

USA

Europe

Asia

(a) Wide.

C
o
n
su

m
p
ti

o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1970
1972

1974
1976

1978
1980

1982
1984

1986
1988

1990
1992

1994
1996

1998
2000

2002
2004

2006
2008

2010
2012

2014

Power Consumption (kWh)

USA Europe Asia

(b) Medium.

C
o
n
su

m
p
ti

o
n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year
[2012 to 2021]

1
9
7
6

1
9
8
4

1
9
9
2

2
0
0
0

2
0
0
8

Power (kWh)

USA Europe Asia

(c) Narrow.

Figure B.3: Wide, medium, and narrow versions of a Multi-Series Line Chart. [Images created with RespVis
[Egger and Oberrauner 2024a] by the author of this thesis.]



120 B Chart Creator Guide

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
3 <head>
4 <title>RespVis - Multi-Line Chart</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
6 <meta charset="UTF-8"/>
7 <link rel="stylesheet" href="./libs/respvis/respvis.css"/>
8 <link rel="stylesheet" href="multi-line-chart.css"/>
9 </head>

10
11 <body>
12 <h1>Mutli-Line Chart</h1>
13 <noscript>Please enable JavaScript!</noscript>
14 <div id="chart"> </div>
15
16 <script type="module">
17 import {renderMultiLineChart} from "./multi-line-chart.ts"
18 renderMultiLineChart(’#chart’)
19 </script>
20 </body>
21 </html>

Listing B.7: HTML markup for a responsive Multi-Series Line Chart.



Line Chart 121

1 #chart {
2 width: 100%;
3 height: 75vh;
4 min-height: 25rem;
5 container-type: inline-size;
6 .window-rv {
7 --chart-padding-right: 1rem;
8 }
9

10 .legend {
11 margin-left: 2rem;
12 .items { gap: 1rem; }
13 }
14
15 /* hide x-axis ticks by default */
16 .point:not(.inspect-nearest), .axis-x .tick { display: none; }
17
18 /* for average and wide screen widths */
19 @container (width >= 30rem) {
20 .point-category {
21 /* show first, last, and each 2nd data point */
22 .point:first-of-type , .point:last-of-type , .point:nth-of-type(2n) {
23 display: block;
24 }
25 }
26 /* show all x-axis ticks */
27 .axis-x .tick { display: block}
28 }
29
30 /* for narrow to average screen widths */
31 @container (width <= 50rem) {
32 .chart {
33 /* move legend on top of chart */
34 grid-template: auto auto 1fr / 1fr;
35 grid-template-areas: ’header’ ’legend’ ’padding-wrapper ’;
36 }
37
38 .legend {
39 width: 100%;
40 margin-bottom: 1rem;
41 }
42
43 .legend .items { flex-direction: row; }
44 }
45
46 /* for narrow screen widths */
47 @container (width < 30rem) {
48 .point-category {
49 /* show first, last, and each 4th data point */
50 .point:first-of-type , .point:last-of-type , .point:nth-of-type(4n) {
51 display: block;
52 }
53 }
54 /* show each 4th x-axis tick */
55 .axis-x .tick:nth-of-type(4n) { display: block}
56 }
57 }

Listing B.8: CSS for a responsive Multi-Series Line Chart.



122 B Chart Creator Guide

1 import {LineChart , LineChartUserArgs , select, selectAll , timeFormat , timeYear}
2 from ’./libs/respvis/respvis.js’;
3 import {mapPowerConsumptionData} from ’./data/electric -power-consumption.js’
4
5 /**
6 * Render Function of a Multi-Series Line Chart
7 * @param selector The selector for querying the wrapper of the Multi-Series
8 * Line Chart
9 */

10 export const renderMultiLineChart = (selector: string) => {
11 const {yUSA, yEurope, yAsia, yearsJSDateFormat} = mapPowerConsumptionData()
12
13 // using LineChartUserArgs provides type support
14 const data: LineChartUserArgs = {
15 breakpoints: {
16 width: {
17 values: [25, 30, 50],
18 unit: ’rem’
19 }
20 },
21
22 series: {
23 x: { // array of Date objects for x values
24 values: [...yearsJSDateFormat , ...yearsJSDateFormat , ...yearsJSDateFormat]
25 },
26 y: { // array of numbers for y values
27 values: [...yUSA, ...yEurope, ...yAsia]
28 },
29 categories: {
30 title: ’Continents’, // used to label the category
31 values: [ // array of strings for categories
32 ...yUSA.map(() => ’USA’),
33 ...yEurope.map(() => ’Europe’),
34 ...yAsia.map(() => ’Asia’)
35 ],
36 },
37
38 // callback function returning tooltip when data points hovered
39 markerTooltipGenerator: (_, point) =>
40 ‘Year: ${(point.xValue as Date).getFullYear()}
41 <br/>Pow. Consumption: ${point.yValue}kWh‘,
42
43 // maximum scale factors for zooming in and out
44 zoom: {
45 in: 20,
46 out: 1
47 }
48 },
49
50 title: {
51 dependentOn: ’width’,
52 mapping: {0: ’Power (kWh)’, 1: ’Power Consumption (kWh)’,
53 3: ’Electric Power Consumption (kWh per Capita)’}
54 },

Listing B.9: TypeScript code for a responsive Multi-Series Line Chart.



Line Chart 123

55
56 x: {
57 title: ’Year’,
58 subTitle: ’[2012 to 2021]’,
59
60 breakpoints: {
61 width: {
62 values: [10, 30, 50],
63 unit: ’rem’
64 }
65 },
66
67 // orientation of x-axis tick labels
68 // rotation is interpolated between 0° (wide) and 90° (narrow)
69 tickOrientation: {
70 dependentOn: ’width’,
71 scope: ’self’,
72 breakpointValues: {0: 90, 2: 0},
73 },
74
75 // tick formatting for temporal axis
76 configureAxis: (axis) => {
77 axis.ticks(timeYear.every(2))
78 axis.tickFormat(timeFormat(’%Y’))
79 },
80 gridLineFactor: 1 // vertical grid line each x-axis tick
81 },
82
83 y: {
84 title: ’Consumption’,
85 breakpoints: {
86 width: {
87 values: [10, 30, 50],
88 unit: ’rem’
89 }
90 },
91
92 // orientation of y-axis tick labels, if y-axis is flipped
93 // rotation is interpolated between 0° (wide) and 90° (narrow)
94 tickOrientationFlipped: {
95 dependentOn: ’width’,
96 scope: ’self’,
97 breakpointValues: {0: 90, 2: 0},
98 },
99 gridLineFactor: 2 // horizontal grid line each 2nd y-axis tick

100 },

Listing B.9 (cont.): TypeScript code for a responsive Multi-Series Line Chart.



124 B Chart Creator Guide

101
102 // assign classnames to currently inspected data points (inspection tool)
103 tooltip: {
104 onInspectMove: (info) => {
105 const pointS = selectAll(’.point.element’)
106 const nearestPointS = pointS.filter((d) =>
107 d.xValue === info.horizontalNearestRealValue)
108 nearestPointS.classed(’inspect-nearest’, true)
109 const otherPointS = pointS.filter((d) =>
110 d.xValue !== info.horizontalNearestRealValue)
111 otherPointS.classed(’inspect-nearest’, false)
112 }
113 }
114 }
115
116 // append empty div for chart window and create new chart instance
117 const chartWindow = select(selector).append(’div’)
118 const renderer = new LineChart(chartWindow , data)
119 renderer.buildChart()
120 }

Listing B.9 (cont.): TypeScript code for a responsive Multi-Series Line Chart.



Parallel Coordinates Chart 125

B.5 Parallel Coordinates Chart
Parallel coordinate charts are useful tools for visualizing multivariate data [Ribecca 2024; Inselberg
2009]. Each dimension of a dataset is represented by a dedicated axis, scaled according to the domain
values of the variable. The axes are aligned in parallel, either all horizontally or all vertically, such that
every two neighboring axes can be connected by straight line segments. A data record is represented by
a polyline, i.e. multiple, connected, straight line segments, touching each axis once at the corresponding
data value.

An implementation of a Parallel Coordinates Chart can be seen in Figure B.4. The presented Parallel
Coordinates Chart is implemented by providing the HTML markup shown in Listing B.10, the CSS shown
in Listing B.11, and the TypeScript code shown in Listing B.12. The presented Parallel Coordinates Chart
applies the following visual responsive patterns:

• V3 Rotating Axis Tick Labels: When transitioning from a wide to a narrow view, the chart is flipped,
meaning that all Axes are displayed horizontally rather than vertically. Once the chart is flipped,
the tick labels of all Axes are rotated continuously to avoid intersecting labels of the horizontally
positioned Axes (Listing B.12, lines 29–32, line 60, line 78, line 96 and line 107).

• V4 Shortening Labels and Titles: When transitioning from a wide to a narrow view, the labels of the
Price Axis and Mileage Axis are shortened to avoid intersecting axis labels (Listing B.12, lines 16–25,
77, and 95).

• V5 Scaling Down Visual Elements: When transitioning from a wide to a narrow view, the drawing
area and the Axes are scaled down automatically by RespVis during re-rendering.

• V6 Hiding Elements and Labels: When transitioning from a wide to a narrow view, the ticks of the
Horsepower Axis and Price Axis are thinned out to avoid cluttered text (Listing B.11, lines 57-62).

