
Integration of Digital Video into
Distributed Hypermedia Systems

Diplomarbeit in Telematik

Bernhard Marschall

März 1995

Begutachter: o.Univ.-Prof. Dr. phil. Dr. h.c. Hermann Maurer

Betreuer: Dipl. Ing. Dr. techn. Frank Kappe

Technische Universität Graz

Institut für Informationsverarbeitung und Computergestützte neue
Medien (IICM)

Abstract

This thesis discusses digital video and its integration into hypermedia systems. It shows some
algorithms and formats to compress and store digital video, focusing on the MPEG standard.

General topics on hypertext and hypermedia systems are discussed as well as their problems
and drawbacks, and ways to overcome them. As a special example the architecture and
features of Hyper-G and its Unix/X11 client Harmony are described.

Finally, the features and implementation of the Harmony Film Player are described. It fully
integrates MPEG movies into the hyperlink structure of Hyper-G/Harmony by allowing links
from and to movie documents. Any part, both temporal and spatial, can be used either as
source or destination anchor of a hyperlink.

- 2 -

Contents

1. Introduction...6

2. Colour Spaces & Compression..9

2.1. Colour Spaces ...9

2.1.1. The RGB Colour Space... 9

2.1.2. The YUV (YCbCr) Colour Space .. 10

2.2. Compression.. 11

3. Digital Video .. 13

3.1. Motion-JPEG .. 13

3.2. MPEG... 15

3.2.1. MPEG System... 16

3.2.2. MPEG Video.. 16

3.2.3. MPEG Audio.. 20

3.2.4. Extensions of MPEG (MPEG-2, MPEG-3, MPEG-4).................. 20

3.3. H.261 .. 21

3.4. Quicktime.. 22

3.5. Video for Windows (RIFF / AVI).. 23

4. Hypertext and Hypermedia... 25

4.1. What is Hypertext?.. 25

4.2. History & Applications of Hypertext/Hypermedia...................................... 26

4.3. Architecture of Hypertext/Hypermedia Systems... 27

4.3.1. Structure of Hypertext Systems... 27

4.3.2. Documents.. 27

4.3.3. Links... 28

4.4. Navigation and Information Retrieval... 28

4.5. Digital Video in Hypermedia Systems.. 29

5. Hyper-G ... 31

5.1. Navigation and Information Retrieval in Hyper-G...................................... 31

5.2. Architecture... 32

5.3. Interoperability.. 34

- 3 -

6. Harmony .. 35

6.1. Architecture... 35

6.2. A Tour through Harmony.. 35

7. The Harmony Film Player... 45

7.1. Using the Film Player... 45

7.1.1. The Control Elements.. 45

7.1.2. The Menu and Button Bars.. 47

7.1.3. The Progress Indicator .. 49

7.1.4. Dialogs.. 49

7.1.5. Selecting and Following Anchors... 50

7.1.6. Defining and Deleting Anchors.. 51

7.1.7. The Film Player's X-Resources.. 54

7.2. Implementation Details.. 55

7.2.1. The MPEG Decoder.. 55

7.2.2. Encapsulating the MPEG decoder... 58

7.2.3. The Harmony Communication Protocol....................................... 59

7.2.4. Implementing the Communication - The Dispatcher..................... 62

7.2.5. The Frame List.. 63

7.2.6. Anchors... 64

7.2.7. The User Interface - InterViews.. 69

7.2.8. Embedding the MPEG decoder into InterViews........................... 70

7.2.9. The Viewer Class.. 71

8. Summary.. 75

Appendix A: The Harmony Colormap... 77

References.. 79

- 4 -

1. Introduction

Information and its exchange has become an important part of our society.
Communication networks arise everywhere around the world, most known and most
widespread the Internet. The number of participants of the Internet has reached 20 - 30 million
and keeps rising, and now covers private persons as well as universities and companies.

But with the enormous success and growth of the Internet, also its disadvantages have
become evident: on the one hand, the individual is overwhelmed by the amount of data in the
net, on the other hand, one can hardly keep track of the information provided; in short, it is
nearly impossible to find exactly the relevant information.

To overcome these problems, distributed information systems have been developed,
namely the Wide Area Information System (WAIS) [Stein91], which offers a set of search
facilities over the WAIS servers and Gopher [Alberti92], which structures the information in a
hierarchical way, very similar to the way files are structured in a file system of a modern
operating system.

A third system has become very popular recently, the World Wide Web (WWW, W3)
[Berners92], which was developed at CERN in Geneva, where it was used among physists to
store and distribute their data. In the meantime, almost all institutions, research institutes,
universities, as well as trading companies, restaurants, and others have their own WWW-
servers to present their work or to offer their services. WWW is essentially a hypertext system,
which means, text documents are connected by links (which are similar to cross-references in
traditional books). External viewers are used to display other kind of documents, such as
images, digital videos or audio.

Nevertheless, the existing systems still have their drawbacks: WAIS allows to search the
database, but does not try to structure the data, Gopher on the other hand provides no real
searching mechanism, and WWW suffers from the typical "lost-in-hyperspace" syndrome of
hypertext: users do not know, how much information exists to a certain topic, how much they
have already seen and where in information space they currently are.

So a very ambitious project was started at the Institute for Information Processing and
Computer-supported New Media (IICM) of the Graz University of Technology (TUG):
Hyper-G, the first "second generation" hypermedia system [Andrews94b]. It takes the
hypertext structure of WWW, but expands it in three essential points: first, it structures the
data in a gopher-like way in so called collections, second, it provides a universal search
mechanism on the whole database, and third, it is not restricted to texts, but fully supports
other types of documents, such as images, films, audio, and others, as well as links between
any type of documents.

Although Gopher and WWW clients can be used to retrieve data from a Hyper-G server,
only native Hyper-G clients make use of the full functionality of the server. The most advanced
Hyper-G client up to now is Harmony, which runs on Unix machines under the X-Window

- 5 -

system. For each type of document (text, image, film, audio, postscript, ...) there is a separate
viewer, which visualises these kind of documents.

One of these multimedia data types is digital video. Digital video becomes more and
more important, as new ideas and concepts for television arise. These concepts are also
strongly supported by the entertainment industry and aim towards a new, "individual" kind of
television. Most known and discussed are:

• Video on Demand (VoD): a service provider sets up a video server; that is essentially a
large database storing motion pictures in digital form. The television viewer can select any
of these movies, which is then transmitted over some communication network and shown
on the customer's television set.

• Interactive Television: Interactive television goes one step further: the television viewer
doesn't have to watch a movie passively, but can effect the flow of action. To implement
interactive television, existing prototypes store various parts of a movie, which correspond
to different flows of action. The viewer can choose among them by some interaction
mechanism.

• Three-Dimensional Movies: In a 3D-Movie the viewer can move through a scene, look
into arbitrary directions, or zoom to certain points, thus pushing television towards virtual
reality. Apple is going to release Quicktime VR (for Virtual Reality) this year, which will
implement 3D-Movies as an extension to Quicktime (Apple's format for digital video).

When one wants to store or transmit digital video, compression becomes inevitable. A
full colour picture requires 3 bytes per pixel; the PAL standard in Europe requires 25 frames
per second, the NTSC standard in the USA requires 30 frames per second, yielding to a total
data volume of 75-90 bytes per second and pixel. A television frame has about 352x288 pixels,
which gives a total data rate of about 7.25 MByte per second. Different image and video
compression algorithms and standards have been developed, among them MPEG (for Moving
Pictures Expert Group), an international ISO-standard for compressing and storing digital
video with associated audio. Although image (and more video) compression is of a high
computational complexity, it becomes more and more used even with PC's, as hardware
implementations of both the compression and the decompression algorithm become available.

Digital video is not only important as a replacement or further development for
television, but also an interesting feature for new information systems. A known proverb says
"A picture's worth more than thousand words". Of course, this holds even stronger for moving
pictures. For example, short film clips can effectively be used to illustrate technical processes
or present "virtual walks" through scenes. What makes them even more useful is their full
integration into a hypermedia system's link structure, making parts of a film a source or
destination of "cross-references".

This thesis discusses how digital video has been integrated into Hyper-G and its client
Harmony: First, some general topics about compression and image and video compression in
particular are discussed. Then the most common formats to store digital video, Motion JPEG,
MPEG, H.261, Quicktime and AVI, are described, with the emphasis on MPEG.

After that hypertext and hypermedia, their history, areas of application as well as their
problems are presented. Hyper-G as one existing hypermedia system, its architecture and
features are described. Harmony, the Unix/X11 client for Hyper-G is discussed as well as the

- 6 -

main theme of this thesis: the Harmony Film Player, which integrates MPEG movies into the
Hyper-G/Harmony environment.

When integrating a new type of document into a hypermedia system the most important
question is how to integrate it into the hyperlink structure. In theory a link could be attached to
any spatial and temporal part of the movie (called its source anchor). Real implementations
have to be more restrictive: The Harmony Film Player allows users to define shapes (i.e.
rectangles, circles, ...) in so called key frames. The shape in frames between two key frames is
interpolated (either linear or as a quadratic B-spline). The first and the last key frame also
define the temporal region of the anchor.

- 7 -

2. Colour Spaces & Compression

2.1. Colour Spaces

Colour is a subjective impression of individuals. A colour space is an abstract model,
how colour can be "measured". Such an objective description of colour is the base to store and
exchange colour data. There exist a lot of different colour spaces [Hill90, Color94]; each
provides a somehow different view of colour. In the context of image compression and digital
video, the most important colour spaces are the RGB- and YUV-colour spaces.

2.1.1. The RGB Colour Space

The RGB colour space is an additive colour space, i.e. each colour is described as a
linear combination of the three primary colours red, green and blue (hence its name). Each
colour is therefore given by a three-dimensional vector (R,G,B) (where R, G, B ∈ [0;1]). The
set of all describable colours (the colour space) forms the unit-cube; this RGB-cube is shown
in figure 2.1.

G

B

R

(0,0,0) (0,1,0)

(1,1,0)(1,0,0)

(0,0,1) (0,1,1)

(1,0,1) (1,1,1)

cyan

magenta

red yellow

black green

white

blue

Figure 2.1: The RGB Colour Space

- 8 -

Almost all colour screens today are raster displays, which use a red, a green and a blue
glowing phosphor, i.e. the RGB colour space, to display colours.

Normally, computers use one byte to store each colour component; the possible values
for R, G, B are therefore not [0;1] but {0, 1, 2, ..., 255}. That gives a total number of
2563 = 16.777.216 colours, which can be displayed on a colour screen.

If all these 16 million colours can be displayed on the screen simultaneously, the screen is
called a True-Colour-Device. True colour devices must store 3 bytes per pixel in their frame
buffer.

Other screens cannot display all these 16 millions colours, but only a smaller number -
for instance 256 - of them simultaneously. They are called Pseudo-Colour-Devices. Pseudo
colour devices use one or more colour maps, where the actual colour (the three bytes
describing the red, green and blue component) are stored; the frame buffer contains only an
index to this colour map.

2.1.2. The YUV (YCbCr) Colour Space

This colour space describes a colour by its luminance Y (the luminance signal) and two
colour difference signals, called U and V (the chrominance signals). It is used by PAL, the
standard for analogue transmission of colour TV in Western Europe.

The conversion from the RGB colour space to the YUV colour space is as follows:

Y R G B

U B Y

V R Y

= ⋅ + ⋅ + ⋅
= −
= −

0 299 0 587 0 114. . .

Note that U and V can be negative. Therefore a variant of the YUV colour space, the
YCbCr colour space, is used in digital systems: Cb and Cr correspond to U and V respectively,
but they are scaled and translated so that their values are in [0;1], as are the values of R, G, B
and Y:

C U

C V
b

r

= +
= +

1 402 0 5

1 772 0 5

. .

. .

So we get the conversion from RGB to YCbCr colour space:

Y R R B

C B Y

C R Y
b

r

= ⋅ + ⋅ + ⋅
= − +
= − +

0 299 0 587 0 114

1 402 0 5

1 772 0 5

. . .

() / . .

() / . .

and back from YCbCr to RGB:

- 9 -

R Y C

G Y C C

B Y C

r

b r

b

= + ⋅ −
= − ⋅ − − ⋅ −
= + ⋅ −

1 402 0 5

0 34414 0 5 0 71414 0 5

1 772 0 5

. (.)

. (.) . (.)

. (.)

The advantage of this colour space lies in the fact that the luminance and the
chrominance signal, which are perceived differently by the human eye, can be treated
differently by an encoding algorithm.

2.2. Compression

Compression algorithms in general, and image compression algorithms in particular, can
be divided into lossless and lossy algorithms.

Lossless algorithms loose no information during the encoding process; that means, if an
image is compressed and decompressed, the reconstructed image is exactly the same as the
original image. Examples for lossless algorithms are huffman coding, runlength coding or the
LZW-algorithm [Welch84]. These algorithms reach compression ratios of about 2:1 - in
general their compression ratio depends on the input data.

Lossy algorithms, on the other hand, loose information during encoding; that means that
the reconstructed image is not exactly the same as the original image. The art of lossy
compression is to discard that information, which the human eye can not perceive. Lossy
algorithms reach much higher compression ratios than lossless ones, up to 100:1. Examples of
lossy compression algorithms are the Color Cell Compression (CCC) [Pins91], JPEG
[ISO10918, Wallace91] or MPEG [ISO11172, LeGall91].

Compression for digital video can further be divided into intra- and interframe
compression. In intraframe compression each picture is encoded independently of any other,
just as it were a still image. Interframe compression uses the dependencies between pictures to
gain higher compression ratios.

The aim of image compression, in general, is to reduce redundancy in the input data;
images (as well as digital video) essentially contain three types of redundancy [Gonzales92]:

• Coding Redundancy is redundancy due to non-uniform probability distribution of the code
symbols. It can be reduced by runlength or huffman coding.

• Interpixel Redundancy is due to dependencies, both spatial and temporal, of neighbouring
pixels. It can be reduced using difference coding techniques or transformations to
frequency domain (discrete Fourier transform or discrete cosine transform).

• Psychovisual Redundancy is due to information, which is not perceived by the human
seeing. Algorithms that reduce psychovisual redundancy are always lossy, and try to
discard non-significant information.

- 10 -

Fidelity Criteria

When using lossy compression algorithms, fidelity criteria get important. After all one
doesn't want to discard too much or too important information. There are two kinds of fidelity
criteria:

Objective fidelity criteria are the mean square error (MSE) and the signal-to-noise ratio
(SNR). Both are measures for the difference of the original and the reconstructed image:

MSE
M N

O R

SNR

O

O R

i j i j
j

M

i

N

i j
j

M

i

N

i j i j
j

M

i

N

=
⋅

⋅ −

=
−

==

==

==

∑∑

∑∑

∑∑

1 2

11

2

11

2

11

, ,

,

, ,

d i

d i

where Oi,j are the brightness values of the original image and Ri,j are the brightness
values of the reconstructed image.

Often objective fidelity criteria are not satisfactory, because they just give the numerical
difference of the two images, but not how strong this difference is perceived by a human
spectator. This is were subjective fidelity criteria cut in: here the quality of the reconstructed
image is judged by a group of humans.

- 11 -

3. Digital Video

3.1. Motion-JPEG

JPEG (for Joint Photographic Experts Group) is an ISO standard for compression and
coding of still images [ISO10918, Wallace91]. Motion-JPEG, or short MJPEG (which must
not be confused with MPEG), is just JPEG used for digital video: that means each frame is
intracoded, independently of other frames, using JPEG. JPEG defines a number of compression
methods; the most important of them (and what is normally meant when talking about JPEG) is
the baseline sequential codec.