• V7 Rotating Chart 90°: When transitioning from a wide to a narrow view, the chart is transposed,
since the chart provides more space vertically than horizontally (Listing B.11, lines 118–121),
(Listing B.12, lines 24–58). This pattern is commonly applied for Parallel Coordinates Charts, since it
helps to add more space between the chart’s Axes and, therefore, prevents axis intersections. Having
enough space between Axes is an important matter for responsive Parallel Coordinates Charts, since Axes
can be interacted with pointer devices and intersecting Axes would be a major issue in this context.

In addition to the listed visual patterns, the presented Parallel Coordinates Chart also implements all discussed
interactive patterns.



126 B Chart Creator Guide

Horsepower
[PS]

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Price
[EU]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Mileage
[km]

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

Fuel

Gasoline

Diesel

Electric

LPG

Electric/Gasoline

Car data

Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

(a) Wide.

Horsepower
[PS]

0.0 50 100 150 200 250 300 350 400 450 500 550 600 650

Price
[EU]

0.0 20k 40k 60k 80k 100k 120k 140k 160k 180k 200k 220k 240k

Mileage
[km]

0.0 50k 100k 150k 200k 250k 300k 350k 400k

Fuel

Gasoline Diesel Electric LPG
Electric/Gasoline

Car data

Other Mercedes-Benz Renault

Ford Volkswagen Opel

(b) Medium.

Horsepower
[PS]

0
.0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

Price
[EU]

0
.0

4
0
k

8
0
k

1
2
0
k

1
6
0
k

2
0
0
k

2
4
0
k

Mileage
[km]

0
.0

5
0
k

1
0
0
k

1
5
0
k

2
0
0
k

2
5
0
k

3
0
0
k

3
5
0
k

4
0
0
k

Fuel

G
a
so

lin
e

D
ie

se
l

E
le

ctric

LP
G

E
le

ctric/G
a
so

lin
e

Car data

Other Mercedes-Benz Renault

Ford Volkswagen Opel

(c) Narrow.

Figure B.4: Wide, medium, and narrow versions of a Parallel Coordinates Chart. [Images created with RespVis
[Egger and Oberrauner 2024a] by the author of this thesis.]



Parallel Coordinates Chart 127

1 <!DOCTYPE html>
2 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
3 <head>
4 <title>RespVis - Parallel Coordinates Chart</title>
5 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
6 <meta charset="UTF-8"/>
7 <link rel="stylesheet" href="./libs/respvis/respvis.css"/>
8 <link rel="stylesheet" href="parcoord -chart.css"/>
9 </head>

10 <body>
11 <h1>Parallel Coordinates Chart</h1>
12 <noscript>Please enable JavaScript!</noscript>
13 <div id="chart"> </div>
14
15 <script type="module">
16 import {renderParcoord} from "./parcoord-chart.ts";
17 renderParcoord(’#chart’)
18 </script>
19 </body>
20 </html>

Listing B.10: HTML markup for a responsive Parallel Coordinates Chart.



128 B Chart Creator Guide

1 #chart {
2 width: 100%;
3 height: 75vh;
4 min-height: 25rem;
5 container-type: inline-size;
6
7 /* increase transition time of record lines */
8 .window-rv { --transition-time-ms: 750;}
9

10 .chart-parcoord {
11 /* increase size of padding containers for axis titles to fit */
12 --chart-padding-left: 4rem;
13 --chart-padding-right: 4rem;
14 --chart-padding-top: 4rem;
15 --chart-padding-bottom: 0.8rem;
16
17 /* prevent flicker on highlighting with certain category color */
18 path.line.animated.highlight[data-key~="s-0-c-0"] {
19 filter: unset;
20 }
21 }
22
23 /* for average to narrow screen widths */
24 @container (width < 50rem) {
25 .chart-parcoord {
26 /* adapt size of padding containers for flipped chart */
27 --chart-padding-right: 2rem;
28 --chart-padding-bottom: 3rem;
29
30 /* move legend below chart */
31 grid-template: auto 1fr auto / 1fr;
32 grid-template-areas: ’header’ ’padding-wrapper ’ ’legend ’;
33 }
34
35 .legend {
36 width: 100%;
37 flex-direction: row;
38 justify-content: center;
39
40 .title { display: none; }
41
42 .legend__categories { width: 100%; }
43
44 .items {
45 display: grid;
46 width: 100%;
47 justify-content: space-evenly;
48 grid-template-columns: auto auto auto;
49 }
50 }
51 }

Listing B.11: CSS for a responsive Parallel Coordinates Chart.



Parallel Coordinates Chart 129

52
53 /* for narrow screen widths */
54 @container (width < 40rem) {
55 /* thin out axis ticks of axes a-0 (’Horsepower ’) and a-1 (’Price’)
56 (since axes are flipped for narrow widths) */
57 .axis.axis-sequence {
58 &[data-key="a-0"] .tick, &[data-key="a-1"] .tick {
59 &:nth-of-type(2n) {
60 display: none;
61 }
62 }
63 }
64 }
65 }

Listing B.11 (cont.): CSS for a responsive Parallel Coordinates Chart.



130 B Chart Creator Guide

1 import {formatWithDecimalZero , ParcoordChart , ParcoordChartUserArgs}
2 from ’./libs/respvis/respvis.js’;
3 import * as d3 from ’./libs/d3-7.6.0/d3.js’
4 import {getTopMakesData} from "./data/sold-cars-germany.js";
5
6 /**
7 * Render Function of a Parallel Coordinates Chart
8 * @param selector The selector for querying the wrapper of the
9 * Parallel Coordinates Chart

10 */
11 export function renderParcoord(selector: string) {
12 const sampleSize = 500
13 const {horsePower , prices, mileages, makes, fuel} = getTopMakesData(5)
14
15 // tick formatting for different chart widths of ’Mileage’ and ’Price’ axes
16 const sharedAxisConfig = {
17 dependentOn: ’width’,
18 scope: ’chart’,
19 mapping: {
20 0: (axis: d3.Axis<d3.AxisDomain >) =>
21 axis.tickFormat(formatWithDecimalZero(d3.format(’.2s’))),
22 3: (() => {
23 })
24 }
25 } as const
26
27 // tick label orientation of all axes, if axes are flipped
28 // rotation is interpolated between 0° (wide) and 90° (narrow)
29 const sharedTickOrientationFlipped = {
30 dependentOn: ’width’,
31 breakpointValues: {0: 90, 2: 0}
32 } as const
33
34 // using ParcoordChartUserArgs provides type support
35 const data: ParcoordChartUserArgs = {
36 title: ’Car data’,
37 breakpoints: {
38 width: {
39 values: [20, 30, 50],
40 unit: ’rem’
41 }
42 },

Listing B.12: TypeScript code for a responsive Parallel Coordinates Chart.



Parallel Coordinates Chart 131

43
44 series: {
45 dimensions: [
46 // ’Horsepower’ axis
47 {
48 // array of numbers for ’Horsepower’ axis
49 scaledValues: {values: horsePower.slice(0, sampleSize)},
50
51 // maximum scale factors for zooming in and out
52 zoom: {
53 in: 10,
54 out: 1
55 },
56
57 axis: {
58 title: "Horsepower",
59 subTitle: "[PS]",
60 tickOrientationFlipped: sharedTickOrientationFlipped
61 }
62 },
63
64 // ’Price’ axis
65 {
66 // array of numbers for ’Price’ axis
67 scaledValues: {values: prices.slice(0, sampleSize)},
68
69 zoom: {
70 in: 20,
71 out: 1
72 },
73
74 axis: {
75 title: "Price",
76 subTitle: "[EU]",
77 configureAxis: sharedAxisConfig ,
78 tickOrientationFlipped: sharedTickOrientationFlipped
79 }
80 },
81
82 // ’Mileage’ axis
83 {
84 // array of numbers for ’Mileage’ axis
85 scaledValues: {values: mileages.slice(0, sampleSize)},
86
87 zoom: {
88 in: 20,
89 out: 1
90 },
91
92 axis: {
93 title: "Mileage",
94 subTitle: "[km]",
95 configureAxis: sharedAxisConfig ,
96 tickOrientationFlipped: sharedTickOrientationFlipped
97 }
98 },

Listing B.12 (cont.): TypeScript code for a responsive Parallel Coordinates Chart.



132 B Chart Creator Guide

99
100 // ’Fuel’ axis
101 {
102 // array of strings for ’Fuel’ axis
103 scaledValues: {values: fuel.slice(0, sampleSize)},
104
105 axis: {
106 title: "Fuel",
107 tickOrientationFlipped: sharedTickOrientationFlipped
108 }
109 },
110 ],
111
112 categories: {
113 title: ’Makes’, // used to label the category
114 values: makes.slice(0, sampleSize) // array of strings for categories
115 },
116
117 // at which layout widths parallel coordinates chart is flipped
118 flipped: {
119 mapping: {0: true, 3: false},
120 dependentOn: ’width’
121 }
122 },
123 }
124
125 // append empty div for chart window and create new chart instance
126 const chartWindow = d3.select(selector).append(’div’)
127 const renderer = new ParcoordChart(chartWindow , data)
128 renderer.buildChart()
129 }

Listing B.12 (cont.): TypeScript code for a responsive Parallel Coordinates Chart.



Appendix C

Chart Developer Guide

This guide explains how to create entirely new charts in RespVis v3. They can either be derived from
RespVis’ empty base chart, or by customizing the standard chart types provided by RespVis. This guide
is addressed to chart developers, who are expected to have a solid understanding of the fundamental web
technologies JavaScript, HTML, CSS, and SVG.

C.1 Creating New Charts
The recommended way of creating new charts is to create new chart classes by extending the existing
Chart class provided by RespVis. The abstract Chart class takes care of setting up complex re-rendering
and layouting tasks, such that chart developers can focus on defining the interfaces, data validation, and
render routines of their new charts.

Listings C.1 and C.2 show a practical example of a custom chart implementation called Axis Chart, which
simply consists of Axis components. The underlying AxisChart class, shown in Listing C.1, is structured
like the standard chart types of RespVis and expects a selection of a single HTML <div> element and
a chart-specific input object. The validation function and the accepted types for chart input, validation
function input, and validation function output are defined in Listing C.2

The abstract methods of the Chart class, renderContent and revalidate, must be implemented by
concrete derived classes like AxisChart. The renderContent method must contain the render routines of
the chart. In case of the AxisChart, this includes rendering all Axes passed as part of the chart arguments,
updating the scales and orientation of these Axes, and rendering the Toolbar. The revalidate method
must contain the logic for validating the chart-specific input object and binding the validated output to
the window selection. The method is public and can be called after chart instantiation to replace the
underlying data of the chart. An example of the discussed Axis Chart can be seen in Figure C.1.

133



134 C Chart Developer Guide

1 import {
2 Axis, Chart, rectFromString , renderAxisLayout ,
3 renderToolbar , validateWindow , Window, Selection
4 } from "respvis";
5 import {AxisChartUserArgs , AxisChartValid , validateAxisChart
6 } from "./validate-axis-chart";
7
8 type WindowSelection = Selection <HTMLDivElement , Window & AxisChartValid >
9 type ChartSelection = Selection <SVGSVGElement , Window & AxisChartValid >

10
11 export class AxisChart extends Chart {
12 constructor(windowSelection: Selection <HTMLDivElement >,
13 args: AxisChartUserArgs ) {
14 super()
15 this._windowS = windowSelection as WindowSelection
16 this.revalidate(args)
17 }
18 _windowS: WindowSelection
19 get windowS(): WindowSelection { return this._windowS }
20 _chartS?: ChartSelection
21 get chartS(): ChartSelection {
22 return ((this._chartS && !this._chartS.empty()) ? this._chartS :
23 this.layouterS.selectAll(’svg.chart’)) as ChartSelection
24 }
25
26 protected renderContent() {
27 const {width, height} = rectFromString(this.drawAreaS.attr(’bounds’)
28 || ’0, 0, 600, 400’)
29 const {axes, series} = this.chartS.datum()
30 this.chartS.classed(’chart-cartesian’, true)
31
32 series.responsiveState.update()
33 const flipped = series.responsiveState.currentlyFlipped
34
35 axes.forEach((axis, index) => {
36 const orientation = flipped ? (axis.standardOrientation === ’horizontal’ ?
37 ’vertical’ : ’horizontal’)
38 : axis.standardOrientation
39
40 if (orientation === ’horizontal’) axis.scaledValues.scale.range([0, width])
41 else axis.scaledValues.scale.range([height, 0])
42
43 this.paddingWrapperS.selectAll <SVGGElement , Axis>(‘.axis.axis-${index}‘)
44 .data([axis])
45 .join(’g’)
46 .classed(‘axis-${index}‘, true)
47 .call(s => renderAxisLayout(s, orientation))
48 })
49 renderToolbar(this._windowS , {renderer: this, getAxes: () => axes,
50 getSeries: () => [series]})
51 }
52
53 revalidate(args: AxisChartUserArgs) {
54 const initialWindowData = validateWindow({...args, type: ’cartesian’,
55 renderer: this})
56 const chartData = validateAxisChart({...args, renderer: this})
57 this.windowS.datum({...initialWindowData , ...chartData})
58 }
59 }

Listing C.1: TypeScript code for creating a new simple chart only containing Axes, called an Axis Chart.



Creating New Charts 135

1 import {
2 BaseAxis ,
3 BaseAxisUserArgs ,
4 ChartData ,
5 ChartDataArgs ,
6 ChartDataUserArgs ,
7 Orientation ,
8 Orientations ,
9 ResponsiveValueUserArgs ,

10 ScaledValuesSpatialDomain ,
11 ScaledValuesSpatialUserArgs ,
12 validateBaseAxis ,
13 validateChart ,
14 validateScaledValuesSpatial ,
15 EmptySeries
16 } from "respvis";
17
18 export type AxisChartAxisUserArgs = BaseAxisUserArgs & {
19 vals: ScaledValuesSpatialUserArgs <ScaledValuesSpatialDomain >
20 standardOrientation?: Orientation
21 }
22
23 type AxisChartAxisValid = BaseAxis & {
24 standardOrientation: Orientation
25 }
26
27 export type AxisChartUserArgs = ChartDataUserArgs & {
28 axes: AxisChartAxisUserArgs[]
29 flipped?: ResponsiveValueUserArgs <boolean>
30 }
31
32 type AxisChartArgs = ChartDataArgs & AxisChartUserArgs
33
34 export type AxisChartValid = ChartData & {
35 axes: AxisChartAxisValid[],
36 series: EmptySeries
37 }
38
39 export function validateAxisChart(args: AxisChartArgs): AxisChartValid {
40 const series = new EmptySeries({key: ’s-0’, renderer: args.renderer,
41 flipped: args.flipped})
42 return {
43 ...validateChart(args),
44 series,
45 axes: args.axes.map((axis, index) => {
46 const scaledValues = validateScaledValuesSpatial(axis.vals, ‘a-${index}‘)
47 const standardOrientation = (axis.standardOrientation &&
48 Orientations.includes(axis.standardOrientation)) ?
49 axis.standardOrientation : ’horizontal’
50 return {
51 ...validateBaseAxis({...axis, series, scaledValues ,
52 renderer: args.renderer}), standardOrientation
53 }
54 })
55 }
56 }

Listing C.2: TypeScript code for the validation logic of an Axis Chart.



136 C Chart Developer Guide

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p

u
la

ti
o
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Cities

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

Po
p

u
la

tio
n

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

Axis Chart

Figure C.1: An Axis Chart with four Axes. [Images created with RespVis [Egger and Oberrauner 2024a] by the author
of this thesis.]

C.2 Customizing Standard Chart Types
The RespVis v3 API includes classes for creating four types of charts out of the box: Bar Charts, Scatter
Plots, Line Charts, and Parallel Coordinates Charts. These standard chart types can be customized by extending
their classes with subclasses and overriding methods and properties. There are two reasons why a chart
developer may want to customize one of the standard RespVis charts.

The first is that standard charts have a fixed render routine, meaning that the render routines of chart
components like Legend, Toolbar, and cartesian components are always called. Furthermore, features like
highlighting elements on hover, or whole Data Series being highlighted when a corresponding legend item
is hovered, are always active by default. While there are other methods for turning some of these features
off, a simple solution is to create a subclass of the corresponding standard chart class and customize its
renderContent method. This gives chart developers full control of the content of a chart. Listing C.3
shows how the BarChart class can be customized to remove highlighted elements and Tooltips. Figure C.2
demonstrates the difference between a standard Bar Chart and the customized version when hovering over
a bar element.

The second reason for customizing a standard chart may be the desire to create a new chart variant.
The standard chart classes come with useful render methods, which can also be used by custom chart
implementations. However, if a new chart variant greatly deviates from the base chart type, it may be
advisable to create a completely new chart, as discussed in Section C.1.



Customizing Standard Chart Types 137

1 //Example for custom chart with no highlight and tooltips
2 class BarChartCustom extends BarChart {
3 renderContent() {
4 this.renderSeriesChartComponents()
5 const series = this.chartS.datum().series.cloneToRenderData()
6 .applyZoom().applyFilter()
7 const {seriesS, barS} = renderBarSeries(this.drawAreaS , [series])
8 const bars = barS.data()
9

10 seriesS.call((s) => this.addSeriesLabels(s))
11 this.drawAreaS.selectAll(’.series-label’)
12 .attr( ’layout-strategy’, bars[0]?.labelData?.positionStrategy ?? null)
13
14 this.renderCartesianComponents()
15 this.addFilterListener()
16 }
17 }

Listing C.3: TypeScript code for creating a custom Bar Chart with no highlighted elements and no
Tooltips.

(a) Standard Bar Chart. (b) Customized Bar Chart.

Figure C.2: A Bar Chart supports element highlighting on hover and a Data Series Tooltip by default. This
can be changed when creating a custom version of the chart. [Screenshots taken by the author of this
thesis.]



138 C Chart Developer Guide



Appendix D

Maintainer Guide

This guide explains how to contribute to RespVis v3 and is addressed to developers working with the
internals of RespVis.

D.1 Releasing
RespVis contains multiple sub-packages and is publicly available at the npm registry. All sub-packages
follows semantic versioning. The following checklist details the steps necessary to prepare a new release
of RespVis:

• Checking out the develop branch in the RespVis repository.

• Raise the version of all sub-packages and the monolithic package by changing the version entry in
the corresponding package.json files. They all must have the same version.

• Raise the version of all RespVis peer-dependencies in all RespVis sub-packages. They must match
with the currently released version number of the sub-packages and the monolithic package.

• Make sure all packages follow the import/export policy discussed in Section D.2.

• Commit all conducted versioning and import/export changes as release commit to the develop branch
and subsequently merging the develop branch into the master branch by doing a fast-forward merge
(a merge without creating a merge commit).

• Check out the master branch.

• Create a new tag. It must be named: v<major>.<minor>.<patch> and match with the versions of the
package.json files.

• Push the created tag.