A single component (i.e. grayscale) image is encoded in three steps:

First the image is split into blocks of 8x8 pixels. The brightness values are shifted from
range [0; 2p-1] to [-2p-1; 2p-1-1]. Each block is then transformed using the forward discrete
cosine transform (FDCT):

F u v C u C v f x y
x u y v

where C u
if u

if u

yx

(,) () () (,) cos
()

cos
()

: ()

= ⋅ ⋅ ⋅ + ⋅ + ⋅

= =

≠

R
S
|

T|

==
∑∑1

4

2 1

16

2 1

16

1

2
0

1 0

0

7

0

7 π π

where f(x,y) is the brightness value of the pixel (x, y) of the block; the F(u,v)'s are called
DCT-coefficients. For decoding the inverse DCT (IDCT) is used:

f x y C u C v F u v
x u y v

vu

(,) () () (,) cos
()

cos
()= ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅L

NM
O
QP==

∑∑1

4

2 1

16

2 1

160

7

0

7 π π

The DCT is similar to the discrete fourier transform, which implies that the DCT-
coefficients represent a two-dimensional frequency spectrum. Since F(0,0) is proportional to

the average brightness of the block F f x y
yx

(,) (,)0 0
1

8 0

7

0

7

= ⋅
F
HG

I
KJ==

∑∑ , it is (in analogy to signal

theory) called DC-coefficient; the other 63 coefficients are called AC-coefficients.

- 12 -

In the second step the DCT-coefficients are quantized using a quantization matrix Q(u,v)
with 8x8 elements. What you get are the quantized DCT-coefficients FQ(u,v):

F u v IntegerRound
F u v

Q u v
Q(,)

(,)

(,)
= F

HG
I
KJ

The dequantization, needed for decoding, is the inverse function:

F u v F u v Q u vQ* , , ,b g b g b g= ⋅

Note that this is the only step in the whole process where information is lost, since
F*(u,v) ≠ F(u,v) due to the round function. The aim of quantization is to discard information,
which is not visible to the human eye. (For instance the human eye is much more sensible to
the average brightness of a block (i.e. the DC-coefficient) than to very high frequencies.)

In the third step these quantized DCT-coefficients are entropy coded: At first the
coefficients are arranged in zig-zag order (see figure 3.1).

DC

AC AC

AC

7770

07AC01

Figure 3.1: Zig-zag sequence

The DC-coefficients are differentially encoded; that means, not the current value of the
DC-coefficient is stored but only the difference of the current DC-coefficient and the one of
the previous block. Because normally the average brightness of consecutive blocks does not
vary too much, the value of the difference is rather small and can well be compressed using
huffman coding.

The sequence of AC-coefficients is runlength encoded as a pair of symbols
s1 = (runlength, size) and s2 = (amplitude): runlength is the number of consecutive zero-
valued AC-coefficients, and size is the number of bits used to encode amplitude, which is
simply the value of a nonzero AC-coefficient. These symbols are finally huffman encoded using
a table according to a probability distribution of the symbols.

JPEG handles colour images as so called multiple component images, where each
primary of the colour space represents one component. The components need not have the
same spatial resolution. Normally colour images are encoded using the YCbCr colour space,

- 13 -

were Cb and Cr are subsampled. Different quantization tables may be used for different
components.

Figure 3.2 summarises the JPEG encoding process:

Block - Encoder Compressed Data8x8 Block

Table
(Huffman)

Table
(Quantization)

FDCT Quantizer
runlength and
huffman encoding

Figure 3.2: JPEG encoding process

MJPEG reaches compression ratios of 10:1 to 20:1 (i.e. 1-2 bits/pixel) without visible
effects, 30:1 to 50:1 (i.e. 0.5-1 bits/pixel) with only moderate defects, and up to 100:1 (i.e.
0.25 bits/pixel) for low-quality purposes. This compression ratio is certainly not optimal, since
the redundancy between two consecutive frames is not exploited (as is done in MPEG).
Nevertheless MJPEG provides some advantages over MPEG:

• The JPEG committee started earlier than the MPEG committee, so the standardisation is
further developed and hardware components supporting JPEG compression are well
established.

• An MJPEG video can be more easily processed than a MPEG video since there are no
interframe dependencies.

3.2. MPEG

MPEG (for Motion Pictures Expert Group) is also an international ISO-standard
[ISO11172, LeGall91] which describes how to encode digital video with associated audio. The
standard defines the syntax and semantics of the MPEG bitstream and hence the decoder. The
encoder is not specified directly; so it is possible to adapt the encoder according to the needs
of the application (real time compression vs. high compression ratio vs. high quality).

The bitstream is compressed to about 1.5 Mbit/s, which is also the bit rate of the
(uncompressed) audio CD. The standard consists of 3 parts: part 1 describes the system coding
layer, part 2 the encoding of digital video and part 3 the encoding of digital audio.

- 14 -

3.2.1. MPEG System

This first part of the standard describes, how video, audio, and private data streams are
combined, synchronised and multiplexed.

An MPEG system data stream may contain up to 32 audio, 16 video, and 2 private data
streams. An MPEG system stream is divided into packs. A pack may either contain system
data (a system header) or one or more packets. Each packet contains an identifier, which gives
its type and number (video 0-15, audio 0-31, or private), as well as a presentation time stamp,
so that it can be displayed (or played) at the correct time.

3.2.2. MPEG Video

The encoding scheme for MPEG video is based on JPEG. The input data are the frames
of the digital video in the YCbCr colour space. As shown in figure 3.3, the chrominance signals
are subsampled: whereas the luminance value (Y) of every pixel is stored, the chrominance
values (Cb, Cr) of 4 pixels are combined. This can be done without visible loss of quality
because the human eye is much more sensible to luminance than to chrominance and it already
halves the amount of data to encode.

luminance signal

chrominance signals

Figure 3.3: Subsampling of the chrominance signal

There are three types of frames: I-frames, P-frames, and B-frames. (There are also D-
frames, which encode only the luminance signal in low quality, but they must not be mixed
with other frame types. Video streams with D-frames are only used within system streams, and
their only intention is to allow a fast forward search mode). Each frame is split into
macroblocks of 16x16 pixel size; each macroblock contains 6 blocks of 8x8 brightness values
(4 luminance blocks and 2 chrominance blocks).

I-Frames

I-frames (for intracoded frames) are encoded just like still images using JPEG encoding,
with some minor changes and simplifications:

- 15 -

The 6 blocks of each macroblock are DCT-transformed, the DCT-coefficients are
quantized using a quantization table (in contrast to JPEG there is only one quantization table
for both, the luminance and the chrominance signals) and finally the quantized DCT-
coefficients are runlength and huffman encoded.

I-frames provide a starting point for decoding, since they do not depend on any other
frame.

P-Frames

P-frames (for predictive coded frames) depend on the previous I- or P-frame (called
reference frame). Motion compensation is used to "predict" frames: for each macroblock, you
search for the most similar region of 16x16 pixel in the reference frame (this so-called
reference block need not be a macroblock of the reference frame, but can be any region of
16x16 pixels). The search can be done in one- or half-pixel resolution; the search algorithm
itself is left to the encoder (the standard just suggests some reasonable algorithms).

What is really encoded is the prediction error: that is the difference between the current
macroblock and the reference block. The same procedure as in I-frames is used to encode this
error block: the prediction errors are DCT-transformed, quantized (with an other quantization
matrix than the DCT coefficients of I-frames) and finally runlength and huffman encoded.
Further you have to encode the motion vector (i.e. the number of pixels or half pixels in both
directions by which the position of the current macroblock has to be translated to get the
position of the reference block). These motion vectors are also differential encoded: you
encode the difference between two consecutive motion vectors, not the motion vector itself.
This is reasonable, because normally two consecutive blocks will be translated by
approximately the same amount, so the differential motion vectors tend to be rather small and
can be encoded efficiently using huffman coding.

If both the differential motion vector and the prediction errors are zero, the macroblock
is encoded as skipped macroblock. For skipped macroblocks no actual data are stored (only
the macroblock header, identifying the macroblock as skipped macroblock), so they compress
extremely well.

If the encoder cannot find a good reference block, the current macroblock is encoded as
in I-frames. So P-frames can contain both I-blocks and P-blocks, whereas I-frames contain
only I-blocks. It's entirely left to the encoder, which type of block to use.

B-Frames

B-frames (for bidirectional predictive coded frames) are an extension of P-frames.
Motion compensation is not only done for the previous (past) I- or P-frame but also for the
following (future) one and the average of any past and any future block (it's up to the encoder
which combinations it's taking into consideration).

So you have to encode a forward and a backward motion vector as well as the prediction
errors. As in P-frames, if both motion vectors and the prediction errors are zero the block can
be encoded as skipped macroblock.

- 16 -

Since there are now a lot more choices for the reference block, it is more likely that a
really good one is found. Future prediction furthermore makes it possible that a good reference
block can be found for previously hidden objects.

As in P-frames, if no good reference frame is found, the macroblock is intracoded.

Summary of Compressing Techniques used in MPEG

MPEG combines a number of compression techniques, which are here summarised:

• Subsampling of the chrominance signal: For 4 luminance values there is only one value of
each chrominance signal; this can be done without visible effects, because the human eye is
much more sensible to luminance than to chrominance.

• Quantization: A whole range of values is represented by a single value in that range. Since
the range of possible values decreases, the number of bits needed to encode a value
decreases. Quantization causes loss of information, which is called quantization noise.

• Predictive Coding: One tries to estimate the value of a pixel by values of previously
encoded pixels; so only the difference between the estimation and the current value (the
prediction error) has to be encoded. These prediction errors are normally small and can be
encoded more efficiently. MPEG uses predictive coding to encode the DC-coefficients and
the motion vectors.

• Motion Compensation and Interframe Coding: One tries to predict a block by a block of a
known (reference-) frame. This technique relies on the fact, that within a short sequence
frames don't change very much.

• Frequency Transformation (DCT): Brightness values are transformed to frequency
coefficients. In general the energy is concentrated in the lower frequencies, and most of
the higher frequencies are zero.

• Runlength coding: If there is a series of equal values (i.e. zeros), one doesn't encode them
all, but only their number and once the value.

• Huffman Encoding (variable length coding): Highly probable values are encoded using
only few bits, whereas improbable values get longer codes.

• Picture Interpolation: This is used in B-frames. One does motion compensation also with
the average of a past and a future block, i.e. blocks that do not really exist in any frame of
the sequence, but which are likely to be similar to blocks of the B-frame between.

Sequence of frames

The choice of the type of the frames used and their sequence, is entirely left to the
encoder. An often used sequence is IBBPBBPBBPBB.... This sequence and the dependencies
of the frames are shown in figure 3.4.

This sequence guarantees that there is an I-frame every 0.4 seconds (for the American
TV standard NTSC with 30 frames per second) or every 0.48 seconds (for European TV
standards PAL and SECAM with 25 frames per second) where decoding can start.

- 17 -

I B B B BP P ...

Figure 3.4: Dependencies of Frames

The motion prediction to future frames in B-frames rises one problem: to be able to
decode a B-frame, you have to decode the future I- or P-frame in advance; therefore it has to
be stored in front of the B-frame. So one has to distinguish between the display order and the
file order of the frames.

The display order gives the order in which frames have to be displayed, for example:
I1B1B2P1B3B4P2B5B6P3B7B8I2...

The file order gives the order in which the frames are encoded in the MPEG stream, in
our example: I1P1B1B2P2B3B4P3B5B6I2B7B8....

Bitstream Hierarchy

The MPEG stream is composed of six layers:

Sequence Layer

Group of Pictures Layer

Picture Layer

Slice Layer

Macroblock Layer

Block Layer

Figure 3.5: MPEG bitstream hierarchy

The Sequence Layer is the top layer: it starts with a sequence-start-code, where various
parameters are set, followed by one ore more groups of pictures and finally a sequence-end-
code.

A Group of Pictures (GoP) consists of one or more pictures: it starts with a group-start-
code and ends with the next group-start-code (or the sequence-end-code). A GoP starts with
an I-frame in file order and ends with an I- or P-frame in display order. GoPs are independent
of each other (except for B-frames previous to the first I-frame in display order); their aim is to
allow random access to the stream.

A Picture corresponds to a single frame in the video. Each picture starts with a picture-
start-code, where among other parameters its frame type is stored (I-, P- or B-frame).

- 18 -

Each picture consists of Slices. Slices provide some immunity to corrupt data (for
example due to transmission errors). The slice-start-code provides a new starting point to
continue decoding; so not the whole corrupted picture has to be discarded. The number of
slices per picture can be chosen by the encoder according to the quality of the line of
transmission. If the line is reliable (or the video is just stored as a file on disk), the slice-start-
codes are an additional overhead, which decreases both, the compression ratio and the speed
of decoding.

A Macroblock consists of 16x16 pixels of a frame and is the coding unit for motion
compensation. A macroblock consists of six blocks.

Finally, Blocks consist of 8x8 brightness values (either for the luminance or a
chrominance signal) and are the coding unit for the DCT.

3.2.3. MPEG Audio

The encoding of video and audio differ, because the eye and the ear work very
differently. MPEG audio defines a family of three audio coding schemes, called Layer-1,-2,-3.
The decoders are hierarchical, i.e. a Layer-n decoder can also decode bitstreams encoded in all
layers below n.

The basic encoding scheme is the same for each layer: the input signal is a digitised audio
signal in Audio-CD quality (i.e. 44.1 kHz sampling frequency and 16 bit resolution to encode
the amplitude). The input signal is divided into frequency subbands; for each subband a just
noticeable noise-level is estimated using a psychoacoustic model. This noise level determines
the number of bits necessary to encode a frequency.

The psychoacoustic model uses a masking effect of the human ear: If there is a strong
tone with a certain frequency, for example at 1000 Hz, and a lower tone nearby, for example at
1100 Hz, this second tone is masked and cannot be heard if it stays below a certain level. This
masking effect means that you can raise the noise level around a strong frequency (because you
can't hear this noise), and raising the noise level means using less bits to encode the amplitude
of the signal near this strong tone. Furthermore this masking effect occurs also 2-5 ms before
and up to 100 ms after a strong tone; this is called pre- and postmasking respectively.

For stereo signals the dependency of both channels is further exploited by using a joint-
stereo-mode. Layer 3 further reduces redundancy by applying huffman encoding.

3.2.4. Extensions of MPEG (MPEG-2, MPEG-3, MPEG-4)

MPEG-2 [ISO13818] was finished in November 1994. Whereas MPEG-1 was dedicated
to applications with data rates of CD-ROMs (1.5 Mbit/s), MPEG-2 tries to catch the
requirements for digital television: here quality is more important, whereas the data rate may
be higher (about 4 MBit/s). Analogue television is transmitted interlaced (i.e. 2 fields are
transmitted: the first field contains only the odd rows, the second contains only the even rows

- 19 -

of a frame). MPEG-2 supports the encoding of interleaved video and exploits the redundancy
between the fields and frames.

MPEG-3 was intended for high definition television (HDTV) using data rates of 20-30
MBit/s, but this application is now already covered by MPEG-2.

MPEG-4 is dedicated to applications with very low data rates (around 4.8 - 64 kBit/s)
like the video phone. The CCITT H.261 standard (see chapter 3.3. below) is also intended for
these applications.

3.3. H.261

H.261 is a recommendation of the ITU/CCITT [ITU90], the international
telecommunication unit. The intention of H.261 is to provide a standard for videophone
applications over an ISDN network with a bit rate of p times 64 kbit/s.

The source format are non-interlaced pictures in either the CIF format (i.e. 352x288
pixels) or the QCIF format (176x144 pixels) and 30000/1001 (=29.97) pictures per second in
the YCbCr colour space, where - as in MPEG - Cb and Cr are spatially subsampled.

Error handling is done by a BCH (511,493) forward error correction code. The
implementation of this BCH code is optional.

If the encoder is too slow to meet the required picture rate, temporal subsampling is
done by discarding complete pictures.

Bitstream Hierarchy

Picture
Group of Blocks (GOB)

Macroblock
Block

Figure 3.6: H.261 Layers

The top layer is the picture layer. A picture starts with a header and is followed by a
number of group of blocks.

A group of blocks (GOB) covers 176x48 luminance values and 88x24 chrominance
values. A GOB also begins with a header and is followed by 33 macroblocks

A macroblock covers the area of 16x16 pixels. The header of the macroblock states if
the macroblock is intra- or intercoded. Interframe coding is done by motion compensation (and
optionally applying an additional filter).

A macroblock - as in MPEG - consists of six blocks: four luminance blocks and two
chrominance blocks. For intraframe coding the luminance or chrominance values are used
respectively, for interframe coding the prediction error values are used. As in MPEG these
values are DCT-transformed and the DCT-coefficients are runlength and huffman encoded.

- 20 -

Comparison with MPEG

H.261 is a much simpler than MPEG. It essentially provides equivalents of I- and P-
frames, but there is no such thing as B-frames. Therefore its compression ratio is surely lower
than the one of MPEG. On the other hand, H.261 was mainly developed for the use in
videophone applications where consecutive frames do hardly differ at all (normally speakers
just moves their heads and hands a bit) and it is not very disturbing if some frames are
discarded from time to time, if the encoder is too slow or has already used too many bits.
Moreover H.261 has to work in real time (encoding as well as decoding), so its lesser
computational complexity is a big advantage.

3.4. Quicktime

Quicktime [Apple93, Günter92] is the multimedia extension for the Apple Macintosh
computer. It is a part of its operating system, and therefore comes free with every Mac. The
aim of Quicktime is to provide the integration of general time-based data into the Macintosh
hard- and software environment. Therefore it can be best compared with MPEG system.

Quicktime has five main tasks:

• It provides the Movie Toolbox, the Image Compression Manager and the Component
Manager, which can be used by applications.

• It standardises the management of input media, like frame-grabbers, by offering a concept
similar to printer drivers.

• It provides different compression algorithms.

• It implements a new data type, the movie, which can be cut and pasted like text or images,
or integrated into other applications.

• It provides a standardised user interface to record, play, edit, and compress movies.

A movie is a container, which contains one or more tracks with data of different type
and origin, for instance a film and the corresponding audio, both in English and German.

Quicktime is a scheme to store time-based data like digital video and not a compression
algorithm. In contrary, different compressors are provided by Quicktime. All compressors
support frame differencing: that means, not the whole frame is compressed and stored, but
only the difference between two succeeding frames. This increases the compression ratio, on
the other hand, it is no longer possible to jump directly to a frame, decode and display it. So
the algorithm inserts so-called key frames into the data streams. Key frames are just intracoded
images (they correspond to MPEG's I-frames). The number of frames per key frame can be set
by the user in the standard compression dialog; as a rule of thumb the number of frames
between to key frames should be approximately half the frame rate (i.e. when displaying 30
frames per second, after each 15th frame a key frame should be inserted). Furthermore
Quicktime automatically inserts a key frame, if a frame differs from its predecessor by more
than 90 per cent.

- 21 -

Quicktime supports the following compressors:

• The Raw Compressor is not a real compressor; is just stores the frames uncompressed, but
it is possible to change (decrease as well as increase) the number of bits per pixel.

• The Photo- or JPEG Compressor uses JPEG to compress the frames. Frame differencing
is not possible, when using this compressor.

• The Video Compressor is a lossy algorithm, which uses spatial and temporal dependencies
to compress frames. It was developed by Apple to compress video with 24 bits colour
information in real time and play it with at least 10 frames per second. Its compression
ratio is between 5:1 to 8:1.

• The Compact Video Compressor is a variant of the Video Compressor, which has greater
compression ratio, faster playback speed, but slower compression time.

• The Animation Compressor is based upon the compressor for still images in Apple's
PICT-format. It uses run-length encoding, optionally lossy or lossless. It is best suited for
computer generated animations.

• The Graphics Compressor is an alternative to the animation compressor, which works for
images with 8 bits/pixel and has approximately the double compression ratio and needs the
double time to compress a video.

• An MPEG Compressor is provided by the new version Quicktime 2.0.

As a special feature, Quicktime allows to mark a frame as poster frame. This poster
frame should be a frame representative for the whole film. If a Quicktime movie is integrated
into another application, this poster frame (along with a movie icon) is shown; if the user clicks
onto this frame, the movie starts playing.

3.5. Video for Windows (RIFF / AVI)

Video for Windows [Muray94, Pöpsel94] is the most used system to play digital video
on PC's under Microsoft Windows. In fact, Video for Windows is just a subset of Microsoft's
RIFF (Resource Interchange File Format) format. RIFF is (as Quicktime) a multimedia file
format, which defines a structured framework, which may contain various data types stored in
already existing data formats.

The actual data type contained in a RIFF file is indicated by its file extension; there are

• AVI (audio/visual interleaved) for digital video with associated audio

• WAV (waveform data) for audio data

• RDI for bitmaps

• RMI for MIDI data

• BND for a bundle of other RIFF's
- 22 -

Till now, only the AVI and WAV formats are fully specified and implemented.

A RIFF file consists of multiple nested data structures, called chunks. For an AVI file,
there are three types of chunks:

• The list-chunk contains a header, indicating the format of the data streams.

• The AVI data chunk contains the actual video and audio data, either stored interleaved in
subchunks or as a whole block in one chunk.

• The index chunk contains a list of all other chunks and their locations in the file; it is used
to allow random access to the video.

- 23 -

4. Hypertext and Hypermedia

4.1. What is Hypertext?

Traditional texts are sequential: normally readers start at page one, then they read page
two and so on. Hypertext ([Nielson90, Berk91]) is nonsequential; there is no given sequence in
which the text is to be read.

Hypertext consists of pieces of text (called nodes or documents), which are connected
by links. Figure 4.1 shows an example of a rather small hypertext consisting of 6 documents
and several links.

Figure 4.1: An Example of a small Hypertext

Links can be compared with cross-references or footnotes in traditional texts. They make
different options to browse through the documents available to the reader. The actual sequence
in which the text is read, is determined by the reader at the time of reading. Whereas in
traditional texts authors have full control of the sequence of reading, in hypertexts they can
only make suggestions (i.e. links) for possible sequences, but it is up to the reader which way
to choose.

As can be seen in figure 4.1, hypertext forms a network of documents and links. Reading
the hypertext corresponds to moving around this network. To emphasise the reader's

- 24 -

responsibility of choosing which document to read next, reading a hypertext is often called
navigation.

The start point of a link is called its source anchor, its endpoint is called destination
anchor. The source anchor is that part of the link that is depicted on the screen to call the
reader's attention to the link. The destination anchor describes the "target area" of the link; so
it is possible that a link refers only to a part of a document, instead of the whole one.

Hypermedia [Maurer92] is the extension of hypertext to multimedia. Documents may
not only contain text, but also images, movies, audio, animations and so on. Since the idea of
hypermedia systems and hypertext systems is the same, people often use the two words as
synonyms. Nevertheless hypermedia introduces some additional problems, for instance the
amount of data needed to store raster images, digital video or audio.

4.2. History & Applications of Hypertext/Hypermedia

Memex described by Vannevar Bush in 1945 is the first hypertext system proposed.
Bush claimed that the progress of research is slowed down by the inability of researchers to
find the relevant information. So he proposed Memex as a device in which people would store
their books, records and communications and link them. Since computers filled up whole
rooms and were not considered very practical those days, Bush's proposal included a
sophisticated mechanism of microfilms and microfilm projection devices; it has never been
implemented.

Augument/NLS by Doug Engelbart started in 1962; during the Augument project, the
researchers stored all their papers and reports in a shared journal, which included cross-
references to other works.

Xanadu was proposed by Ted Nelson in 1965: it was Nelson, who coined the word
"hypertext". The idea of Xanadu was to store everything that anybody has ever written (and
will ever write). Nelson believes that "everything is deeply interwingled" and therefore has to
be stored and linked together.

The Aspen Movie Map of 1978 was probably the first true hypermedia system. All the
streets of the city of Aspen (Colorado) were filmed from a truck driving through the streets.
Each photograph was linked to other photographs in that sequence a person would see when
walking straight ahead, backing up, or moving to the left or to the right. The user of this map
can navigate through this information space using a joystick. Furthermore it is possible to walk
into buildings, since many of them were filmed, too.

Hypertext or hypermedia systems may be of use for a variety of applications, especially
when the information is organised in numerous fragments, these fragments relate to each other
and the user needs only a small fraction of the information at any time.

Examples of already existing hypertext/hypermedia applications are: online
documentation, help, and tutorials within software systems, dictionaries and encyclopaedias,
especially electronic publishing [Maurer94], and systems used for education, in libraries or
museums ("interactive library/museum"). There also exist some works of interactive fiction,

- 25 -

where a story is told not sequentially as in a traditional novel, but as a hypertext, where the
reader determines the actual flow of action.

4.3. Architecture of Hypertext/Hypermedia Systems

4.3.1. Structure of Hypertext Systems

One can distinguish three architectural levels of a hypertext or hypermedia system: The
database level is the bottom layer of the system. It deals with traditional database issues, such
as information storage, multi-user access to the information, and security considerations. For
the database level documents and links of the hypertext are just ordinary data objects with no
particular meaning.

The middle layer is the hypertext abstract machine (HAM). Here the basic nature of the
documents and links of the hypertext system is defined: the HAM knows of the form of
documents and links and their attributes. The HAM is also a subject for standardisation, which
is important if one wants to interchange hypertexts between different systems.

Finally, the top layer is the presentation level: here the actual user interface is defined,
how documents and links are actually displayed, how commands are issued and what
commands exist.

4.3.2.Documents

Documents are the smallest unit of information in a hypertext system. Depending on the
actual system they are also called frames, cards or nodes. There are two types of systems:

In frame based systems, each document (or frame) has exactly the size of the computer's
screen, independently of the information it contains. A page may consist of more than one
frame. This implies, that the author has full control of the look of the node. On the other hand
nodes are hard to modify in frame based systems. (Consider you want to add one line to a
node, but this line doesn't fit on the screen anymore; so you have to create a new frame, which
can affect some destination anchors, etc.)

In contrast, window based systems require the user to scroll the text, because the
document may be too large to fit into the window. In such systems the author has no control
over the presentation of the document (it may be in a rather small window as well as in a full-
screen window). On the other hand, users can adjust the sizes and positions of the windows
according to their needs. Window based systems can also change the metaphor of presentation
according to the circumstances, and changes of nodes can be achieved rather simple, since
other windows are not affected.

- 26 -

4.3.3.Links

Links are the second fundamental data type in hypermedia systems. Normally, links are
anchored: the departure and destination points of the link are called anchors. Anchors are the
structures which are displayed on the screen and indicate the existence of the link to the user.

Links can be either unidirectional or bidirectional. Most systems only support
unidirectional links, because they are easier to implement (one just needs to store the
destination of the link in the document), whereas bidirectional links require a separate link
database. Nevertheless they provide two advantages: First, they make it easier to support
navigational facilities such as overview maps (see chapter 4.4.), and second, they allow to
check the consistency of the database, if documents are to be modified or deleted.

A seldom used type of links are multi-ended links: such a link has not one but many
destinations; normally, when the link is activated, a menu is displayed to allow users to choose
to which destination they really want to go.

"Normal" links replace documents, that means, the old document, containing the link, is
replaced by the new document (this corresponds to the goto-statements of traditional
programming languages). A special kind of link is the annotation: an annotation typically
opens a pop-up window, when it is activated. When users have read the annotation and close
the window, they return to the old document (this corresponds to the gosub-statement or
function call).

4.4. Navigation and Information Retrieval

Users moving around a large hypertext, visiting document after document, will become
disoriented rather quickly. This is known as the famous "lost in hyperspace" syndrome. Also,
it is difficult for readers to find all the relevant nodes, they are interested in, or to estimate how
much of the relevant information they have seen already. Various solutions to overcome these
problems exist. Most implemented systems provide a combination of them, rather than just
one.

The perhaps most simple solution are guided tours: a guided tour connects documents in
a predefined way, thus relieving users of navigation. They just have to issue some sort of
"next" or "previous" command. Guided tours are well suited to introduce users to a certain
subject and to provide a first overview over documents in the database. Of course users may
abort the tour at any time and come back to the "guide" later. Nevertheless guided tours bring
users back to reading a text sequentially.

Surely, the most important navigational facility is the backtrack, which takes users back
to the previously visited document. Backtrack allows users to return to "known" territory, no
matter how far they have gone. A more general mechanism are history lists: Whenever a
document is visited, it is inserted into the history list, thus allowing users to jump back to this
document later.

Some systems allow users to define a list of bookmarks; the difference between this list
(also called hot list) and the history list is, that users must explicitly add a document to the hot

- 27 -

list, whereas they are inserted automatically into their history list. Frequently used documents
can be put to the hot list, so users are able to find them again later quickly. A special kind of
bookmark is the possibility to interrupt the current session and resume it later without
changing the state of the hypertext.

Overview diagrams are another way to support navigation. Unfortunately, the number of
documents and links in a (distributed) hypertext system is too large to show them all on a
single map. Therefore various levels of detail are provided: for instance a rough view of the
information space is provided and the user can zoom in to get more details. Another possibility
is the use of a local map: it shows only the surroundings of the current document, i.e. these
documents which are connected to the current one by a path of links of a certain maximal
length (for example all documents which can be reached from the current one by following at
most two links); if links are bidirectional, the local map cannot only be displayed for outgoing
links, but also for incoming ones.

Information retrieval is an important topic for all information systems, and therefore
also for hypermedia systems. The subject is how to find all relevant information. Traditional
information systems allow users to query the database using some sort of query language. In
hypermedia systems all information can, of course, be found purely by navigation. But, as
mentioned above, it is difficult for users to guess, where this information is located in the
information space. Therefore it makes sense, if hypermedia systems also allow search queries
as do traditional database systems. The answer to such a query could be a starting point for
hyper-navigation. The simplest query, at least in hypertext, is a full text search; but it can be
impractical in really big, distributed systems, and, when it comes to hypermedia, how do you
search in pictures, movies, or audio? A fairly good search strategy is to search for attributes of
the nodes, such as title, keywords, or author. Since links describe relationships of nodes, they
could be used by more sophisticated methods to perform some sort of "semantic search".

4.5. Digital Video in Hypermedia Systems

The first problem arising, when trying to integrate digital video into a hypermedia
system, is the enormous amount of data needed to store digital video. So compression
becomes inevitable. Compression and formats to store digital video have already been
discussed in the chapters 2. and 3.

The next question is, what a link in a film document is, i.e. how its anchors look like.
With films, in contrast to texts or still images, the temporal dimension must be taken into
account. In general, an anchor can be any region of a picture of the film, which can move and
change its size and shape in time from one picture to the next one. In practice, one has to
constrain from arbitrary shapes to fixed ones, such as rectangles or circles.

Next, the question, how such an anchor can be defined, must be considered: surely it
would not be practical, if the position and size of the anchor region has to be defined for each
single picture. One way to overcome this problem is to let the user define the region in some
pictures (called key frames); in the pictures between key frames the region is calculated by
interpolation.

- 28 -

Two kinds of links can be identified, when dealing with time-based data:

• User activated links: These links must be activated by the user explicitly, for example by
clicking on its source anchor. They can be compared with links in texts or still images.

• Automatically activated links: These links are bound to a certain point in time, and are
activated automatically, when the corresponding picture is displayed. Films containing this
type of links are also called annotated films [Lennon94], since the links can provide some
kind of annotation (or explanation) of the film.

Digital video in hypermedia systems can be used for many applications, for example:

• Visualisation: users can look at or walk through real or virtual scenes. Links could provide
additional explanations or detailed images of the objects seen in the movie.

• Multimedia presentation: An annotated film can also be used for a multimedia
presentation. The film provides the timeline, which causes other documents (texts,
images, ...) to be displayed.

• Programmable film: the programmable film (sometimes also called PILM) is the pendant
of a literary hypertext: the film itself consists of a lot of small clips; the user can control the
flow of action by following different links, which will select the appropriate clip.

- 29 -

5. Hyper-G

Hyper-G is a large-scale, general-purpose, distributed, multi-user, hypermedia
information system, which is currently developed at Graz University of Technology. The aim
of the Hyper-G project [Kappe91] is to study and (if possible) eliminate the typical problems of
hypermedia mentioned in the previous chapter.

5.1. Navigation and Information Retrieval in Hyper-G

Hyper-G combines a number of navigational and search facilities, in order to overcome
the "lost in hyperspace" problem [Andrews93].