• Build all sub-packages and the monolithic package by running npx gulp build or npm run build.
The execution of these public Gulp tasks can take a couple of minutes, depending on the used device.

• Publish all packages on the public npm registry. This is achieved by first changing the working
directory to the project root directory respvis/ and then invoking the following npm commands:

npm publish --dry-run --workspaces npm publish --dry-run npm publish
--workspaces npm publish

The first command can be used to test if the correct files are published on the actual execution of
the publish command for all sub-packages. The second command tests the same for the monolithic

139



140 D Maintainer Guide

package. The third command publishes all sub-packages. The fourth command publishes the
monolithic package.

• Create a release from the new tag on GitHub.

• Zip the respvis.js, respvis.js.map, respvis.min.js, respvis.min.js.map, respvis.d.ts files located
in the respvis/package/standalone/esm/ directory and the respvis/package/respvis.css file as a
package.zip file and attach this file to the created release on GitHub.

D.2 Importing and Exporting
Each RespVis sub-package contains CSS and TypeScript source files. Importing functionality from one
RespVis sub-package to another requires a clearly defined import/export policy, since each sub-package
is publicly available on the npm registry and provides the bundled code and CSS of a specific part of the
whole RespVis library.

D.2.1 Importing and Exporting TypeScript

A bundler must be able to differentiate between importing dependencies from another module in the
same sub-package, and importing dependencies from other sub-packages. Otherwise, a bundler would
also include code from other sub-packages when creating the bundle of a sub-package, bloating it up
unnecessarily. RespVis makes use of path aliases defined in the tsconfig.json to avoid this form of
double bundling, and to enable importing functionality between sub-packages.

It is important to understand the bundling process. Each sub-package of the RespVis library has an
entry file index.ts located in the directory respvis/src/packages/<sub-package>/ts/. The bundler will
check everything exported from this entry file and include it in the final bundle. To gain more fine-grained
control, additional index.ts files exist for all nested directories. The entry file index.ts exports all desired
functionality of a sub-package by exporting all nested index.ts files. There is also another entry file
located in the directory respvis/src/packages/, which exports the entry files of all sub-packages. This
entry file is used to create the monolithic bundle, which contains the full functionality of RespVis.

The following import and export scenarios use respvis-bar as the dependent package and respvis-core
as the providing package:

1. A file in respvis-core imports from another file in respvis-core. In this case, using relative paths is
advisable, since using the path alias may lead to problems and slowdowns in the bundling process.

2. A file in respvis-bar imports functionality from respvis-core. In this case an import must be
declared via path alias as import {<functionality>} from ’respvis-core’. When following
this approach, the bundler recognizes the imported functionality as an external dependency coming
from another sub-package, and does not include the imported code in the generated bundle.

3. An index.ts reexports a named type from a module. For this case, it is not enough to export
in this form: export {<type-name>} from "<path-to-file>". Instead, type exports must be
used: export type {<type-name>} from "<path-to-file>". This is necessary, because the live
documentation is built using Vite, which has different requirements for its transpiling process.

D.2.2 Importing CSS

The bundling process for CSS is simpler than for TypeScript, because there is no need to import
dependencies from other sub-packages. Instead, all CSS files of a sub-package must be included in
its bundle. Each sub-package contains an entry file index.css in the directory respvis/src/packag
es/<sub-package>/css/. Other CSS files can be imported using import statements in the form of



Importing and Exporting 141

@import ’<relative-path>’;. In the build task, Gulp substitutes import statements with the real
CSS code and generates a single CSS file, which is placed into the generated package directory. This
procedure is conducted for all sub-packages. There is also another entry file located in the directory
respvis/src/packages/, which imports the entry files of all sub-packages. This entry file is used to create
the monolithic CSS file, which contains all styles provided by RespVis.



142 D Maintainer Guide



Bibliography

AMD [2016]. Asynchronous Module Definition (AMD) API. 09 Feb 2016. https://github.com/amdjs/am
djs-api (cited on page 5).

Ander [2021]. Germany Cars Dataset. 2021. https://kaggle.com/datasets/ander289386/cars-germany?r
esource=download (cited on page 31).

Andrews, Keith [2018a].ResponsiveData Visualisation. 2018. https://projects.isds.tugraz.at/respvis
(cited on pages 20, 27, 89–90).

Andrews, Keith [2018b]. Responsive Visualisation. CHI 2018 Workshop on Data Visualization on Mobile
Devices (MobileVis 2018) (Montréal, Québec, Canada). 21 Apr 2018. https://mobilevis.github.io/a
ssets/mobilevis2018_paper_4.pdf (cited on pages 1, 19–21).

Andrews, Keith [2021].Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. 10 Nov 2021. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on page xiii).

Andrews, Keith [2024]. Information Visualisation Course Notes. 08 Mar 2024. https://courses.isds.tu
graz.at/ivis/ivis.pdf (cited on pages 1, 17).

Andrews, Keith, David Egger, and Peter Oberrauner [2023]. RespVis: A D3 Extension for Responsive SVG
Charts. Proc. 27th International Conference Information Visualisation (IV 2023) (Tampere, Finland).
25 Jul 2023, pages 19–22. doi:10.1109/IV60283.2023.00014. https://ftp.isds.tugraz.at/pub/papers/and
rews-iv2023-respvis.pdf (cited on page 33).

Angelica, Laura [2024]. The Complete JavaScript Module Bundlers Guide. 06 Jun 2024. https://mockit
t.wondershare.com/dictionary/what-is-baseline.html (cited on page 56).

Anichiti, Andreea [2021]. TypeScript Coding Standards. 11 May 2021. https://gist.github.com/anichi
tiandreea/e1d466022d772ea22db56399a7af576b (cited on page 44).

BairesDev [2024]. Static vs Dynamic Typing: A Detailed Comparison. BairesDev Editorial Team, 09 Feb
2024. https://bairesdev.com/blog/static-vs-dynamic-typing (cited on page 6).

Bederson, Benjamin B. and James D. Hollan [1995]. Pad++: A Zoomable Graphical Interface System.
Conference Companion, ACM Conference on Human Factors in Computing Systems (CHI 1995)
(Denver, Colorado, USA). 07 May 1995, pages 23–24. doi:10.1145/223355.223394. https://cs.umd.edu
/~bederson/images/pubs_pdfs/p23-bederson.pdf (cited on page 28).

Berners-Lee, Tim [1999]. Weaving the Web. Harper, 22 Sep 1999. 240 pages. ISBN 0062515861 (cited on
page 3).

Berners-Lee, Tim and Daniel W. Connolly [1995]. Hypertext Markup Language - 2.0. IETF, Nov 1995.
https://datatracker.ietf.org/doc/html/rfc1866 (cited on page 3).

Bos, Bert [2016]. A Brief History of CSS until 2016. World Wide Web Consortium, 17 Dec 2016.
https://w3.org/Style/CSS20/history.html (cited on page 4).

143

https://github.com/amdjs/amdjs-api
https://github.com/amdjs/amdjs-api
https://kaggle.com/datasets/ander289386/cars-germany?resource=download
https://kaggle.com/datasets/ander289386/cars-germany?resource=download
https://projects.isds.tugraz.at/respvis
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://ftp.isds.tugraz.at/pub/keith/thesis/
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://doi.org/10.1109/IV60283.2023.00014
https://ftp.isds.tugraz.at/pub/papers/andrews-iv2023-respvis.pdf
https://ftp.isds.tugraz.at/pub/papers/andrews-iv2023-respvis.pdf
https://mockitt.wondershare.com/dictionary/what-is-baseline.html
https://mockitt.wondershare.com/dictionary/what-is-baseline.html
https://gist.github.com/anichitiandreea/e1d466022d772ea22db56399a7af576b
https://gist.github.com/anichitiandreea/e1d466022d772ea22db56399a7af576b
https://bairesdev.com/blog/static-vs-dynamic-typing
https://doi.org/10.1145/223355.223394
https://cs.umd.edu/~bederson/images/pubs_pdfs/p23-bederson.pdf
https://cs.umd.edu/~bederson/images/pubs_pdfs/p23-bederson.pdf
http://amazon.co.uk/dp/0062515861/
https://datatracker.ietf.org/doc/html/rfc1866
https://w3.org/Style/CSS20/history.html


144 Bibliography

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17.12 (23 Oct 2011), pages 2301–2309. doi:10
.1109/TVCG.2011.185. https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf (cited on page 8).

Bostock, Mike [2024a]. D3-Axis. 27 Aug 2024. https://d3js.org/d3-axis (cited on page 10).

Bostock, Mike [2024b]. D3-Dispatch. 27 Aug 2024. https://d3js.org/d3-dispatch (cited on page 10).

Bostock, Mike [2024c]. D3-Drag. 27 Aug 2024. https://d3js.org/d3-drag (cited on page 10).

Bostock, Mike [2024d]. D3-Scale. 27 Aug 2024. https://d3js.org/d3-scale (cited on page 10).

Bostock, Mike [2024e]. D3-Selection. 27 Aug 2024. https://d3js.org/d3-selection (cited on page 8).

Bostock, Mike [2024f]. D3-Transition. 27 Aug 2024. https://d3js.org/d3-transition (cited on page 8).

Bostock, Mike [2024g]. D3-Zoom. 27 Aug 2024. https://d3js.org/d3-zoom (cited on page 10).

Bostock, Mike [2024h]. D3: The JavaScript Library for Bespoke Data Visualization. 27 Aug 2024.
https://d3js.org/ (cited on pages 1, 8–9, 33, 35, 39).

Budiu, Raluca and Kara Pernice [2016].Mobile First Is NOT Mobile Only. 24 Jul 2016. https://nngroup
.com/articles/mobile-first-not-mobile-only (cited on page 13).

Choudhury, Shilpi [2014]. Grid Lines: Chart Junk or Visual Aids? Data Visualization Standards, 19 Jun
2014. https://fusioncharts.com/blog/grid-lines-chart-junk-or-visual-aids/ (cited on page 74).

Christensson, Per [2019]. Resolution Definition. 26 Aug 2019. https://techterms.com/definition/resol
ution (cited on page 18).

Coyier, Chris [2016]. The SVG 2 Conundrum. 11 Nov 2016. https://css-tricks.com/svg-2-conundrum/
(cited on page 8).

Deveria, Alexis [2024]. Can I Use. 07 Apr 2024. https://caniuse.com/css-container-queries-style
(cited on pages 14, 65).

Dixin [2024]. Understanding (all) JavaScript Module Formats and Tools. 09 Feb 2024. https://weblogs
.asp.net/dixin/understanding-all-javascript-module-formats-and-tools (cited on page 5).

DVS [2024]. Labels. U.S. Census Bureau, Data Visualization Standards, 11 Dec 2024. https://xdgov.gi
thub.io/data-design-standards/components/labels (cited on page 63).

Ecma [2015]. ECMAScript 2015 Language Specification. 6th Edition. Ecma International. 01 Jun 2015.
https://ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf (cited on
page 5).

Ecma [2024]. ECMAScript 2024 Language Specification. 15th Edition. Ecma International. 01 Jun 2024.
https://ecma-international.org/publications-and-standards/standards/ecma-262 (cited on page 4).

Egger, David [2024a]. Responsive Visualization Patterns and Tools. Survey Paper. 706.424 Seminar/Pro-
ject Interactive and Visual Information Systems SS 2023. Graz University of Technology, Austria,
26 Apr 2024. 46 pages. https://ftp.isds.tugraz.at/pub/surveys/egger-2024-04-26-survey-respvis-
patterns-tools.pdf (cited on pages 20, 103).

Egger, David [2024b]. respvis. 28 Nov 2024. https://npmjs.com/package/respvis (cited on page 38).

Egger, David [2024c]. respvis-bar. 28 Nov 2024. https://npmjs.com/package/respvis-bar (cited on
page 38).

Egger, David [2024d]. respvis-cartesian. 28 Nov 2024. https://npmjs.com/package/respvis-cartesian
(cited on page 38).

https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf
https://d3js.org/d3-axis
https://d3js.org/d3-dispatch
https://d3js.org/d3-drag
https://d3js.org/d3-scale
https://d3js.org/d3-selection
https://d3js.org/d3-transition
https://d3js.org/d3-zoom
https://d3js.org/
https://nngroup.com/articles/mobile-first-not-mobile-only
https://nngroup.com/articles/mobile-first-not-mobile-only
https://fusioncharts.com/blog/grid-lines-chart-junk-or-visual-aids/
https://techterms.com/definition/resolution
https://techterms.com/definition/resolution
https://css-tricks.com/svg-2-conundrum/
https://caniuse.com/css-container-queries-style
https://weblogs.asp.net/dixin/understanding-all-javascript-module-formats-and-tools
https://weblogs.asp.net/dixin/understanding-all-javascript-module-formats-and-tools
https://xdgov.github.io/data-design-standards/components/labels
https://xdgov.github.io/data-design-standards/components/labels
https://ecma-international.org/wp-content/uploads/ECMA-262_6th_edition_june_2015.pdf
https://ecma-international.org/publications-and-standards/standards/ecma-262
https://ftp.isds.tugraz.at/pub/surveys/egger-2024-04-26-survey-respvis-patterns-tools.pdf
https://ftp.isds.tugraz.at/pub/surveys/egger-2024-04-26-survey-respvis-patterns-tools.pdf
https://npmjs.com/package/respvis
https://npmjs.com/package/respvis-bar
https://npmjs.com/package/respvis-cartesian


145

Egger, David [2024e]. respvis-core. 28 Nov 2024. https://npmjs.com/package/respvis-core (cited on
page 37).

Egger, David [2024f]. respvis-line. 28 Nov 2024. https://npmjs.com/package/respvis-line (cited on
page 38).

Egger, David [2024g]. respvis-parcoord. 28 Nov 2024. https://npmjs.com/package/respvis-parcoord
(cited on page 38).

Egger, David [2024h]. respvis-point. 28 Nov 2024. https://npmjs.com/package/respvis-point (cited on
page 38).

Egger, David [2024i]. respvis-tooltip. 28 Nov 2024. https://npmjs.com/package/respvis-tooltip (cited
on page 37).

Egger, David [2024j]. RespVis: Responsive Visualisations. 28 Nov 2024. https://respvis-docs.netlify
.app/ (cited on pages 1, 35, 41).

Egger, David and Peter Oberrauner [2023a]. RespVis v2 Release. 25 Jul 2023. https://github.com/tugra
z-isds/respvis/releases/tag/v2.0.0 (cited on page 2).

Egger, David and Peter Oberrauner [2023b]. Respvis-V2 Release Demo. 24 Apr 2023. https://respvis.n
etlify.app/ (cited on page 27).

Egger, David and Peter Oberrauner [2024a]. RespVis v3 Release Demo. 28 Nov 2024. https://respvis
.netlify.app/ (cited on pages 1, 20–24, 26, 28–29, 61–62, 66, 69, 74–76, 78–80, 82–83, 85–86, 107,
113, 119, 126, 136).

Egger, David and Peter Oberrauner [2024b]. RespVis v3 Repository. 24 Aug 2024. https://github.com/t
ugraz-isds/respvis (cited on pages 1, 91).

Egnyte [2022]. Data Sampling. 19 Apr 2022. https://egnyte.com/guides/life-sciences/data-sampling
(cited on page 31).

Gardón, Diego Salinas [2022]. The Complete JavaScript Module Bundlers Guide. 21 Mar 2022. https:
//snipcart.com/blog/javascript-module-bundler (cited on page 11).

Gillies, James and Robert Cailliau [2000]. How The Web Was Born: The Story of the World Wide Web.
Oxford University Press, 07 Dec 2000. 392 pages. ISBN 0192862073 (cited on page 3).

Gulp [2024]. Gulp. 22 Aug 2024. https://gulpjs.com (cited on page 11).

Highsoft [2023]. Highcharts. 30 Aug 2023. https://highcharts.com/ (cited on page 27).

Hoffmann, Jay [2017]. The Origin of the IMG Tag. 07 Mar 2017. https://thehistoryoftheweb.com/the-
origin-of-the-img-tag (cited on page 6).

Hoffswell, Jane, Wilmot Li, and Zhicheng Liu [2020]. Techniques for Flexible Responsive Visualization
Design. Proc. ACM Conference on Human Factors in Computing Systems (CHI 2020) (Online). 25 Apr
2020, Paper 648, pages 1–13. doi:10.1145/3313831.3376777. https://jhoffswell.github.io/website/res
ources/papers/2020-ResponsiveVisualization-CHI.pdf (cited on page 20).

Horak, Tom, Wolfgang Aigner, Matthew Brehmer, Alark Joshi, and Christian Tominski [2021]. Respon-
sive Visualization Design for Mobile Devices. In: Mobile Data Visualization. Edited by Bongshin
Lee, Raimund Dachselt, Petra Isenberg, and Eun Kyoung Choe. CRC Press, 23 Dec 2021. Chapter 2,
pages 33–65. ISBN 0367534711. doi:10.1201/9781003090823-2. https://imld.de/cnt/uploads/Horak2021_Mo
bileDataVisBook_Chap02_Responsive.pdf (cited on page 18).

Infogram [2016]. Key Figures in the History of Data Visualization. 15 Jun 2016. https://medium.com/@In
fogram/key-figures-in-the-history-of-data-visualization-30486681844c (cited on page 1).

https://npmjs.com/package/respvis-core
https://npmjs.com/package/respvis-line
https://npmjs.com/package/respvis-parcoord
https://npmjs.com/package/respvis-point
https://npmjs.com/package/respvis-tooltip
https://respvis-docs.netlify.app/
https://respvis-docs.netlify.app/
https://github.com/tugraz-isds/respvis/releases/tag/v2.0.0
https://github.com/tugraz-isds/respvis/releases/tag/v2.0.0
https://respvis.netlify.app/
https://respvis.netlify.app/
https://respvis.netlify.app/
https://respvis.netlify.app/
https://github.com/tugraz-isds/respvis
https://github.com/tugraz-isds/respvis
https://egnyte.com/guides/life-sciences/data-sampling
https://snipcart.com/blog/javascript-module-bundler
https://snipcart.com/blog/javascript-module-bundler
http://amazon.co.uk/dp/0192862073/
https://gulpjs.com
https://highcharts.com/
https://thehistoryoftheweb.com/the-origin-of-the-img-tag
https://thehistoryoftheweb.com/the-origin-of-the-img-tag
https://doi.org/10.1145/3313831.3376777
https://jhoffswell.github.io/website/resources/papers/2020-ResponsiveVisualization-CHI.pdf
https://jhoffswell.github.io/website/resources/papers/2020-ResponsiveVisualization-CHI.pdf
http://amazon.co.uk/dp/0367534711/
https://doi.org/10.1201/9781003090823-2
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://medium.com/@Infogram/key-figures-in-the-history-of-data-visualization-30486681844c
https://medium.com/@Infogram/key-figures-in-the-history-of-data-visualization-30486681844c


146 Bibliography

InfoVis:Wiki [2006]. Zoom. 05 Oct 2006. https://infovis-wiki.net/wiki/Zoom (cited on pages 27, 69,
99).