Hyper-Navigation

Of course, since Hyper-G is a hypermedia system, the user can navigate using hyperlinks:
a link may lead from one part of a document (the source anchor) to a part of another (or the
same) document (the destination anchor). Hyper-navigation is somehow the natural way of
finding information in a hypermedia system, especially as multimedia documents (i.e. other than
text documents), in general, cannot be searched for.

Collection Hierarchy

Every Hyper-G document is a member of one or more collections, which are in turn
members of one or more collections, thus creating a hierarchy of collections. Note that this
hierarchy is not a tree, but an acyclic directed graph, since objects may be members of more
than one collections. This collection hierarchy provides an additional structure over the
document space and serves three purposes:

• Navigation: The collection hierarchy offers some kind of global map; whenever users visit a
document (no matter which navigational paradigm is used), the location of this document
in the collection hierarchy is shown. Furthermore, since collections are used to combine
"similar" documents (i.e. documents belonging to the same subject), users get an overview
of documents belonging to the same or a similar topic rather quickly.

• Search scope: Users may mark certain collections as active, before issuing a search query;
thus, the number of found documents can be restricted.

• Access rights: In a large hypermedia system with thousands of users and thousands of
authors it is necessary to provide some kind of access rights. Hyper-G allows to grant or
deny read or write access to collections, similar to the read and write access rights in the
UNIX file system.

- 30 -

Currently three types of collections are defined:

• Ordinary collections as described above: when visited, a list of all items the collection
contains is displayed. The order of the items may be defined statically or dynamically sorted
by certain attributes of the collection members.

• A cluster is a special collection: when it is visited, all its members are visited (i.e.
visualised) too. Clusters allow it to combine different types of documents, for instance a
film with its textual description. Further, they are used to implement multilingual
documents and version control.

• A tour is a collection, which visits its members in a certain order. It is used to linearize
hypertexts and to implement guided tours by automatically generating a "next" and a
"previous" link.

Search Facilities

There are two modes of searching. Every Hyper-G object has a set of associated
attributes, such as title, keywords, type, author, creation time, expiration time, etc. These
attributes can be searched for, including boolean combinations. Typical queries could be:
"Search for all text documents having digital video and hypermedia in the title" or "Search for
all documents written by Smith this year".

Additionally, texts can be searched for by full-text queries, since they are automatically
indexed on insertion into the database. The Hyper-G full text server supports both, fuzzy
boolean queries and nearest-neighbour searches based on the vector space model.

In both modes the collection hierarchy can be used to define the scope of the search
ranging from a single collection on a single Hyper-G server to all collections on all Hyper-G
servers world-wide.

Of course, users are not expected to stay with one of the above navigation paradigms.
Contrary, they will change it constantly according to their needs. For example, users might use
the collection hierarchy to go to a certain encyclopaedia, then activate this collection and issue
a search query. When reading the found documents they may jump to other documents using
hyper-links ("cross-references"). Therefore it is import that the user interface is kept
consistent, even when the navigation paradigm is changed, so that users are not confused.

5.2. Architecture

Hyper-G uses a client/server model [Kappe93], with clients and servers connected via
the Internet using TCP/IP. Figure 5.1 shows the architecture of Hyper-G.

Note that unlike Gopher or WWW the client has to connect to only one Hyper-G server.
If the client needs information from a remote server, the local server fetches it and passes it on
to the client. This has some advantages:

• Clients are kept simple, since they need not connect to many servers.

- 31 -

• It enables caching of remote documents in the local server.

• The maintenance of user accounts and access rights is kept simple, since the user has to
identify to one server only.

• The link server can gather statistics and user profiles on a per-session basis.

Figure 5.1: The Architecture of Hyper-G

For the client only the local server is visible; it connects to other Hyper-G servers and
performs searches across server boundaries. As indicated in figure 5.1, the server consists of
three distinct server processes:

The full text server offers full text retrieval facilities and automatic link generation.

The link server is an object-oriented database of objects and relations between objects.
An object is a description of either a document, link, anchor, collection, tour, remote database,
etc. The relations state which document belongs to which collection, which anchors are
attached to which documents, etc. Its main functions are:

• It assigns object IDs to objects, ensuring that no two objects share the same ID and maps
object IDs to objects (only the link server stores more information about an object, making
it simple to modify objects, since they have to be modified only at the link server).

• It separates links from documents. So users can attach a link (for example an annotation)
to documents, which they must not modify for various reasons (for instance because they

- 32 -

have no access rights, or the document is stored on a read-only medium such as a CD-
ROM).

• It enables bidirectional links. They allow the client to draw overview maps and can be used
to keep the database consistent when documents are modified or deleted (since links to
non-existing or outdated documents can be found and handled automatically).

• It is aware of the collection hierarchy and uses it to maintain database consistency.

• It stores attributes of each object, such as title, keywords, author, creation time, etc. and
thus allows to perform boolean search queries on the database.

• It contains a scheme of access rights to allow or disable the access to certain documents or
collections to certain users or groups of users.

• It can gather detailed statistics about system usage.

Finally, the document server stores local documents and caches remote ones. The client
connects to the link server and uses it to search and browse for documents. When a document
is needed, it is retrieved from the document server. If the document is a remote one, the
document server retrieves it from the remote document server, transmits it to the client and
caches it. If the document is already in the document cache, it is transmitted to the client
immediately.

5.3. Interoperability

Hyper-G is able to interact with Gopher [Alberti92], WAIS [Stein91], and WWW
[Berners-Lee93] servers and Gopher and WWW clients.

Hyper-G can be accessed by Gopher and WWW clients. When using a Gopher client, the
collection hierarchy is mapped into a Gopher menu tree; since hyperlinks cannot be represented
in Gopher, one looses the possibility of hyper-navigation. A synthetic search item is generated
at the foot of each Gopher menu to allow the user to search the corresponding collection.

When using a WWW client, each level of the collection hierarchy is converted to a
HTML document, which contains hyperlinks to the members of the collection. Hyper-G text
documents, including their links, are converted to HTML documents, other document types
such as images or films are sent as pure data file and normally visualised by an external viewer.
Special HTML documents are generated by the server to access some of the more
sophisticated functions of the Hyper-G server such as search, identification, or the change of
the language.

On the other hand, the Hyper-G server can connect to Gopher, WWW, and WAIS
servers, in order to retrieve information from them. The Hyper-G server is able to store
pointers to such remote objects. Gopher menus are transformed into Hyper-G collections.
WWW text documents into Hyper-G text documents, other WWW documents (images, films,
audio, ...) are sent directly to the appropriate Hyper-G viewer. WAIS queries and responses
are transformed into Hyper-G queries and responses.

- 33 -

6. Harmony

Harmony [Andrews94a] is the native client for Hyper-G for X Windows [Nye88, Nye89]
on Unix platforms. It takes advantage of Hyper-G's structural and retrieval features to provide
intuitive navigational facilities and informative feedback about the location of information in
the collection hierarchy. Harmony is written in C++ [Stroustrup91] and uses the InterViews
toolkit [Linton89] to build the graphical user interface.

6.1. Architecture

Harmony is a multi-process Unix application (see figure 6.1). Its main process is the
Session Manager. For each type of document there is a separate viewer process, which
displays this kind of document. Currently there are six native Harmony Viewers: the Text
Viewer, the Image Viewer, the Postscript Viewer, the Scene Viewer, the Film Player and the
Audio Player.

The big advantage of this modular multi-process structure is, that new types of
documents can be implemented easily, just by implementing a new viewer for this type of
document. If no native viewer exists for a certain type of document, the Session Manager can
also start an external viewer. Of course, external viewers do not support the whole
functionality provided by Hyper-G and Harmony, in particular, they do not support hyperlinks.

This approach, with implementing native viewers, has some advantages, over a solution
using only external viewers:

• All viewers, as well as the Session Manager, share a common user interface. If users
know how to use one viewer, it is easy for them to use the other viewers as well.

• All viewers support links in their documents, thus creating a real hypermedia system, with
links between any types of documents.

6.2. A Tour through Harmony

The Session Manager is the main process of Harmony. It starts the necessary viewers
and initiates the communication between the viewers and the Hyper-G server. Its main
functions and features are:

- 34 -

Figure 6.1: The Architecture of Harmony

The Session Manager's Collection Browser (the top left window in figure 6.2) shows the
collection hierarchy and allows navigating through it. Furthermore, it shows the location of the
current document within the collection hierarchy, independently by which means of navigation
or search this document has been retrieved. This is important, because it shows the user the
context of the current document.

The Session Manager provides an interface to Hyper-G's Search Engine (the bottom
right window in figure 6.2): searches can be performed on attributes (title, author,
keywords, ...) as well as full text in either a single (the current) collection, a set of activated
collections or the whole local server.

- 35 -

The Session Manager provides a History List (the bottom left window in figure 6.2),
which stores the accessed collections and documents of the current session as well as search
operations and their results. In the example session shown in figure 6.2, the Hyper-G server of
Graz University of Technology has been accessed. It first presented a welcome page (as can be
seen in the History Browser). Then a collection containing system documentation has been
opened and a search query for "grep" issued. Note that the Session Manager also inserts search
queries into the History List, thus storing the search parameters and its result. The search
found 9 objects containing "grep" in their title or keywords; two of them are text documents,
the others are anchor objects.

As the first found text document was activated, its location in the collection hierarchy
was displayed in the Collection Browser, showing that the text belongs to the collection
"Hacker's Jargon", which indicates to users, that perhaps this document is not quite what they
expected, and should not be taken too seriously. The second text document belongs to the
collection "Manual Pages" and is probably, what the user was looking for.

The Session Manager creates on demand a Local Map (figure 6.3), showing the link
structure around the current document, thus showing the "surroundings" of a document. The
figure shows two levels of incoming and outgoing links of the text document "grep" previously
accessed.

Figure 6.4 shows Harmony's support for multiple languages. The user can specify a list
of language preferences. Harmony not only changes its user interface to the selected language,
but also displays documents in the order given by the preference list.

An unique feature of Harmony is the Information Landscape (figure 6.5): it visualises
the collection hierarchy as three dimensional cubes on a plane and allows the user to "fly" over
this information space searching for data. The Landscape and the Session Manager's Collection
Browser work synchronously: opening a collection or path in the Landscape also opens it in
the Collection Browser and vice versa. Additionally, the Landscape provides an overview
window to give users an overview where over the plane they currently are.

The Session Manager allows users to update the server database (figure 6.6): new
documents can be inserted, the attributes of existing documents can be modified, or documents
can be deleted. In the example shown in the figure 6.6, a new film has been inserted into the
database and a German title has been added afterwards.

Hyper-G and Harmony is a true hypermedia system: figure 6.7 shows an example
session with a text, an image, a film and an audio document presenting the Institute of
Information Processing and Computer supported new Media (IICM).

But what really makes the hypermedia system is the support for links between any type
of documents. Figure 6.8 shows information about the Austrian National Library. Starting at a
text about the library, a film showing a flight through the great hall of the library was found; in
this film there is a source anchor attached to the statue of Emperor Karl; by activating this
source anchor, a link to a 3D scene document was followed. This 3D scene document
visualises the model of the statue and allows the user to look at the statue from various point
of views.

- 36 -

Figure 6.2: Session Manager: Collection Browser, History and Search Dialogue

- 37 -

Figure 6.3: Session Manager: Local Map

- 38 -

Figure 6.4: Multilingual Features of Harmony

- 39 -

Figure 6.5: The Information Landscape

- 40 -

Figure 6.6: Session Manager: Insertion of new documents

- 41 -

Figure 6.7: Multimedia Features of Harmony

- 42 -

Figure 6.8: Hypermedia Features of Harmony

- 43 -

7. The Harmony Film Player

7.1. Using the Film Player

The Harmony Film Player is started by the Session Manager the first time the user wants
to see a film. During loading (figure 7.1) the progress bar shows the percentage of data already
read; simultaneously, if the live option is enabled, the film is already played.

Figure 7.1: Film Player during loading

As soon as loading is complete the control elements (scrollbar and push buttons) are
shown and the first frame of the destination anchor is displayed (figure 7.2).

7.1.1. The Control Elements

Below the actual film there is a scrollbar and some push buttons: the scrollbar has two
functions: First, it can be used to scroll along the time axis of the film (scrolling is done only on
the I-frames of the MPEG stream for performance reasons). Clicking on the scrollbar with the
left mouse button activates a "large" scroll, clicking with the middle mouse button causes the
player to jump to the clicked position. Smooth scrolling can be done by dragging the mouse

- 44 -

Figure 7.2: Film Player with control elements

when holding the left or middle mouse button. The two buttons at the left and right of the
scrollbar can be used to do a "small" scroll.

The second function of the scrollbar is to mark a frame range. This can be done by
dragging the mouse with the right button pressed. An already existing range can be modified
by additionally holding down the shift-key: then, the boundary nearest to the cursor is updated,
the other boundary is left unchanged. If a certain range of the film is marked, only this part of
the film is played.

Below the scrollbar there are some push buttons. They have the following functions:

 Play: start playing.

 Pause: pause the film.

 Stop: stop playing.

 Step back: go to the previous picture.

 Step forward: go to the next picture.

 Rewind: go to the first picture of the film (or to the begin of the marked frame range, if

there is one)

- 45 -

 Forward: go to last picture of the film (or to the end of the marked frame range, if there is

one)

Note that the pause and play buttons stay pressed to indicate the current state of the
player. The functions of the back and forward step buttons are not the same as the buttons of
the scrollbar: the first do a really frame-wise step, whereas the second only do a "small scroll"
on the I-frames of the film.

7.1.2. The Menu and Button Bars

All functions of the Film Player (except play, pause, stop, step, rewind, and forward) are
accessible by the menu. For some frequently used functions there are also shortcuts, either in
form of a button in the button bar or as a keystroke. Most of the actions described here are
also available during loading; if not it is stated explicitly below.

The File Menu

• Open: allows you to open and play a film from your local file system. When playing a local
film, some functions of the player are not available and therefore disabled (for example all
functions dealing with anchors and links). This function is not available during loading.

• Save as: allows you to save the current film to your local file system. This function is not
available during loading.

• Exit Viewer: terminates the film player. (Note that the film player is automatically closed,
when you terminate the Harmony session.)

The Navigate Menu

• Goto Frame (shortcut: "g"): open the Goto-Frame-Dialog window (see below).

• Back (shortcut: "b"): go to the previous object in the history list.

• Forward (shortcut: "f"): go to the next object in the history list.

• History (shortcut: "h"): open the History Browser.

• Hold: holds the current film in the Film Player; a new Film Player is started by the Session
Manager, when the next film is to be played.

The Anchors Menu

• Follow (shortcut: "Return"): follow the selected source anchor.

• Next (shortcut: "Tab"): select the next source anchor.

• Define as Source: insert the newly defined path as source anchor into the database.

- 46 -

• Define as Destination: insert the newly defined path as destination anchor into the
database.

• Use Default Destination: define the default destination (that is the whole film) as
destination anchor.

• Delete: delete the selected source anchor.

• Shape: allows you to choose the shape for defining anchors. Currently only rectangles are
available.

• Interpolation: allows you to choose the method for interpolating the shape in non-key
frames, when defining anchors. Currently spline (a quadratic B-spline) and linear are
implemented.

The View Menu

• Settings (shortcut: "^s"): open the settings dialog (see below).

• Synchronise: when activated, the film is played with a constant frame rate. Synchronised
playing is not available during loading.

• Zoom: allows you to enlarge or reduce the size of the picture.

• Anchors:
Display: switch on or off the displaying of anchors.
Colours: allows you to change the colours of anchors.

The Options Menu

• Loop: when on, the player restarts playing the film, when the end has been reached.

• Live: when on, the player plays the film already during loading.

• No B-Frames: when activated, no B-frames of the MPEG stream are decoded and
displayed. Switching off B-frames can speed up playback, and may therefore be useful on
low performance machines.

• No P-Frames: when activated, no P-frames of the MPEG stream are decoded and
displayed. If no P-frames are to be decoded, B-frames also cannot be decoded, so they are
skipped too. This option may be useful on machines with extremely low performance.