InfoVis:Wiki [2014]. Semantic Zoom. 10 Jul 2014. https://infovis-wiki.net/wiki/Semantic_Zoom (cited
on page 28).

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer, 08 Oct 2009. 554 pages. ISBN 0387215077 (cited on pages 18, 84, 125).

Irish, Paul and Tali Garsiel [2011]. How Browsers Work. 05 Aug 2011. https://web.dev/articles/howbr
owserswork (cited on page 4).

Jackson, Joab [2012].Microsoft Augments JavaScript for Large-Scale Development. IDG News Service,
01 Oct 2012. https://infoworld.com/article/2275762/microsoft-augments-javascript-for-large-sc
ale-development-2.html (cited on page 6).

Juviler, Jamie [2021]. Horizontal Scrolling in Web Design: How to Do It Well. 14 Jun 2021. https://blo
g.hubspot.com/website/horizontal-scrolling (cited on page 14).

Kim, Hyeok, Dominik Moritz, and Jessica Hullman [2021].Design Patterns and Trade-Offs in Responsive
Visualization for Communication. Computer Graphics Forum 40.3 (29 Jun 2021), pages 459–470. ISSN
1467-8659. doi:10.1111/cgf.14321. https://arxiv.org/abs/2104.07724 (cited on pages 18–20, 103).

Kirk, Andy [2019]. Data Visualisation: A Handbook for Data Driven Design. 2nd Edition. Sage Publica-
tions, 08 Jul 2019. 328 pages. ISBN 1526468921 (cited on pages 60–61, 72, 76, 78–80, 83, 99, 106, 112,
118).

Korduba, Yaryna, Stefan Schintler, and Andreas Steinkellner [2022]. Responsive Data Visualization.
Survey Paper. Information Visualisation SS 2022. Graz University of Technology, Austria, 31 May
2022. 33 pages. https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-
vis.pdf (cited on page 19).

Kunz, Gion [2017]. Chartist. 08 Dec 2017. https://gionkunz.github.io/chartist-js/ (cited on page 31).

Manik [2020]. How JavaScript Was Created and Why the History Behind It Is Important. 05 Sep 2020.
https://hackernoon.com/how-javascript-was-created-and-why-the-history-behind-it-is-important

-fwh3tco (cited on page 4).

Marcotte, Ethan [2010]. Responsive Web Design. 25 May 2010. https://alistapart.com/article/respon
sive-web-design/ (cited on pages 12, 14).

Marcotte, Ethan [2011]. ResponsiveWebDesign. A Book Apart, 07 Jun 2011. 143 pages. ISBN 098444257X.
http://abookapart.com/products/responsive-web-design (cited on page 12).

Marcotte, Ethan [2014]. Responsive Web Design. 2nd Edition. A Book Apart, 02 Dec 2014. 153 pages.
ISBN 1937557189. http://abookapart.com/products/responsive-web-design (cited on page 1).

MDN [2023a]. CSS Flexible Box Layout. MDN Web Docs, 24 May 2023. https://developer.mozilla.or
g/en-US/docs/Web/CSS/CSS_flexible_box_layout (cited on page 14).

MDN [2023b]. CSS Grid Layout. MDN Web Docs, 15 Jun 2023. https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_grid_layout (cited on page 14).

MDN [2023c]. CSS Values and Units. MDN Web Docs, 06 Sep 2023. https://developer.mozilla.org/e
n-US/docs/Learn/CSS/Building_blocks/Values_and_units (cited on page 14).

MDN [2023d]. Document Object Model(DOM). MDN Web Docs, 17 Dec 2023. https://developer.moz
illa.org/en-US/docs/Web/API/Document_Object_Model (cited on page 3).

https://infovis-wiki.net/wiki/Zoom
https://infovis-wiki.net/wiki/Semantic_Zoom
http://amazon.co.uk/dp/0387215077/
https://web.dev/articles/howbrowserswork
https://web.dev/articles/howbrowserswork
https://infoworld.com/article/2275762/microsoft-augments-javascript-for-large-scale-development-2.html
https://infoworld.com/article/2275762/microsoft-augments-javascript-for-large-scale-development-2.html
https://blog.hubspot.com/website/horizontal-scrolling
https://blog.hubspot.com/website/horizontal-scrolling
http://worldcatlibraries.org/wcpa/issn/1467-8659
https://doi.org/10.1111/cgf.14321
https://arxiv.org/abs/2104.07724
http://amazon.co.uk/dp/1526468921/
https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-vis.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-vis.pdf
https://gionkunz.github.io/chartist-js/
https://hackernoon.com/how-javascript-was-created-and-why-the-history-behind-it-is-important-fwh3tco
https://hackernoon.com/how-javascript-was-created-and-why-the-history-behind-it-is-important-fwh3tco
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/responsive-web-design/
http://amazon.co.uk/dp/098444257X/
http://abookapart.com/products/responsive-web-design
http://amazon.co.uk/dp/1937557189/
http://abookapart.com/products/responsive-web-design
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_flexible_box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_flexible_box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model


147

MDN [2023e]. SVG Positions. MDN Web Docs, 07 Mar 2023. https://developer.mozilla.org/en-US/do
cs/Web/SVG/Tutorial/Positions (cited on page 53).

MDN [2023f].Web APIs. MDN Web Docs, 20 Feb 2023. https://developer.mozilla.org/en-US/docs/We
b/API (cited on page 5).

MDN [2024a].@scope. MDN Web Docs, 26 Jul 2024. https://developer.mozilla.org/en-US/docs/Web
/CSS/@scope (cited on page 90).

MDN [2024b]. Dominant Baseline. MDN Web Docs, 19 Aug 2024. https://developer.mozilla.org/en-
US/docs/Web/SVG/Attribute/dominant-baseline (cited on page 56).

MDN [2024c]. Introducing the CSS Cascade. MDN Web Docs, 26 Jul 2024. https://developer.mozilla
.org/en-US/docs/Web/CSS/Cascade (cited on page 4).

MDN [2024d]. JavaScript Modules. MDN Web Docs, 30 Jul 2024. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Modules (cited on pages 5, 46).

MDN [2024e]. Kebab Case. MDN Web Docs, 01 Aug 2024. https://developer.mozilla.org/en-US/docs
/Glossary/Kebab_case (cited on page 45).

MDN [2024f]. Namespaces Crash Course. MDN Web Docs, 25 Jul 2024. https://developer.mozilla.o
rg/en-US/docs/Web/SVG/Namespaces_Crash_Course (cited on page 7).

MDN [2024g]. Text Anchor. MDN Web Docs, 02 Aug 2024. https://developer.mozilla.org/en-US/doc
s/Web/SVG/Attribute/text-anchor (cited on page 56).

MDN [2024h]. The Box Model. MDN Web Docs, 25 Jul 2024. https://developer.mozilla.org/en-US/do
cs/Learn/CSS/Building_blocks/The_box_model (cited on page 53).

MDN [2024i]. The HTML DOM API. MDN Web Docs, 25 Jul 2024. https://developer.mozilla.org/en
-US/docs/Web/API/HTML_DOM_API (cited on page 5).

MDN [2024j]. The SVG API. MDN Web Docs, 25 Jul 2024. https://developer.mozilla.org/en-US/docs
/Web/API/SVG_API (cited on page 5).

MDN [2024k].What is CSS?MDN Web Docs, 25 Jul 2024. https://developer.mozilla.org/en-US/docs
/Learn/CSS/First_steps/What_is_CSS (cited on page 4).

MDX [2024]. Markdown for the Component Era. 30 Jul 2024. https://mdxjs.com/ (cited on page 12).

Melkonyan, Samvel [2023]. Object-Oriented Programming (OOP) vs Functional Programming (FP).
Flux Technologies, 05 Sep 2023. https://fluxtech.me/blog/object-oriented-programming-vs-functi
onal-programming/ (cited on page 44).

Meta [2022]. JSX. 04 Aug 2022. https://facebook.github.io/jsx (cited on page 12).

Meta [2024]. React. 30 Jul 2024. https://react.dev/ (cited on page 11).

Microsoft [2024a]. Mixins. 11 Jul 2024. https://typescriptlang.org/docs/handbook/mixins.html (cited
on page 71).

Microsoft [2024b]. TypeScript: JavaScript with Syntax for Types. 11 Sep 2024. https://typescriptlang
.org/ (cited on page 1).

NCEI [2024]. The Global Anomalies and Index Data. National Centers for Environmental Information,
21 Feb 2024. https://ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
(cited on page 30).

Netlify [2024]. Netlify. 04 May 2024. https://netlify.com/ (cited on page 34).

https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Positions
https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Positions
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/API
https://developer.mozilla.org/en-US/docs/Web/CSS/@scope
https://developer.mozilla.org/en-US/docs/Web/CSS/@scope
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/dominant-baseline
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/dominant-baseline
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Glossary/Kebab_case
https://developer.mozilla.org/en-US/docs/Glossary/Kebab_case
https://developer.mozilla.org/en-US/docs/Web/SVG/Namespaces_Crash_Course
https://developer.mozilla.org/en-US/docs/Web/SVG/Namespaces_Crash_Course
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/text-anchor
https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/text-anchor
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/The_box_model
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/SVG_API
https://developer.mozilla.org/en-US/docs/Web/API/SVG_API
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://mdxjs.com/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://fluxtech.me/blog/object-oriented-programming-vs-functional-programming/
https://facebook.github.io/jsx
https://react.dev/
https://typescriptlang.org/docs/handbook/mixins.html
https://typescriptlang.org/
https://typescriptlang.org/
https://ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://netlify.com/


148 Bibliography

NPM [2023]. registry. 05 Jan 2023. https://docs.npmjs.com/cli/v10/using-npm/registry (cited on
pages 1, 10, 37).

NPM [2024a]. npm. 30 May 2024. https://docs.npmjs.com/cli/v10/commands/npm (cited on pages 10,
37).

NPM [2024b]. package.json. 27 Jun 2024. https://docs.npmjs.com/cli/v10/configuring-npm/package-j
son (cited on pages 37, 39).

Oberrauner, Peter [2022a]. RespVis v1 Repository. 12 May 2022. https://github.com/AlmostBearded/re
spvis-v1 (cited on pages 2, 33).

Oberrauner, Peter [2022b]. RespVis: A Browser-Based, D3 Extension Library for Creating Responsive
SVG Charts. Master’s Thesis. Graz University of Technology, Austria, 12 May 2022. 131 pages.
https://ftp.isds.tugraz.at/pub/theses/poberrauner-2022-msc.pdf (cited on pages 2, 33, 37, 44, 90).

OpenJS [2024a]. An Introduction to the npm Package Manager. OpenJS Foundation, 11 Dec 2024.
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager (cited
on page 10).

OpenJS [2024b]. Node.js. OpenJS Foundation, 11 Dec 2024. https://nodejs.org/ (cited on pages 5, 10).

Osmani, Addy [2021]. Image Optimization. Smashing, Apr 2021. ISBN 3945749948. https://smashingmaga
zine.com/printed-books/image-optimization/ (cited on page 7).

Ostrowski, Rafał [2023]. A Simple Guide to JavaScript Concurrency in Node.js. 04 Jul 2023. https://ts
h.io/blog/simple-guide-concurrency-node-js (cited on page 10).

PennState [2023]. Font Size on the Web. Pennsylvania State University, 13 Nov 2023. https://accessibi
lity.psu.edu/fontsizehtml/ (cited on page 21).

Pickle, Brian [2023]. Raster Graphic. 03 Jan 2023. https://techterms.com/definition/raster_graphic
(cited on page 6).

Plotly [2023]. Plotly.js. 30 Aug 2023. https://plotly.com/javascript/ (cited on page 27).

pnpm [2024]. pnpm. 20 Aug 2024. https://pnpm.io (cited on page 11).

Rabinowitz, Nick [2014]. Responsive Data Visualization. 25 Sep 2014. https://nrabinowitz.github.io
/rdv/?scatterplot (cited on pages 29–30).

Rendle, Robin [2019]. Six Tips for Better Web Typography. 27 Feb 2019. https://css-tricks.com/six-t
ips-for-better-web-typography/ (cited on page 13).

RequireJS [2024]. RequireJS: A JavaScript Module Loader. RequireJS, 01 Aug 2024. https://requirej
s.org (cited on page 5).

Ribecca, Severino [2024]. Parallel Coordinates Plot. The Data Visualisation Catalogue, 22 Jun 2024.
https://datavizcatalogue.com/methods/parallel_coordinates.html (cited on pages 84, 125).

Rollup [2024]. Rollup. 22 Aug 2024. https://rollupjs.org (cited on page 11).

Sarah, Matilda [2023]. A Comprehensive Guide to Cluster Analysis: Applications, Best Practices and
Resources. 21 Nov 2023. https://displayr.com/understanding-cluster-analysis-a-comprehensive-g
uide/ (cited on page 30).

Sarkar, Manojit and Marc H. Brown [1992]. Graphical Fisheye Views of Graphs. Proc. ACM Conference
on Human Factors in Computing Systems (CHI 1992) (Monterey, California, USA). 03 May 1992,
pages 83–91. doi:10.1145/142750.142763. https://www.cs.montana.edu/courses/spring2005/430/pg/ft_g
ateway.cfm.pdf (cited on page 27).

https://docs.npmjs.com/cli/v10/using-npm/registry
https://docs.npmjs.com/cli/v10/commands/npm
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://github.com/AlmostBearded/respvis-v1
https://github.com/AlmostBearded/respvis-v1
https://ftp.isds.tugraz.at/pub/theses/poberrauner-2022-msc.pdf
https://nodejs.org/en/learn/getting-started/an-introduction-to-the-npm-package-manager
https://nodejs.org/
http://amazon.co.uk/dp/3945749948/
https://smashingmagazine.com/printed-books/image-optimization/
https://smashingmagazine.com/printed-books/image-optimization/
https://tsh.io/blog/simple-guide-concurrency-node-js
https://tsh.io/blog/simple-guide-concurrency-node-js
https://accessibility.psu.edu/fontsizehtml/
https://accessibility.psu.edu/fontsizehtml/
https://techterms.com/definition/raster_graphic
https://plotly.com/javascript/
https://pnpm.io
https://nrabinowitz.github.io/rdv/?scatterplot
https://nrabinowitz.github.io/rdv/?scatterplot
https://css-tricks.com/six-tips-for-better-web-typography/
https://css-tricks.com/six-tips-for-better-web-typography/
https://requirejs.org
https://requirejs.org
https://datavizcatalogue.com/methods/parallel_coordinates.html
https://rollupjs.org
https://displayr.com/understanding-cluster-analysis-a-comprehensive-guide/
https://displayr.com/understanding-cluster-analysis-a-comprehensive-guide/
https://doi.org/10.1145/142750.142763
https://www.cs.montana.edu/courses/spring2005/430/pg/ft_gateway.cfm.pdf
https://www.cs.montana.edu/courses/spring2005/430/pg/ft_gateway.cfm.pdf


149

Satori [2022]. Data Generalization: The Specifics of Generalizing Data. 2022. https://satoricyber.com
/data-masking/data-generalization (cited on page 29).

SciChart [2024]. Alternatives to D3.js. 30 Jan 2024. https://scichart.com/blog/alternatives-to-d3-js/
(cited on page 35).

Sethi, Basanta Kumar [2024]. Top Emerging Data Visualization Trends. 27 Aug 2024. https://kellton
.com/kellton-tech-blog/top-emerging-data-visualization-trends (cited on page 89).

Shadeed, Ahmad [2023]. The Guide to Responsive Design in 2023 and beyond. 01 Feb 2023. https://is
hadeed.com/article/responsive-design/ (cited on page 14).

Soueidan, Sara [2017]. Auto-Sizing Columns in CSS Grid: ‘auto-fill‘ vs ‘auto-fit‘. 29 Dec 2017. https:
//css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/ (cited on page 14).

Statista [2023a]. Most Used Programming Languages among Developers Worldwide as of 2023. 2023.
https://statista.com/statistics/793628/worldwide-developer-survey-most-used-languages (cited
on page 5).

Statista [2023b]. Percentage of Mobile Device Website Traffic Worldwide. 19 Aug 2023. https://statist
a.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices (cited on page 1).

Storybook [2024a]. Storybook: BuildUIswithout theGruntWork. 20 Jul 2024. https://storybook.js.org/
(cited on pages 11, 43).

Storybook [2024b]. Storybook: Introduction to Addons. 30 Jul 2024. https://storybook.js.org/docs/7
/addons (cited on page 11).

Theekshana, Poorna [2024]. Understanding CommonJS vs. ES Modules in JavaScript. 28 Feb 2024.
https://syncfusion.com/blogs/post/js-commonjs-vs-es-modules (cited on page 5).

UMD [2024]. Universal Module Definition (UMD). 27 Nov 2024. https://github.com/umdjs/umd (cited
on page 5).

Vanderkam, Dan [2024]. Effective TypeScript. 2nd Edition. O’Reilly, 04 Jun 2024. 401 pages. ISBN
1098155068 (cited on page 6).

Vujovic, Drazen [2024]. HTML History: Milestones in the Web Markup Language. 17 Jun 2024. https:
//contentsnare.com/html-history (cited on page 3).

W3C [1996]. Cascading Style Sheets, Level 1. W3C Recommendation. World Wide Web Consortium,
17 Dec 1996. https://w3.org/TR/2008/REC-CSS1-20080411/ (cited on page 4).

W3C [1998]. Cascading Style Sheets, Level 2 (CSS2). W3C Recommendation. World Wide Web Consor-
tium, 12 May 1998. https://w3.org/TR/2008/REC-CSS2-20080411/ (cited on page 4).

W3C [2001]. Scalable Vector Graphics (SVG) 1.0 Specification. World Wide Web Consortium, 04 Sep
2001. https://w3.org/TR/2001/REC-SVG-20010904 (cited on page 8).

W3C [2003]. Scalable Vector Graphics (SVG) 1.1 Specification. World Wide Web Consortium, 14 Jan
2003. https://w3.org/TR/2003/REC-SVG11-20030114 (cited on page 8).

W3C [2010]. The Secret Origin of SVG. World Wide Web Consortium, 18 Nov 2010. https://w3.org/Gr
aphics/SVG/WG/wiki/Secret_Origin_of_SVG (cited on page 7).

W3C [2011a].Cascading Style Sheets, Level 2 Revision 1 (CSS 2.1). W3C Recommendation. World Wide
Web Consortium, 07 Jun 2011. https://w3.org/TR/CSS21/ (cited on page 4).