The Help Menu

• Overview: display a tutorial about the film player; this function is not yet implemented.

• Index: display a help index; this function is not yet implemented.

• About: display the Harmony logo.

- 47 -

Buttons

Some of the most frequently used menu functions can also be activated using the push
buttons of the button bar. These functions are: Live (same as Options/Live), Loop (same as
Options/Loop) and Anchors (same as View/Anchors/Display).

7.1.3. The Progress Indicator

The bottom line of the film player is the so called progress indicator. It shows the current
state of the player and has two major modes:

• During loading (figure 7.1) it displays a progress bar showing the percentage of data
already read. Pressing the stop button (at the right of the progress indicator) causes the
player to abort loading. The already loaded part of the film can be played normally. Note
that aborting loading may take a while, since nevertheless the player has to wait for all
data of the picture it is currently decoding.

• After loading (figure 7.2) the progress indicator shows the title of the current document,
and the current frame range.

7.1.4. Dialogs

The Goto-Frame Dialog

This dialog (figure 7.3) allows you to jump to any frame of the film by just entering its
number and pressing return or clicking on the Goto-Button. The dialog window can be closed
by clicking on the Close-Button.

Figure 7.3: The Goto-Frame Dialog

The Settings Dialog

The Settings dialog (see figure 7.4) provides three functions; it can be closed by pressing
the Close-Button.

The first part of the dialog allows you to change the brightness of the frames. The Film
Player does a gamma correction; gamma may range from 0.3 to 2.5 and can be changed either

- 48 -

by the scrollbar or by directly entering the desired value into the field editor. Pressing the
Reset-Button resets the value of gamma to 1.0.

In the middle part of the dialog you can set the frame rate (i.e. the number of frames
displayed per second). As with gamma, the frame rate can be changed using the scrollbar or
the field editor. Possible frame rates are between 1.0 and 60.0. Pressing the Default-Button
resets the frame rate to the default value stored in the MPEG header. Synchronised playback
can be turned on or off with the Synchronise-Button; this button has the same function as (and
is synchronous with) the View/Synchronise menu item.

The third part of the dialog can be used to mark a frame range. This is an alternative to
marking a frame range with the Film Player's scrollbar. The numbers of the start and the stop
frame can be entered into the two field editors. Pressing the Reset-Button clears the currently
marked frame range.

Figure 7.4: The Settings Dialog

7.1.5. Selecting and Following Anchors

Using the Anchor button or the menu item View/Anchors/Display the anchors can be
switched on or off.

There are two ways to select a source anchor: Just click (once) into the region defined by
the anchor with the left mouse button and it will be selected. If more than one anchors are hit,
some (arbitrary) anchor is selected and you can step through all hit anchors by holding down
the shift key and clicking with the left mouse button. If you click outside any anchor, all
anchors will be unselected. The second way is to use the menu: select Anchors/Next to step

- 49 -

through all anchors visible in the current frame. This menu function has the TAB-key as
shortcut. The selected anchor is displayed in a different colour.

To follow a link you have to activate its source anchor. This also can be done in two
ways: double-clicking with the left mouse button will activate the selected source anchor, if it
is hit, or (if no anchor is selected yet or the selected anchor is not hit) an arbitrary hit anchor.
The other method is to activate the selected anchor using the Anchors/Follow menu item; the
same action is activated by pressing the RETURN-key.

Figure 7.5 shows a film document with two source anchors; the lower right of them is
selected and could be followed by pressing RETURN or choosing Anchors/Follow:

Figure 7.5: Selecting and Following Source Anchors

7.1.6. Defining and Deleting Anchors

The Harmony Film Player (as do all native Harmony viewers) allows users to define
source and destination anchors.

- 50 -

The most simple way to define an anchor, is to define the whole film as destination
anchor; this can be done by choosing the Anchors/Use Default Destination menu item.

To define any general path in a film as anchor take the following steps:

• Choose the shape of the anchor in the Anchors/Shape menu; currently, you can choose
between rectangles and circles. The shape of the anchor cannot be changed afterwards!

• Define key frames: just scroll to any frame of the film (either by using the scrollbar, the
step buttons, the Goto-Frame Dialog, or just playing to the frame) and mark the region of
interest (i.e. the rectangle or circle) by dragging the mouse with the right mouse button
pressed. If a region has been marked already in this frame, it is replaced by the new one.
Just clicking with the right mouse button deletes the current region. Alternatively you can
change the marked region by additionally holding down the shift-key; this allows you to
drag the definition point closest to the mouse cursor. In this manner, define as many key
frames as you need or like.

• Choose a method of interpolation in the Anchors/Interpolation menu; this can be done
anytime during the definition of key frames. The marked regions in the key frames are used
to calculate the regions in all frames between two key frames. Currently you can choose
between linear interpolation and spline interpolation. When using linear interpolation, the
region between two key frames is just calculated as the linear interpolation of the regions
of the two neighbouring key frames. Linear interpolation is very simple, but may result in
jerky motion. When using spline interpolation, the regions of interest are calculated using a

Figure 7.6: The Harmony Link Creator

- 51 -

quadratic B-spline. This spline results in smooth motion, but in general the defined regions
in the key frames do not belong to the spline.

• Finally, when the defined path fits (which can be checked by just playing the film, or
scrolling to any frame, since the path is recalculated each time you change a key frame or
the method of interpolation), you can define this path either to be a source anchor by
choosing the Anchors/Define as Source menu item or to be a destination anchor by
choosing the Anchors/Define as Destination menu item. This causes the viewer to send the
definition of the anchor to the Session Manager, which now opens the Link Creator (see
figure 7.6) to display the definition of the "new" anchor. Now, you have to define the other
end of the link in any other (or the same) document. The link is actually created and
inserted into the database, when you press the Create-Link Button in the Link Creator.

Figure 7.7 shows a newly defined path and the Anchors Menu. By selecting Define as
Source or Define as Destination this path can be defined as source or destination anchor
respectively.

7.7: Defining a new Anchor

- 52 -

To delete a source anchor, just select it and choose the menu item Anchor/Delete. The
Session Manager will display a confirmation dialog and actually delete the anchor (as well as
the corresponding link and destination anchor).

7.1.7. The Film Player's X-Resources

The Harmony Film Player defines some X resources (additionally to those already
defined by InterViews). The value of a lot of the resources can be changed interactively as
well, using some menu function. For each resource its domain and default value (if any) is
given in brackets.

The main resource class is Harmony.Film with the resources

• shmem [boolean][off]: use shared memory extension of X.

• anchordisplay [boolean][on]: show anchors.

• live [boolean][on]: play film during loading.

• loadtoend [boolean][on]: when on, the film is played to the end during loading; when off,
the first frame of the destination anchor is shown immediately after all data arrived.

• loop [boolean][off]: rewind the film and start playing automatically when the end of the
film has been reached.

• dither [string][color]: default dithering method. Possible values are color (for true colour
displays), ordered (ordered dither), fs (Floyd-Steinberg dithering), hybrid (hybrid of
ordered dithering and Floyd-Steinberg), and gray (grayscale dithering).

• anchordisplay [boolean][on]: display anchors.

• activateFeedbackTime [float][0.5]: how long (in seconds) the hourglass cursor is shown,
when a link is followed.

• brushWidth [int][1]: line width for rubberbanding.

• linewidth [int][2]: line width to draw the anchors with.

• anchorColour [colour]: colour of source anchors.

• anchorSeenColour [colour]: colour for already seen source anchors.

• selectedAnchorColour [colour]: colour for the selected source anchor.

• destinationColour [colour]: colour for the destination anchor.

• markerColour [colour]: colour for marking new anchors.

There are resource subclasses to define the geometry and look of the dialog windows.
These are: Harmony.Film.Open, Harmony.Film.Save, Harmony.Film.GotoFrame, and
Harmony.Film.Settings. All of them also use the alias Harmony.Film.Dialog.

- 53 -

7.2. Implementation Details

7.2.1. The MPEG Decoder

The base of the Harmony Film Player is the public domain Berkeley MPEG decoder of
the University of California [Patel93]; it is available by anonymous ftp from
mm-ftp.berkeley.cs.edu:/pub/multimedia/mpeg/mpeg_play-2.0.tar.Z. It is written in C and has
a simple interface to the X-Windows system to display frames. First, its most important data
structures are described, followed by the functional interface, the dithering algorithms and
finally the changes made to the Berkeley code.

Data Structures

The decoder defines the structure VidStream, which contains all information about the
MPEG stream and its current state of decoding:

/* Video stream structure. */
typedef struct vid_stream {
 unsigned int h_size; /* Horiz. size in pixels. */
 unsigned int v_size; /* Vert. size in pixels. */
 ...
 Pict picture; /* Current picture. */
 ...
 unsigned int *buf_start; /* Input buffer */
 unsigned int *buffer; /* Pointer to next byte in
 input buffer. */
 ...
 PictImage *past; /* Past predictive frame. */
 PictImage *future; /* Future predictive frame. */
 PictImage *current; /* Current frame. */
 PictImage *ring[5]; /* Ring buffer of frames. */
} VidStream;

The most important sub structures of VidStream are Pict and PictImage; a Pict contains
the information about the current picture (most important its type I, P or B):

/* Picture structure. Contains compressed image */
typedef struct pict {
 ...
 unsigned int code_type; /* Frame type: P, B, I */
 ...
} Pict;

A PictImage contains a whole uncompressed picture in the YCbCr colour space.
VidStream contains a buffer of PictImages and three pointers to this buffer pointing to the
current frame, the future and the past reference frame (possibly) needed to decode the current
frame.

- 54 -

typedef struct pict_image {
 unsigned char *luminance; /* Luminance plane. */
 unsigned char *Cr; /* Cr plane. */
 unsigned char *Cb; /* Cb plane. */
 unsigned char *display; /* Display plane. */
 ...
} PictImage;

The Functional Interface

The main interface to the MPEG decoder is the function
void mpegVidRsrc(TimeStamp, VidStream*), which decodes a fixed amount of macroblocks
of the given stream; whenever a frame is completely decoded, it is dithered and displayed (it
should be displayed at the time indicated by the TimeStamp, but this feature has not been
implemented yet; so this argument is ignored).

The function void DoDitherImage(...) is called by the decoder to dither a picture before
it is displayed. It is essentially a big switch statement, which calls the appropriate dithering
function.

Function int get_more_data(...) is called by the decoder, when its internal buffer runs
out of data. It reads data from the input file and writes it into a buffer; if the end of the file has
been reached, a sequence end code is written into the buffer.

Dithering and the Harmony Colormap

MPEG stores the picture data in YCbCr colour space; on the other hand, all display
hardware displays colour in RGB colour space. This conversion of the colour spaces is a time
critical point, since it has to be done for each pixel. On pseudocolour devices, which cannot
display all 224 colours at once, the picture also has to be dithered.

The Berkeley decoder provides several different dithering algorithms, which are called by
DoDitherImage(). One dithering algorithm is for truecolor displays; it just does the YCbCr to
RGB conversion. The other algorithms really do dithering: the clever thing about them is, that
they do the dithering in YCbCr colour space, thus reducing the number of colours to 128 (in
YCbCr); during initialisation, these 128 colours are converted to RGB and allocated in the
system's colormap. That means, that on pseudocolour devices, the colour space conversion is
done by the colormap (i.e. by the display hardware), which essentially reduces the execution
time.

These dithering algorithms use 128 colours. They are equally spaced in YCbCr colour
space with 8 values for Y, 4 values for Cb, and 4 values for Cr. All Harmony viewers (and of
course also the Session Manager) should use the same colormap, otherwise some windows
would be displayed in false colours. Since the above 128 colours are constructed in YCbCr
colour space, they do not contain gray tones, which on the other hand are likely to be used for
the user interface (for instance push buttons or menus). So the Harmony colormap contains the
above 128 colours (two of them are double in RGB colour space, so there are only 126 unique
colours), 16 gray tones (from black to white, equally spaced) and the 6 primary colours red,
green, blue, cyan, magenta, and yellow, making 148 colour totally. Normally pseudocolour
devices have a colour depth of 8, which means 256 colours can be displayed at once; so
Harmony leaves 108 colormap entries to other applications, which is surely enough for other

- 55 -

non-graphical applications, running parallel to Harmony. Appendix A shows the entire
Harmony Colormap.

Changes to the Decoder

A global variable curFrame has been added, which counts the frame currently being
decoded. It is needed by the viewer to keep track of the playing.

The return value of function mpegVidRsrc() has been changed; now it returns an integer
value, which reports information about the state of decoding (which start codes has been read,
which type of frame is currently being decoded, if a frame has been fully decoded, or if a frame
has been displayed).

DoDitherImage() is already implemented in mpeg_play, which comes with the MPEG
decoder. Only some new dithering functions to display with double and half size for truecolor
as well as pseudocolour and grayscale, have been added. Grayscale dithering had to be reduced
from 128 grayscales to the 16 ones contained in the Harmony colormap. Unfortunately this
leads to a clearly visible loss of quality, but on the other hand it is not possible for the Harmony
Film Player to allocate 128 grayscales (as mpeg_play does), thus leaving no colours for the
other Harmony processes (in particular for the Image Viewer).

To be able to change the brightness of the frames (when they are displayed; not in the
MPEG file itself), a new table has been added. The dithering algorithms do not use the
luminance values directly, but use them as an index into this table; the value stored in this table
is used as actual luminance value. By setting this table appropriately any function on the
luminance values could be implemented. Currently the table is set up to perform a gamma

correction (i.e. ′ =Y Y
1

γ).

get_more_data() also was taken from mpeg_play and extended to support decoding
while loading data from a remote database: a new global variable loading has been added (as
its name suggests, it is set when the player loads new data from the server). When loading is
set and get_more_data() could read no more data from the input file, it calls a function
(HgMpeg::waitForData()) to allow the player to read new data and append it to the input file.

The decoder has been extended to support synchronised playback. For that purpose,
whenever a frame is displayed and synchronisation is on (flag doSynch) a new function
void SynchStream(VidStream*) is called. It checks, if decoding was in time. When decoding
was too fast (for instance because the user wants to play the film in slow motion), the decoder
delays for the appropriate time. When decoding was too slow, the corresponding number of
frames is skipped. Since frames in MPEG frames can depend on other ones, it is also necessary
to skip all frames, which depend on already skipped ones. That means whenever an I- or P-
frame has to be skipped, all following frames up to the next I-frame also have to be skipped.
This very simple scheme of synchronisation causes the film to be played rather jerkily, because
generally too many frames are skipped, which may cause the player to delay after displaying
the next frame, just to find that it is late, when displaying the next but one frame. A more
sophisticated synchronisation scheme (see [Rowe94]) would try to skip at first only B-frames;
if that is still too slow, it would also skip P-frames, and finally I-frames.

- 56 -

7.2.2. Encapsulating the MPEG decoder

Beside the above functions, there are some global variables, which are important to the
Harmony Viewer, such as the total number of frames, the number of the current frame, the
dithering type, and some more. All these have been encapsulated into the C++ class HgMpeg
to "hide" the details of the decoder. (Since these variables and functions are global C variables
and functions, this cannot really prevent the application from accessing them directly; the class
just provides a clean interface without forcing its user to deal with the decoder's details.)

class HgMpeg { // encapsulation of Berkeley MPEG decoder
public:
 HgMpeg();
 virtual ~HgMpeg();
 static HgMpeg* instance();

 virtual void initXDisplay(Window*); // initialize display

 unsigned int width() const; // get width of frame
 unsigned int height() const; // get height of frame
 int totNumFrames() const; // get total number of frames
 int curFrame() const; // get current frame
 boolean getSynch() const; // get synchronisation flag
 void setSynch(boolean synchronise); // set synchronisation flag
 boolean getLoop() const; // get loop flag
 void toggleLoop(); // toggle loop flag
 double defaultFrameRate() const; // get default frame rate
 double getFrameRate() const; // get actual frame rate
 void setFrameRate(double framerate); // set actual frame rate
 int getDitherType() const; // get dither type
 void setDitherType(int); // set dither type
 void changeDither(int); // change dither type
 boolean getBFlag() const; // get no B-frames flag
 void toggleBFlag(); // toggle no B-frames flag
 boolean getPFlag() const; // get no P-frames flag
 void togglePFlag(); // toggle no P-frames flag
 boolean trueColor() const; // TrueColor visual exists?

 virtual void waitForData() {};
 virtual void drawSpecial() const {};
 virtual void error(const char* msg);

protected:
 int decodeMpeg(); // decode a bit of the stream
 void nextStartCode(); // parse to next start code
 void initVidStream(); // initalize struct VidStream
 void setDitherType(const char* ditherType);
 // set dither type by name
 void inputFile(FILE* input); // set input file
 void noDisplay(boolean noDisplayFlag);
 // set noDisplayFlag
 void resetSynch(); // start synchronisation
 void setIO(); // set global I/O-variables
 void resetIO(); // reset global I/O-variables
 void totNumFrames(int numFrames); // set total number of frames
 void curFrame(int curFrame); // set current frame
};

- 57 -

Only one object of class HgMpeg per application has to be created; this object is
returned by the static member function instance(). This was necessary to be able to call
member functions of HgMpeg in functions of the decoder (for instance in get_more_data)
without having to pass the actual object all the way down, which would have made necessary a
change in the whole interface of the decoder.

By calling initXDisplay() a window is passed to the decoder; into this window the
decoder displays the frames. The window itself is created and mapped by InterViews (see
chapter 7.2.8. on page 69).

There are a lot of member functions to get information about the MPEG stream (for
example the size of the frames, the number of frames and so on) or to change the behaviour of
the decoder (like switching on or off synchronisation, changing the frame rate, changing the
dithering algorithm and so on), which are rather straightforward.

The following virtual members can be implemented in a subclass:

• waitForData() is called by the decoder, when it runs out of data and the loading flag is set.
When HgMpeg is used to build a standalone player this function can be left empty, and the
loading flag must not be set.

• drawSpecial() is called immediately after a frame has been displayed; the Film Player uses
this function to draw the anchors above the picture.

• error() is called when an error condition occurs during decoding; a description of the error
is passed as parameter. The default behaviour of error is to print this description on stderr.
If the application wants to deal with errors differently, it has to overload this function.

7.2.3.The Harmony Communication Protocol

The viewer has two channels of communication (see figure 7.8): the first one, which

Figure 7.8: The Harmony Communication Protocol
- 58 -

handles the flow of control, is to the Session Manager, the second one, over which the actual
data are sent, is to the Document Server within the Hyper-G server.

The first time the user wants to see a document of a certain type (in case of the Film
Player, a film), the Session Manager forks a viewer daemon process. When the Session
Manager wants to attach a new viewer to a document (the first time a document of this type is
requested, or the user wants to hold the current document), it makes an IPC connection to this
daemon, which then forks the actual viewer.

Each Harmony viewer is derived from class HgViewer:

class HgViewer {
public:
 HgViewer(HgViewerManager* manager);
 virtual ~HgViewer();

 virtual void load(const char* document,
 const char* source_anchors,
 const char* info = 0);
 virtual void browse(const char* destination_anchor);

 virtual void map();
 virtual void unmap();
 virtual void iconify();
 virtual void deiconify();
 virtual void raise();
 virtual void lower();

 virtual void terminate();

 virtual void setLanguage(int language);
 virtual void getPos(RString& position);
 virtual int port();
};

The viewer opens a port, which will be used to receive the documents; the Session
Manager asks for this port using the function port().

The following steps are taken to load a document:

• The Session Manager tells the Hyper-G Link Server to send a document to the above
viewer port.

• The Link Server checks if the document is available and if the user has appropriate access
rights; if not, an error is returned to the Session Manager.

• The Link Server tells the Document Server to send the document to the viewer.

• The Document Server tries to open an IPC connection to the viewer. If the connection is
not accepted by the viewer for some reason, the Document Server returns an error to the
Link Server, which in turn passes it to the Session Manager.

• The Session Manager tells the viewer to load the document by calling the function load();
with the load call the viewer also gets the object description of the document (object id,
title, author, ...) and the list of all source anchors attached to the document.

- 59 -

• Afterwards the Session Manager calls browse() to tell the viewer to display the document;
as parameter the viewer gets the destination anchor attached to the document.

All object descriptions (i.e. the description of documents, anchors, ...) come to the
viewer as a string (either as const char* or as RString, which is the IICM implementation of a
string class); this string is build up of fields, which are separated by newlines, the string ends
with two newlines. Each field contains a field name and a value; these are separated by an
equal-sign. The following example shows the description of some film document:

const char* document =
"ObjectID=0x00000047\n"
"Type=Document\n"
"DocumentType=Movie\n"
"Author=hgsystem"\n
"TimeCreated=94/05/10 09:09:54\n"
"TimeModified=94/10/10 13:50:55\n"
"Title=en:A Short Video Tour of the Arsenal\n"
"Title=ge:Ein kurzer Film vom Zeughaus\n"
"Path=DC0x00031df7 0x000a9e4e\n"
"GOid=0x811b9908 0x00002c26\n"
"\n"

Two fields of the document's description coming with load() are of particular interest:
the field Path has the form "Path=document_path document_size". Since MPEG nowhere
stores the total number of frames or the size of the stream, the second value of the Path-field is
used to determine the size of the MPEG stream (in bytes); this size is needed to display a
progress during loading.

If the viewer has already loaded the document and only the anchors changed (for
instance because the user has inserted or deleted an anchor), or a link whose destination is in
the same document has been followd, the document's description contains the additional field
Function with the value reload. This tells the viewer to use the already loaded document and
not to wait for data from the document server.

The terminate() call is used to tell the viewer to terminate (when the Harmony Session is
terminated by the user), setLanguage() is used to tell the viewer the current language. The
viewer then changes its user interface to the new language; the version of the document in the
new language is loaded by the normal load()/browse() mechanism.

The function getPos() is called by the Session Manager to get the current position within
the document (in the Film Player, that is the current frame); the Session Manager stores this
position with the history list; when the user jumps back to this document using the Session
Manager's history functions, this position is sent to the viewer as destination anchor with the
browse() call.

The remaining functions are rather straightforward: map() tells the viewer to map its
window, unmap() to unmap its window, raise() to raise its window (i.e. make the window the
topmost window), lower() to lower its window, iconify() to iconify its window and deiconify()
to deiconify its window.

The communication in the other direction, from the viewer to the Session Manager, is
implemented by the class HgViewerManager:

- 60 -

class HgViewerManager {
public:
 virtual void viewerTerminated(const char* document,
 HgViewer* viewer);
 virtual void viewerError(HgViewer* viewer);

 virtual void followLink(const char* source_anchor,
 HgViewer* viewer);
 virtual void defineSourceAnchor(const char* anchor);
 virtual void defineDestAnchor(const char* anchor);
 virtual void deleteLink(const char* source_anchor,
 HgViewer* viewer);

 virtual void back(HgViewer* viewer);
 virtual void forward(HgViewer* viewer);
 virtual void history(HgViewer* viewer);
 virtual void hold(RString document,
 HgViewer* viewer);
};

When the viewer calls one of these functions, a remote procedure of the Session
Manager is called; all of the functions need the calling viewer as one of the parameters.

By calling viewerTerminated() the viewer tells the Session Manager, that it will terminate
now (for example, because the user wants to quit the viewer). viewerError() tells the Session
Manager, that an error condition occurred in the viewer; the (protected) member variable
error_ of HgViewer specifies the exact error condition.

The function followLink() is called by the viewer to tell the Session Manager to follow
the link attached to the source anchor passed as argument. defineSourceAnchor() and
defineDestAnchor() are used to define a new source or destination anchor respectively. The
position of the anchor in the document is encoded in the position field of the anchors object
description (see 7.2.6. on page 63). Finally, deleteLink() is used to delete a link.

The function history() causes the Session Manager to open the history browser, back()
reloads the previous document in the history list (if there is one), forward() reloads the next
document in the history list, and hold() tells the Session Manager, that it should start a new
viewer, when the next document of the same type should be loaded, so that the current
document remains on the screen.

7.2.4. Implementing the Communication - The Dispatcher

With the InterViews toolkit (see chapter 7.2.7. on page 68) comes a set of classes to
handle asynchronous communication. The central class of these is the class Dispatcher:
IOCallback functions can be linked to file descriptors using the Dispatcher::link() function.
This file descriptor hides the communication via a socket. Whenever data can be read from or
written to this file descriptor, the linked callback function is called, until it is taken off the
Dispatcher by calling Dispatcher::unlink(). When Dispatcher::dispatch() is called, the
Dispatcher checks if any I/O-event occurred and calls the linked callback function. When using
InterViews Dispatcher::dispatch() need not be called explicitly, since it is done implicitly by
the Session run-loop.

- 61 -

The Film Player uses the Dispatcher to get its document from the server; the
communication itself is managed by the class Reader:

class Reader {
public:
 Reader(HgIvMovieViewer*);
 ~Reader();

 int port() const;
 void create();
 void abort();
 void getData();

private:
 int readInput(int fd);
};

When an object of class Reader is created, it creates a port and listens. The number of
this port can be asked by calling Reader::port() and is returned to the Session Manager.

When the Session Manager tells the viewer to load a new document, the viewer calls
Reader::create(), which causes the Reader to accept a request from the document server on its
port and link its private method Reader::readInput() to the file descriptor belonging to this
connection. Whenever data can be read from this file descriptor, the Dispatcher calls
Reader::readInput(). This function just reads the data into an internal buffer and passes them
on to the viewer, which in turn appends it to a temporary file; this file is also passed to the
MPEG decoder as input file.

Reader::getData() is called by the viewer, when the MPEG-decoder ran out of data, to
read new data; it just calls Reader::readInput(), which performs a blocking read if no data are
available.

By calling Reader::abort() the communication to the document server is aborted by
closing the corresponding file descriptor and unlink the callback function.

7.2.5. The Frame List

One of the major features of the Film Player is, that it is possible to jump to any frame of
the film directly. MPEG does not really support this, since frames may depend on each other
and there's no other way to find the start of a frame in the MPEG stream than searching for its
picture start code. So the viewer has to take care of the frames by itself. An object of class
Frame describes one frame:

class Frame {
public:
 long pos() const; // get file position of frame
 int fileOrder() const; // number of frame in file order
 int dispOrder() const; // number of frame in display order
 int past() const; // get past reference frame
 int future() const; // get future reference frame
};

- 62 -

A frame object stores the position of a frame in the MPEG file, its number in both file
and display order and its past and future reference frames. Each of this information can be
accessed by the appropriate member function. The functions Frame::past() and
Frame::future() return the number of the past or future reference frame in display order
respectively, or -1 if there is no such reference frame (so I-frames are frames with past = -1
and future = -1, P-frames are frames with past ≠ -1 and future = -1 and B-frames are frames
with past ≠ 1 and future ≠ -1).

All objects of class Frame are created by class FrameList (which is a friend of class
Anchor, since Anchor does not possess a public constructor). When loading is complete, the
viewer creates a frame list. Its constructor parses the MPEG stream for picture start codes,
reads the picture header to find the frame type, calculates the reference frames, and builds up a
list of all frames in the MPEG stream sorted by their number in display order.

class FrameList {
public:
 FrameList(FILE* mpegStream); // constructor
 ~FrameList(); // destructor

 long count() const; // get number of frames
 Frame* item(long i) const; // get i-th frame in list
 const Frame* findClosestIFrame(long i) const;
 // find closest I-frame to i-th frame
};

By calling FrameList::count(), the total number of frames in the MPEG stream is
returned, FrameList::item(long i) returns the i-th item of the list (i.e. the i-th frame in display
order, since the list is sorted by display order) and FrameList::findClosestIFrame(long i) can
be used to find the I-frame closest to the i-th frame.

7.2.6.Anchors

Format of Anchors:

Anchors are Hyper-G objects and passed to the viewer as parameter of either the load()
(source anchors) or the browse() (destination anchor) call. The part of the anchor object
describing the shape of the anchor is the field Position; for anchors in film documents, the
format of this field is shown in figure 7.9.

<position> ::= <rect-position> | <circle-position> | <frame-position>

<rect-position> ::= Position=Rect <interpolation> nk: ki x0 y0 x1 y1, ...

<circle-position> ::= Position=Circle <interpolation> nk: ki x0 y0 r, ...

<frame-position> ::= Position=n

<interpolation> ::= Linear | Spline

Figure 7.9: Format of Position Field

- 63 -

For rectangular anchors <interpolation> defines the interpolation algorithm used to
calculate the shape of the anchor for non-key frames; nk is the number of key frames; ki is the
number of the key frame (in display order), (x0, y0) is the lower left corner and (x1, y1) the
upper right corner of the rectangle in the key frame, where x0, y0, x1, y1 are normalised
coordinates in [0;1]; the origin is the lower left corner of the frame.

Anchors with circular shape are analogous to rectangular ones: here (x0, y0) defines the
center of the circle, and r the radius, normalised in x-direction.

<frame-position> are "pseudo-destination anchors" used with the getPos() call.
Whenever the Session Manager tells a viewer to load a new document, the Session Manager
asks the viewer for its current position (i.e. frame) in the (old) document by calling getPos().
When this document is reloaded later by some history function, the Session Manger sends the
viewer the argument got by getPos() as destination anchor, so that the viewer can jump to the
previous position. These special destination anchors are not stored in the database; they can be
identified by the value NoMark in the field Function. The Position field contains only the
number of the frame (in display order) to jump to.

Implementation of anchors

There is an abstract base class Anchor which defines the functionality of anchors,
without specifying its shape:

class Anchor {
public:
 enum InterpolationMethod {
 LINEAR,
 SPLINE
 };

 Anchor(Object&);
 virtual ~Anchor();

 boolean ok() const;
 virtual int count() const = 0;

 // drawing
 virtual void draw(XDisplay*, XDrawable, GC,
 int frame, // current frame
 float sx, float sy) = 0; // scaling factors
 virtual void drawKey(XDisplay*, XDrawable, GC,
 int frame,
 float sx, float sy) = 0;
 virtual void drawMark(XDisplay*, XDrawable, GC,
 float sx, float sy) = 0;

 // "utilities"
 virtual boolean hit(int frame, float x, float y) = 0;
 virtual int keyFrame(int frame) = 0;
 virtual RString position() const = 0;

 // marking
 virtual void startMarking(int frame, float x, float y) = 0;
 virtual void updateMarking(int frame, float x, float y) = 0;
 virtual void marking(int frame, float x, float y) = 0;

- 64 -

 virtual void stopMarking(int frame, float x, float y) = 0;

 InterpolationMethod interpolation() const;
 int startFrame() const;
 int stopFrame() const;
 boolean seen() const;
 boolean visible(int frame) const;

protected:
 friend class AnchorList;

 virtual void interpolate() = 0;
 virtual void interpolateLinear() = 0;
 virtual void interpolateSpline() = 0;

Normally an anchor is constructed by its Hyper-G object description. Anchor::ok()
returns if the construction was successful (i.e. if the parameter passed to the constructor was a
valid Hyper-G anchor description). Anchor::count() returns the number of key frames.

Anchor::draw() tells the anchor to draw its region for the specified frame on the
specified Drawable. Anchor::drawKey() tells the anchor to draw the region of its key frame (if
the specified frame is a key frame). Anchor::drawMark() is used for rubberbanding during
defining a new anchor.

Anchor::hit() returns if the specified point is inside the anchor's region.
Anchor::keyFrame(int frame) returns the number of the frame-th frame in the list of key
frames, or -1 if it is no key frame. Anchor::position() returns the position field of the anchors
object description.

Anchor::startMarking(), Anchor::updateMarking(), Anchor::marking() and
Anchor::stopMarking() are called to define a new anchor. They are called when the user
presses the mouse button, drags the mouse, and releases the mouse button respectively.

Anchor::interpolation() returns the interpolation algorithm used by the anchor (either
linear or spline), Anchor::startFrame() and Anchor::stopFrame() return the number of the first
and last key frame (in display order), Anchor::seen() returns if the anchor's destination has
already be seen and Anchor::visible() returns if the anchor is visible in the specified frame.