W3C [2011b]. Scalable Vector Graphics (SVG) 1.1 (Second Edition). World Wide Web Consortium,
16 Aug 2011. https://w3.org/TR/SVG11 (cited on page 8).

https://satoricyber.com/data-masking/data-generalization
https://satoricyber.com/data-masking/data-generalization
https://scichart.com/blog/alternatives-to-d3-js/
https://kellton.com/kellton-tech-blog/top-emerging-data-visualization-trends
https://kellton.com/kellton-tech-blog/top-emerging-data-visualization-trends
https://ishadeed.com/article/responsive-design/
https://ishadeed.com/article/responsive-design/
https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/
https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/
https://statista.com/statistics/793628/worldwide-developer-survey-most-used-languages
https://statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices
https://storybook.js.org/
https://storybook.js.org/docs/7/addons
https://storybook.js.org/docs/7/addons
https://syncfusion.com/blogs/post/js-commonjs-vs-es-modules
https://github.com/umdjs/umd
http://amazon.co.uk/dp/1098155068/
https://contentsnare.com/html-history
https://contentsnare.com/html-history
https://w3.org/TR/2008/REC-CSS1-20080411/
https://w3.org/TR/2008/REC-CSS2-20080411/
https://w3.org/TR/2001/REC-SVG-20010904
https://w3.org/TR/2003/REC-SVG11-20030114
https://w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
https://w3.org/Graphics/SVG/WG/wiki/Secret_Origin_of_SVG
https://w3.org/TR/CSS21/
https://w3.org/TR/SVG11


150 Bibliography

W3C [2014]. HTML5: A Vocabulary and Associated APIs for HTML and XHTML. W3C Recommenda-
tion. World Wide Web Consortium, 28 Oct 2014. https://w3.org/TR/2014/REC-html5-20141028/ (cited
on page 3).

W3C [2017]. HTML 5.2. W3C Recommendation. World Wide Web Consortium, 14 Dec 2017. https:
//w3.org/TR/2017/REC-html52-20171214/ (cited on page 3).

W3C [2018]. Scalable Vector Graphics (SVG) 2. World Wide Web Consortium, 04 Oct 2018. https://w
3.org/TR/SVG2 (cited on pages 8, 89).

W3C [2024a]. Cascading Style Sheets. World Wide Web Consortium, 23 Oct 2024. https://w3.org/Styl
e/CSS/ (cited on page 4).

W3C [2024b].W3C: Making the Web Work. World Wide Web Consortium, 30 Jun 2024. https://w3.org/
(cited on pages 3–4).

W3Schools [2023]. Responsive Web Design - The Viewport. 19 Aug 2023. https://w3schools.com/css/c
ss_rwd_viewport.asp (cited on page 12).

Ware, Colin [2021]. Visual Thinking for Information Design. 2nd Edition. Morgan Kaufmann, 14 Jul
2021. 224 pages. ISBN 0128235675 (cited on page 17).

Wattenberger, Amelia [2019]. Fullstack D3 and Data Visualization. Fullstack, 29 Jul 2019. 608 pages.
ISBN 0991344650 (cited on page 8).

WCAG [2023]. How to Meet WCAG (Quick Reference). Web Content Accessibility Guidelines, 13 Nov
2023. https://w3.org/WAI/WCAG22/quickref/ (cited on page 21).

Weinreb, Brea [2019]. What Are Raster Graphics? Definition, Terms, and File Extensions. 13 Feb 2019.
https://learn.g2.com/raster-graphics (cited on page 6).

WHATWG [2024a]. HTML Living Standard. Web Hypertext Application Technology Working Group,
23 Oct 2024. https://html.spec.whatwg.org/ (cited on page 3).

WHATWG [2024b].Web Hypertext Application Technology Working Group. 23 Oct 2024. https://what
wg.org/ (cited on pages 3–4).

Woltmann, Sven [2024]. Monorepo – Pros and Cons. 29 Nov 2024. https://happycoders.eu/software-c
raftsmanship/monorepo-pros-and-cons/ (cited on page 38).

Wroblewski, Luke [2011].Mobile First. A Book Apart, Oct 2011. 130 pages. ISBN 1937557022. https://a
bookapart.com/products/mobile-first (cited on page 13).

Yarn [2024]. Yarn. 20 Aug 2024. https://yarnpkg.com/ (cited on page 11).

Zanini, Antonello [2023]. Data Aggregation – Definition, Use Cases, and Challenges. 20 Nov 2023.
https://brightdata.com/blog/web-data/data-aggregation (cited on page 30).

https://w3.org/TR/2014/REC-html5-20141028/
https://w3.org/TR/2017/REC-html52-20171214/
https://w3.org/TR/2017/REC-html52-20171214/
https://w3.org/TR/SVG2
https://w3.org/TR/SVG2
https://w3.org/Style/CSS/
https://w3.org/Style/CSS/
https://w3.org/
https://w3schools.com/css/css_rwd_viewport.asp
https://w3schools.com/css/css_rwd_viewport.asp
http://amazon.co.uk/dp/0128235675/
http://amazon.co.uk/dp/0991344650/
https://w3.org/WAI/WCAG22/quickref/
https://learn.g2.com/raster-graphics
https://html.spec.whatwg.org/
https://whatwg.org/
https://whatwg.org/
https://happycoders.eu/software-craftsmanship/monorepo-pros-and-cons/
https://happycoders.eu/software-craftsmanship/monorepo-pros-and-cons/
http://amazon.co.uk/dp/1937557022/
https://abookapart.com/products/mobile-first
https://abookapart.com/products/mobile-first
https://yarnpkg.com/
https://brightdata.com/blog/web-data/data-aggregation

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Web Technologies
	2.1 HyperText Markup Language (HTML)
	2.2 Cascading Styling Sheets (CSS)
	2.3 JavaScript
	2.3.1 Browser Web APIs
	2.3.2 JavaScript Module Formats

	2.4 TypeScript
	2.5 Raster Graphics
	2.6 Scalable Vector Graphics (SVG)
	2.7 D3
	2.8 NodeJS
	2.9 Rollup
	2.10 Gulp
	2.11 Storybook
	2.12 Responsive Web Design
	2.12.1 Responsive Design Strategies
	2.12.2 Modern Responsive Design
	2.12.3 Avoiding Horizontal Scrolling


	3 Responsive Visualization
	3.1 Information Visualization
	3.2 Mobile Visualization
	3.3 Display Properties
	3.4 Responsive Visualization
	3.5 Responsive Visualization Patterns
	3.5.1 Visual Patterns
	3.5.2 Interaction Patterns
	3.5.3 Data Patterns


	4 RespVis v1 and RespVis v2
	4.1 RespVis v1
	4.2 RespVis v2

	5 RespVis v3
	5.1 Project Structure
	5.1.1 Package Structure
	5.1.2 Gulp Tasks
	5.1.3 Self-Contained Examples
	5.1.4 Live Documentation

	5.2 Library Design
	5.2.1 Naming Conventions
	5.2.2 Sub-Package Modules
	5.2.3 Component Hierarchy

	5.3 RespVis Core
	5.3.1 Window Modules
	5.3.2 Toolbar Modules
	5.3.3 Layouter Modules
	5.3.4 Chart Modules
	5.3.5 Data Series Modules
	5.3.6 Axis Modules
	5.3.7 Legend Modules
	5.3.8 Marker Primitive Module
	5.3.9 Label Modules
	5.3.10 Element Modules
	5.3.11 Scale Modules
	5.3.12 Categories Module
	5.3.13 Breakpoints Modules
	5.3.14 Responsive Property Modules
	5.3.15 Sequential Color Module
	5.3.16 Zoom Module
	5.3.17 Utilities Modules

	5.4 RespVis Tooltip
	5.5 RespVis Cartesian
	5.6 RespVis Bar
	5.6.1 Bar Chart Modules
	5.6.2 Bar Base Series Modules
	5.6.3 Bar Grouped Series Modules
	5.6.4 Bar Stacked Series Modules
	5.6.5 Bar Module
	5.6.6 Bar Label Module

	5.7 RespVis Point
	5.7.1 Scatter Plot Modules
	5.7.2 Point Series Modules
	5.7.3 Point Module
	5.7.4 Point Label Module
	5.7.5 Radius Modules

	5.8 RespVis Line
	5.8.1 Line Chart Modules
	5.8.2 Line Series Modules

	5.9 RespVis Parcoord
	5.9.1 Parallel Coordinates Chart Modules
	5.9.2 Parallel Coordinates Series Modules


	6 Outlook and Future Work
	7 Concluding Remarks
	A User Guide
	A.1 PC and Mobile Interactions
	A.2 Toolbar Interactions
	A.2.1 Filter Tool
	A.2.2 Download Tool
	A.2.3 Inspection Tool
	A.2.4 Chart Settings Tool

	A.3 Tooltip Interactions
	A.4 Legend Interactions
	A.5 Zooming
	A.6 Parallel Coordinates Chart Interactions

	B Chart Creator Guide
	B.1 RespVis Patterns
	B.1.1 Visual Patterns
	B.1.2 Interaction Patterns

	B.2 Bar Chart
	B.3 Scatter Plot
	B.4 Line Chart
	B.5 Parallel Coordinates Chart

	C Chart Developer Guide
	C.1 Creating New Charts
	C.2 Customizing Standard Chart Types

	D Maintainer Guide
	D.1 Releasing
	D.2 Importing and Exporting
	D.2.1 Importing and Exporting TypeScript
	D.2.2 Importing CSS


	Bibliography