The private members Anchor::interpolate(), Anchor::interpolateLinear(), and
Anchor::interpolateSpline() are called to interpolate the shape of the anchor in non-key
frames.

class RectAnchor is derived from Anchor. It implements the pure virtual methods of
Anchor for rectangular shaped anchors:

class RectAnchor : public Anchor {
public:
 RectAnchor(Object&);
 virtual ~RectAnchor();

 virtual void draw(XDisplay*, XDrawable, GC,
 int frame,
 float sx, float sy);

- 65 -

 virtual void drawKey(XDisplay*, XDrawable, GC,
 int frame,
 float sx, float sy);
 virtual void drawMark(XDisplay*, XDrawable, GC,
 float sx, float sy);

 virtual int count() const;
 virtual boolean hit(int frame, float x, float y);
 virtual RString position() const;

 virtual void startMarking(int frame, float x, float y);
 virtual void updateMarking(int frame, float x, float y);
 virtual void marking(int frame, float x, float y);
 virtual void stopMarking(int frame, float x, float y);

private:
 virtual void interpolate();
 virtual void interpolateLinear();
 virtual void interpolateSpline();
};

An analogous class CircleAnchor exists for circular shaped anchors.

The class AnchorList is the central class for the management of anchors. It handles
source anchors as well as the destination anchor and the definition of new anchors.

class AnchorList {
public:
 AnchorList(HgIvMoviePlayer*);
 ~AnchorList();

 void setSource(const char*);
 void setDest(const char*);
 void clearDest();

 void setDrawable(Window*);

 void updateDraw();
 void draw() const;
 boolean selected() const;
 boolean mark() const;

 void interpolation(Anchor::InterpolationMethod);

 void follow();
 void follow(Coord x, Coord y) const;
 void next();
 void selectNew(Coord x, Coord y);
 void selectNext(Coord x, Coord y);

 void defineSource();
 void defineDest();
 void useDefault();
 void deleteLink();

 void startMarking(float x, float y);
 void updateMarking(float x, float y);

- 66 -

 void marking(float x, float y);
 void stopMarking(float x, float y);

 // colors
 void getAnchorColor(int&, int&, int&) const;
 void getSeenColor(int&, int&, int&) const;
 void getSelectedColor(int&, int&, int&) const;
 void getDestColor(int&, int&, int&) const;
 void getMarkColor(int&, int&, int&) const;

 void setAnchorColor(int, int, int);
 void setSeenColor(int, int, int);
 void setSelectedColor(int, int, int);
 void setDestColor(int, int, int);
 void setMarkColor(int, int, int);
};

AnchorList::setSource() is used to set the source anchors got from load(),
AnchorList::setDest() is used to set the destination anchor got from browse().
AnchorList::clearDest() clears the current destination anchor.

AnchorList::draw() draws all visible anchors (source anchors as well as the destination
anchor and a newly marked anchor), AnchorList::updateDraw() updates the list of visible
source anchors (according to the current frame of the film player) and then draws all visible
anchors.

AnchorList::interpolation() sets the interpolation algorithm for the newly defined
anchor.

AnchorList::follow() activates the selected source anchor (if there is one),
AnchorList::follow(Coord x, Coord y) selects the first source anchor found, which encloses the
point (x, y), and activates it.

AnchorList::selectNew(Coord x, Coord y) and AnchorList::selectNext(Coord x,
Coord y) select the first or the next source anchor found, which encloses the point (x, y).
AnchorList::next() just selects the next visible source anchor.

AnchorList::startMarking(), AnchorList::updateMarking(), AnchorList::marking(), and
AnchorList::stopMarking() are called when the user defines a new anchor; they are passed to
the newly defined anchor object.

AnchorList::defineSource() and AnchorList::defineDest() are called to send the position
of a newly marked anchor to the Session Manger as source or destination anchor respectively.
It is the Session Manager's task to insert the anchor into the database.

AnchorList::useDefault() tells the Session Manager to use the whole film as destination
anchor.

AnchorList::deleteLink() tells the Session Manager to delete the selected source anchor,
as well as the attached link and the attached destination anchor.

- 67 -

7.2.7. The User Interface - InterViews

The InterViews toolkit [Linton89] is based upon the X11 library [Nye88, Nye89] and
provides a set of C++ classes to build user interfaces. It is public domain and available by
anonymous ftp from interviews.stanford.edu:/pub/3.1.tar.Z.

Session

Each InterViews application must create exactly one object of class Session; the one and
only object of this class is accessible by the Session::instance() member function. The
Session::run() member function provides the main run loop: X events (for example generated
by user interactions when moving the mouse, pressing mouse buttons or keys) are read and
appropriate functions are called until the Session is ended by calling Session::quit(). The
Session run loop also calls the Dispatcher (see chapter 7.2.4. on page 61) to handle I/O-events.

Window

Another important InterViews class is the Window class; there are some derived classes
for various purposes, the most important of them is the ApplicationWindow. An
ApplicationWindow gets a Glyph (see below) and is mapped to the screen when
Window::map() is called. A shortcut for mapping a window and then starting the session run
loop is provided by the member Session::run_window().

Glyph

Glyphs are these InterViews' objects which actually do drawing. They can be combined
to build a directed acyclic graph. The main member functions of class Glyph are:

Glyph::request(Requisition&) asks the Glyph about its size (which in InterViews is
called Requisition, which in turn consists of a Requirement for each dimension. A Requirement
defines a natural ("default") size of the Glyph, as well as its maximal and its minimal size for
the given dimension).

Glyph::allocate(Canvas*, const Allocation&, Extension&) tells the Glyph, at which
Allocation (i.e. which region of the Canvas) it may draw itself; the Canvas defines a two-
dimensional surface to which a group of Glyphs are attached and onto which they may draw.
By setting an Extension the Glyph tells the application, onto which part of it's Allocation the
Glyph really draws; the Extension is used by InterViews to decide if the Glyph has to be
redrawn, when the window (or part of it) has been damaged.

Glyph::draw(Canvas*, Allocation&) tells the Glyph to draw itself at the given
Allocation. A draw must not occur before the Glyph is told its Allocation by an allocate call.

A special kind of Glyph are MonoGlyphs. A MonoGlyph can be wrapped around
another Glyph (called its body). They add some special functionality or behaviour to their
body.

A simple example of a MonoGlyph is the Background. It just draws some background
colour before it draws its body on this background. More complicated MonoGlyphs are the
Patch and the InputHandler: A Patch stores the Allocation of its body; it defines the member

- 68 -

functions Patch::reallocate() which calls the body's allocate() with the stored Allocation and
Patch::redraw() which causes the body to be redrawn.

An InputHandler adds input handling to its body. It defines the member functions
InputHandler::press() and InputHandler::release(), which are called when a mouse button is
pressed or released respectively, InputHandler::drag() and InputHandler::move(), which are
called, when the mouse cursor is moved in the body's Allocation,
InputHandler::double_click(), which is called when a mouse button is double clicked, and
finally InputHandler::keystroke(), which is called when a key has been pressed.

WidgetKit

A set of elements, such as menus, push buttons, and scroll bars, needed to build user
interfaces are provided by InterViews in the class WidgetKit. For example
Button* WidgetKit::push_button(char* label, Action* action) creates a push button with a
given label; when the button is pressed by the user, InterViews calls the provided callback
function action, so the application can react to the users action. Menus and scroll bars are dealt
with similarly.

The WidgetKit also provides some more simple Glyphs such as
WidgetKit::inset_frame(Glyph*) or WidgetKit::outset_frame(Glyph*) to draw a
"3-dimensional" border around a Glyph, or WidgetKit::background() and
WidgetKit::foreground() which return the current background and foreground colour
respectively.

LayoutKit

The LayoutKit provides Glyphs to structure other Glyphs or to change their layout, such
as LayoutKit::margin() to draw margin around a Glyph, LayoutKit::hspace() and
LayoutKit:.vspace() to draw a horizontal or vertical space respectively, and LayoutKit::hbox()
and LayoutKit::vbox() to group Glyphs in a horizontal or vertical box respectively.

Style

As usual in X applications, user-customizable attributes, such as foreground and
background colour, or the size and position of the window, are provided by X resources.
InterViews supports these in the class Style. When creating the Session, one must specify the
base name of the resource class. Styles can be nested hierarchically, by creating a new Style
with an existing one as parent.

Style::attribute() can be used to set ("hard-code") attributes, Style::find_attribute() or
Style::value_is_on() can be used to read the X resources matching the Style's resource class
name.

7.2.8. Embedding the MPEG decoder into InterViews

InterViews was used to build a user interface around the MPEG decoder. InterViews'
run loop (Session::run()) could not be used for this purpose, since it provides no mechanism to

- 69 -

call a function, when the event queue is empty. This is necessary, since when there are no
events in the queue, the player should decode and display frames. Therefore class
HgIvMoviePlayer (see chapter 7.2.9. on page 70) defines its own run loop:

void HgIvMoviePlayer::run() {
 Session* session = Session::instance();
 Dispatcher& dispatcher = Dispatcher::instance();
 long sec = 0;
 long usec = 0;
 Event event;
 do {
 if (state == MovieLoading || (state == MoviePlaying && live_)) {
 dispatcher.dispatch(sec, usec);
 if (session->pending()) {
 session->read(event);
 event.handle();
 }
 else {
 callParser();
 }
 else {
 session->read(event);
 event.handle();
 }
 } while (!session->quit());
}

During loading, if the live option is turned on, and during playing, the Session::pending()
call is used to check, if there are any events in the applications event queue. If there are events,
the first one is read (Session::read()) and handled (Event::handle()), if there are none, the
MPEG parser is invoked (HgIvMoviePlayer::callParser()) to decode some part of the MPEG
stream and display a frame. Additionally the Dispatcher is activated by calling
Dispatcher::dispatch() to handle the communications to both the document server and the
Session Manager.

When not loading or playing (i.e. when the film is paused, or no MPEG stream has been
opened yet), Session::read() is called directly; this blocks the application until an event occurs;
the Dispatcher is called periodically by Session::read(), so there is no need to call it explicitly.

InterViews has also to create, map, and place the window into which the decoder draws
the frames. This is handled by class X_Context, derived from Glyph. X_Context maps an
X_Window (which is just a very simple subclass of Window, without any special functionality)
at its Allocation. The window-id of this window is then passed to the decoder by calling
HgMpeg::initXDisplay().

7.2.9. The Viewer Class

The central class of the Film Player is class HgIvMoviePlayer (the "Hg" stands for
Hyper-G, the "Iv" for InterViews). It combines all of the above classes and really implements
the player's functionality.

- 70 -

class HgIvMoviePlayer : public HgMpeg, public HgViewer {
public:

 // internal state of the player
 enum MovieState {
 MovieInvalid, // no movie loaded
 MovieLoading, // just loading movie
 MovieLoaded, // loading complete occured
 MoviePlaying, // just playing movie
 MoviePaused, // movie paused (by user)
 MovieDone // playing is done; last frame shown
 };

 HgIvMoviePlayer (HgViewerManager*, boolean);
 virtual ~HgIvMoviePlayer();

 // my runloop
 void run();

 // from HgViewer
 virtual void load(const char* doc,
 const char* anchors,
 const char* info = nil);
 virtual void browse(const char* dest);
 virtual void terminate();
 virtual void setLanguage(int);
 virtual int port() const;
 virtual void getPos(RString&);
 virtual void iconify();
 virtual void deiconify();
 virtual void map();
 virtual void unmap();
 virtual void moveto(float, float);
 virtual void resize(float, float);
 virtual void raise();
 virtual void lower();

 // from HgMpeg
 virtual void initXDisplay(Window* win);
 virtual void drawSpecial() const;
 virtual void changeDither(int);
 virtual void waitForData();
 virtual void error(const char*);

 // functionality
 void play();
 void pause();
 void step();
 void backstep();
 void rewind();
 void wind();
 void gotoIFrame(int frame);
 void gotoFrame(int frame);
 void quit();
 void abort();
 void openFile(const char* filename);
 void saveAs(const char* filename);

 // miscellaneous

- 71 -

 void redrawFrame() const;
 int aborted() const;
 void toggleLive();
 void toggleShowAnchors();
 void changeSize(HgIvMovieViewer::MovieSize);

private:
 void callParser(); // call MPEG parser
};

The class maintains an internal state of type HgIvFilmPlayer::MovieState, which can be
MovieInvalid (when some error occurred), MovieLoading (during loading), MovieLoaded
(when loading was completed), MoviePlaying (when the movie is playing), MoviePausing
(when the movie is paused) or MovieDone (when the end of the movie has been reached). This
state also affects the run loop of this class (see chapter 7.2.8. on page 69), which calls the
MPEG decoder by calling HgIvMoviePlayer::callParser() when the state is either
MoviePlaying or MovieLoading.

Additionally to overloading and implementing methods inherited from HgViewer and
HgMpeg, this class also implements the functionality. A video recorder provides the obvious
user metaphor for the Film Player; this is also reflected by the methods implementing the
functionality:

HgIvMoviePlayer::play() starts the playing of the movie, HgIvMoviePlayer::pause()
pauses the playing of the movie, HgIvMoviePlayer::stop() stops the playing of the movie.
These functions essentially just set the state of the player to the appropriate value.

HgIvMoviePlayer::step() can be used to step through the movie picture-wise. It calls
HgMpeg::decode() until a picture has been displayed.

HgIvMoviePlayer::gotoFrame(int frame) jumps to the frame-th picture (in display
order) of the film. The implementation of this function is more complicated, since in MPEG
frames may depend on other ones: when loading is complete, the viewer creates an object of
class FrameList (see 7.2.5. on page 62), which is then used to determine the reference frames
of the target frame and their position in the MPEG stream. Then the decoder is called to
decode the reference frames (and recursively their reference frames, if there are any) and finally
decodes the target frame and displays it. This function can be rather time consuming, as maybe
a larger number of reference frames has to be decoded too. Therefore the function
HgIvMoviePlayer::gotoIFrame(int frame) has been implemented. This function jumps to the
I-frame closest to the frame-th picture. Since I-frames do not depend on other frames, this
frame can be decoded and displayed immediately. The scrollbar of the viewer uses
HgIvMoviePlayer::gotoIFrame() for performance reasons, but it could be replaced by
HgIvMoviePlayer::gotoFrame() any time.

The other functions HgIvMoviePlayer::backstep(), HgIvMoviePlayer::rewind() and
HgIvMoviePlayer::wind() just use HgIvMoviePlayer::gotoFrame() to jump to the previous
frame, or to the first frame and the last frame of the destination anchor (or the whole film, if
there is no destination anchor) respectively.

HgIvMoviePlayer::quit() quits the viewer (after telling the Session Manager), and
HgIvMoviePlayer::abort() is used to abort loading: it stops the reader process, searches for
the start of the last frame already loaded and truncates the MPEG stream at that point.
Additionally the viewer sets its variable error_ (a protected member of the base class

- 72 -

HgViewer) to INCOMPLETELOAD and calls HgViewerManager::viewerError(). So the
Session Manager knows that loading was incomplete and does not send a reload, but a real
load, when the user wants to see the document again.

Calling HgIvMoviePlayer::saveAs(const char* filename) saves the MPEG stream.
HgIvMoviePlayer::openFile(const char* filename) is used to play a local MPEG file. This is
implemented by directly calling the functions load() and browse(), which are normally called by
the Session Manager.

Finally there are a number of member functions to change the display size (half, normal,
or double), the turn on or off the playing of the film during loading, or to turn on or off the
anchors, whose meaning and implementation is straightforward.

- 73 -

8. Summary

Moving pictures have became an important part of our daily live, for entertainment as
well as business. Television's advance from analogue to digital technology further increases its
possibilities.

On the other hand new communication technologies are arising, which, in some time, will
surely be as widespread and natural as television is today. Every household will be connected
to a global communication network. But as information systems will be used by more and more
people (and not only experts) is will become essentially that these systems are easy to use.
Hypermedia systems could meet these expectations.

Hyper-G is the first second-generation hypermedia system, which is flexible enough to be
of use for a wide range of applications. Harmony is the Unix/X11 client for Hyper-G. It
consists of the Session Manger, which allows users to navigate through the information space,
and a native viewer for each type of document, which currently are text, image, film, audio,
scene and postscript. It is the viewer's responsibility to display a document.

The Harmony Film Player fully integrates digital video into the hyperlink structure of
Hyper-G/Harmony. It supports source and destination anchors in film documents as well as it
provides the functionality to define new anchors. The most important features of the Film
Player are:

• The film can be played live during loading.

• The Film Player provides a VCR-like user interface and a scrollbar, allowing the user to
pause the film or to jump to any picture of the film.

• The Film Player allows synchronised playback of the film, with any user chosen frame
rate.

• By defining rectangles in key frames, any part of the film (both spatial and temporal) can be
marked either as source or destination anchor of a hyperlink.

The Harmony Film Player is far from being complete. It was a first step to show the
possibilities of digital video in hypermedia systems. Important things to come in the future
include:

• MPEG-2 is now a new international standard, which is especially designed to suit digital
television; surely the Film Player will support MPEG-2 in some time.

• Other existing formats for digital video should be integrated into the Film Player, namely
Quicktime and AVI , which are already widely used, the first on Apple platforms, the later
on Microsoft Windows platforms.

- 74 -

• Up to now the Film Player does not support audio (one can say it is still in the silent era).
Audio immediately introduces the problem of absolute synchronisation of video and audio
(which makes it difficult to combine the Harmony Film Player and the Harmony Audio
Player, since they are independent processes and cannot be synchronised easily).

• Decoding of digital video needs a lot of time, especially, when also audio should be
decoded and played, synchronously and in real time. Therefore Film Player should let
MPEG hardware, if present, do the decoding (and displaying) in the future.

- 75 -

Appendix A: The Harmony Colormap

The Harmony Colormap, which is used by all Harmony processes, contains 148 colours.
These are: 6 primary colours (red, green, blue, cyan, magenta and yellow), 16 grayscales
(black, #111111, #222222, ..., #EEEEEE, white), and 128 colours equally spaced in YCbCr
colour space, with 8 values of Y (16, 48, 80, 112, 144, 176, 208, 240) and 4 values of Cb and
Cr respectively (32, 96, 160, 224). Note that 2 of these colours are double in RGB colour
space, making totally 148 unique colours.

The colours are sorted and allocated by priority, so that Harmony gets colours across the
whole colour space, even if it cannot allocate all desired colours. If Harmony is not able to
allocate a colour, it takes the closest colour to be found in the colormap.

Table A.1: The Harmony Colormap

RGB YCbCr

 0 (255/255/255) white
 1 (0/0/0) black
 2 (0/147/255) (112/224/32)
 3 (255/108/0) (144/32/224)
 4 (41/255/5) (176/32/32)
 5 (214/0/250) (80/224/224)
 6 (119/119/119) gray
 7 (150/0/0) (16/96/224)
 8 (195/255/69) (240/32/96)
 9 (105/255/255) (240/160/32)
 10 (150/0/0) (16/32/224)
 11 (255/150/151) (208/96/224)
 12 (0/127/0) (48/96/32)
 13 (0/137/136) (80/160/32)
 14 (41/255/119) (176/96/32)
 15 (214/0/136) (80/160/224)
 16 (220/120/255) (176/224/160)
 17 (92/14/104) (48/160/160)
 18 (255/0/0) red
 19 (0/255/255) cyan
 20 (99/133/255) (144/224/96)
 21 (156/122/0) (112/32/160)
 22 (92/0/218) (48/224/160)
 23 (195/255/183) (240/96/96)
 24 (131/231/5) (176/32/96)
 25 (255/255/0) yellow
 26 (131/209/119) (176/96/96)
 27 (0/73/72) (16/160/32)
 28 (255/86/87) (144/96/224)

RGB YCbCr

 29 (67/145/55) (112/96/96)
 30 (255/64/200) (144/160/224)
 31 (35/69/250) (80/224/96)
 32 (163/197/255) (208/224/96)
 33 (92/58/0) (48/32/160)
 34 (0/191/55) (112/96/32)
 35 (156/56/255) (112/224/160)
 36 (255/204/69) (240/32/224)
 37 (9/201/200) (144/160/32)
 38 (188/132/87) (144/96/160)
 39 (220/186/5) (176/32/160)
 40 (170/170/170) gray
 41 (156/78/168) (112/160/160)
 42 (105/255/69) (240/32/32)
 43 (105/255/183) (240/96/32)
 44 (67/123/168) (112/160/96)
 45 (255/184/255) (240/224/160)
 46 (0/0/255) blue
 47 (68/68/68) gray
 48 (150/0/72) (16/160/224)
 49 (150/0/186) (16/224/224)
 50 (255/228/183) (240/96/160)
 51 (41/211/255) (176/224/32)
 52 (214/44/0) (80/32/224)
 53 (195/251/255) (240/160/96)
 54 (60/4/0) (16/96/160)
 55 (67/167/0) (112/32/96)
 56 (0/213/0) (112/32/32)
 57 (255/42/255) (144/224/224)

- 76 -

RGB YCbCr

 58 (0/71/0) (16/32/96)
 59 (204/204/204) gray
 60 (99/177/87) (144/96/96)
 61 (35/91/136) (80/160/96)
 62 (99/155/200) (144/160/96)
 63 (124/46/136) (80/160/160)
 64 (188/110/200) (144/160/160)
 65 (156/100/55) (112/96/160)
 66 (34/34/34) gray
 67 (0/83/218) (48/224/32)
 68 (220/164/119) (176/96/160)
 69 (163/241/151) (208/96/96)
 70 (60/0/72) (16/160/160)
 71 (9/223/87) (144/96/32)
 72 (246/32/168) (112/160/224)
 73 (246/54/55) (112/96/224)
 74 (0/27/72) (16/160/96)
 75 (255/250/69) (240/32/160)
 76 (124/24/250) (80/224/160)
 77 (3/37/218) (48/224/96)
 78 (252/196/151) (208/96/160)
 79 (99/199/0) (144/32/96)
 80 (163/255/37) (208/32/96)
 81 (73/255/37) (208/32/32)
 82 (73/255/151) (208/96/32)
 83 (0/105/104) (48/160/32)
 84 (0/169/168) (112/160/32)
 85 (67/101/255) (112/224/96)
 86 (131/165/255) (176/224/96)
 87 (60/0/186) (16/224/160)
 88 (188/88/255) (144/224/160)
 89 (182/0/218) (48/224/224)
 90 (182/0/104) (48/160/224)
 91 (255/96/232) (176/160/224)
 92 (255/118/119) (176/96/224)
 93 (255/172/37) (208/32/224)
 94 (124/90/0) (80/32/160)
 95 (188/154/0) (144/32/160)
 96 (35/113/23) (80/96/96)
 97 (0/255/0) green
 98 (255/0/255) magenta
 99 (0/159/23) (80/96/32)
100 (255/138/255) (240/224/224)
101 (0/51/186) (16/224/32)
102 (3/59/104) (48/160/96)

RGB YCbCr

103 (255/182/183) (240/96/224)
104 (252/218/37) (208/32/160)
105 (73/243/255) (208/224/32)
106 (182/12/0) (48/32/224)
107 (9/179/255) (144/224/32)
108 (246/76/0) (112/32/224)
109 (0/115/250) (80/224/32)
110 (255/140/5) (176/32/224)
111 (35/135/0) (80/32/96)
112 (0/181/0) (80/32/32)
113 (41/233/232) (176/160/32)
114 (131/187/232) (176/160/96)
115 (220/142/232) (176/160/160)
116 (255/74/255) (176/224/224)
117 (214/22/23) (80/96/224)
118 (124/68/23) (80/96/160)
119 (17/17/17) gray
120 (51/51/51) gray
121 (85/85/85) gray
122 (102/102/102) gray
123 (136/136/136) gray
124 (153/153/153) gray
125 (187/187/187) gray
126 (221/221/221) gray
127 (238/238/238) gray
128 (255/106/255) (208/224/224)
129 (3/103/0) (48/32/96)
130 (0/49/0) (16/96/96)
131 (0/149/0) (48/32/32)
132 (163/219/255) (208/160/96)
133 (195/229/255) (240/224/96)
134 (255/206/255) (240/160/160)
135 (255/160/255) (240/160/224)
136 (60/26/0) (16/32/160)
137 (92/36/0) (48/96/160)
138 (9/245/0) (144/32/32)
139 (246/10/255) (112/224/224)
140 (73/255/255) (208/160/32)
141 (182/0/0) (48/96/224)
142 (3/81/0) (48/96/96)
143 (252/174/255) (208/160/160)
144 (0/117/0) (16/32/32)
145 (255/128/255) (208/160/224)
146 (0/95/0) (16/96/32)
147 (252/152/255) (208/224/160)

- 77 -

References

[Alberti92] B. ALBERTI, F. ANKLESARIA, P. LINDNER, M. MCCAHILL , D. TORREY: The
Internet Gopher Protocol: A Distributed Document Search and Retrieval
Protocol. March 1992. Available by anonymous ftp from
boombox.micro.umn.edu: /pub/gopher/gopher_protocol.

[Andrews93] K. ANDREWS, J. FASCHINGBAUER, M. GAISBAUER, F. KAPPE, H. MAURER

M. PICHLER, J. SCHIPFLINGER: Hyper-G: A New Tool for Distributed
Hypermedia. Proc. Distributed Multimedia Systems and Applications,
Honolulu 1994, pp 209-214.

[Andrews94a] KEITH ANDREWS, FRANK KAPPE: Soaring through hyperspace: A snapshot of
Hyper-G and its Hamony client. Proc. of Eurographics Symposium and
Workshop on Multimedia: Multimedia/Hypermedia in Open Distributed
Environments, Graz, June 1994.

[Andrews94b] KEITH ANDREWS, FRANK KAPPE., HERMANN MAURER, KLAUS SCHMARANZ:
On Second Generation Hypermedia Systems. Journal of Universal Computer
Science J.UCS Vol 0, 0, online via Hyper-G (host hyperg.iicm.tu-graz.ac.at)
or WWW (http://www.iicm.tu-graz.ac.at/Cjucs_root).

[Apple93] APPLE COMPUTER, INC.: Inside Macintosh, Volume 4: Quicktime; Addision-
Wesley 1993.

[Berk91] EMILY BERK, JOSEPH DEVLIN (ED.): Hypertext/Hypermedia Handbook;
Intertext Publications, McGraw-Hill Publishing Company 1991.

[Berners92] T. BERNERS-LEE, R. CAILLIAU , J. GROFF., B. POLLERMANN: World-Wide-
Web: The Information Universe. Electronic Networking: Research,
Applications and Policy, 2(1):52-58, Spring 1992.

[Color94] The Color-Space FAQ; available by anonymous ftp (for example) from
rtfm.mit.edu:/pub/usenet/comp.graphics/Color_space_FAQ.

[Gonzales92] R. C. GONZALES , R. E. WOODS: Digital Image Processing; Addison-Wesley
1992.

[Günther92] CARSTEN GÜNTHER: Andy's Erbe - Apples Multimedia-Erweiterung
QuickTime; c't Oktober 1992, p 186-194.

[Hill90] FRANCIS S. HILL , JR.: Computer Graphics; Macmilan Publishing Company,
New York 1990.

- 78 -

[ISO10918] ISO/IEC 10918 (JPEG); Digital Compression and Coding of Continuous-tone
Still Images.

[ISO11172] ISO/IEC-11172 (MPEG): Coding of Moving Pictures and Associated Audio
for Digital Storage Media at up to about 1.5 MBit/s.

[ISO13818] ISO/IEC 13818 (MPEG-2): Coding of Moving Pictures and Associated Audio
Information.

[ITU90] ITU/CCITT: Recommendation H.261: Video Codec for Audiovisual Services
at px64 kbit/s. Geneva 1990.

[Kappe91] FRANK KAPPE: Aspects of a Modern Multi-Media Information System; PhD
thesis, Graz University of Technology, Austria, June 1991. Also available as
IIG Report 308, IIG, Graz University of Technology, Austria, June 1991 and
by anonymous ftp from ftp.iicm.tu-graz.ac.at:/pub/Hyper-G/doc.

[Kappe93] FRANK KAPPE: Hyper-G: A Distributed Hypermedia System. in Leiner B.
(editor): Proc. INET '93, San Francisco, California, pp DCC-1 - DCC-9,
Internet Society, August 1993.

[LeGall91] DIDIER LE GALL : MPEG: A Video Compression Standard for Multimedia
Applications; Communications of the ACM Vol. 34(4):47-58, April 1991.

[Lennon94] JENNIFER LENNON., HERMANN MAURER: You Believe You Know What
Multimedia is? And What Internet Will Do For You? Well... Think Again!;
Journal of Universal Computer Science J.UCS Vol 0, 0, online via Hyper-G
(host hyperg.iicm.tu-graz.ac.at) or WWW (http://www.iicm.tu-graz.ac.at).

[Linton89] MARK A. LINTON, JOHN M. VLISSIDES, PAUL R. CALDER: Composing User
Interfaces with InterViews. IEEE Computer Vol. 22(2):8-22, Feb. 1989.

[Maurer92] HERMANN MAURER: Why Hypermedia Systems are Important. Proc. ICCAL
92, Wolfville, LNCS 602, Springer Heidelberg/New York (1992), pp 1-15.

[Maurer94] HERMANN MAURER, KLAUS SCHMARANZ: J.UCS - The Next Generation in
Electronic Publishing. J.UCS 0, 0 1994; online via Hyper-G (host
hyperg.iicm.tu-graz.ac.at) or WWW (http://www.iicm.tu-graz.ac.at/Cjucs).

[Murray94] J. D. MURRAY, W. VAN RYPER: Encyclopedia of Graphics File Formats.
O'Reilly&Associates, Inc., 1994.

[Nielson90] JAKOB NIELSEN: Hypertext & Hypermedia. Academic Press 1990.

[Nye89] ADRIAN NYE, O'Reilly & Associates, Inc: XLIB Programming Manual (for
Version 11) Volume One. 1989.

[Nye88] ADRIAN NYE, O'Reilly & Associates, Inc: XLIB Reference Manual (for
Version 11), Volume Two. 1988.

[Patel93] K. PATEL, B. C. SMITH, L. A. ROWE: Performance of a Software MPEG
Video Decoder. available by anonymous ftp from:
mm-ftp.cs.berkeley.edu:/pub/multimedia/papers/Mpeg93.ps.Z.

- 79 -

[Pins91] MARKUS PINS: Extensions of the Color-Cell-Compression. in Proc. Computer
Animation '91, Geneva, Switzerland, pp 241-251, Springer 1991.

[Pöpsel94] JOSEF PÖPSEL: Multimediale Klippen - Format von RIFF- und AVI-Dateien.
c't November 1994, pp 327-332.

[Rowe94] L. A. ROWE, K. D. PATEL, B. C. SMITH, K. LIU: MPEG Video in Software:
Representation, Transmission, and Playback. High Speed Networking and
Multimedia Computing, IS&T/SPIE Symp. on Elec. Imagaging Sci. & Tech.,
San Jose, CA, Februray 1994; also available by anonymous ftp from:
mm-ftp.cs.berkeley.edu: /pub/multimedia/papers/CMPEG-SPIE94.ps.Z.

[Stein91] RICHARD M. STEIN: Browsing Through Terabytes - Wide-area Information
Servers Open a New Frontier in Personal and Corporate Information
Services. Byte, 16(5):157-164, May 1991.

[Stroustrup91] BJAREN STROUSTRUP: The C++ Programming Language. 2nd edition,
Addision Wesley 1991.

[Wallace91] G. K. WALLACE.: The JPEG Still Picture Compression Standard.
Communications of the ACM Vol. 34(4):31-44, April 1991.

[Welch84] TERRY A. WELCH: A Technique for High-Performance Data Compression.
IEEE Computer Vol. 17(6):8-19, June 1984.

- 80 -

- 81 -

