
Gizual User Interface:
Browser-Based Visualisation

for Git Repositories

Andreas Steinkellner

Gizual User Interface:
Browser-Based Visualisation for Git Repositories

Andreas Steinkellner B.Sc.

Master’s Thesis

to achieve the university degree of

Diplom-Ingenieur

Master’s Degree Programme: Software Engineering and Management

submitted to

Graz University of Technology

Supervisor

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 09 Dec 2024

© Copyright 2024 by Andreas Steinkellner, except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Gizual Benutzeroberfläche:
Browserbasierte Visualisierung von Git-Repositories

Andreas Steinkellner B.Sc.

Masterarbeit

für den akademischen Grad

Diplom-Ingenieur

Masterstudium: Software Engineering and Management

an der

Technischen Universität Graz

Begutachter

Ao.Univ.-Prof. Dr. Keith Andrews
Institute of Interactive Systems and Data Science (ISDS)

Graz, 09 Dec 2024

Diese Arbeit ist in englischer Sprache verfasst.

© Copyright 2024 Andreas Steinkellner, sofern nicht anders gekennzeichnet.

Diese Arbeit steht unter der Creative Commons Attribution 4.0 International (CC BY 4.0) Lizenz.

https://creativecommons.org/licenses/by/4.0/

Abstract

This thesis presents the user interface and frontend of Gizual, an open-source, fully web-based information
visualisation tool for exploring Git source code repositories. It uses an underlying WebAssembly core to
parse the repository history. All data processing is done locally inside the browser. Specific branches or
commit ranges can be specified in Gizual’s query interface, or through an interactive timeline. Files can
be filtered based on file name or extension, or via a highly performant file tree component.

The visualisation itself is based on the idea of an information mural of listings, arranged in a masonry
layout on an interactive two-dimensional canvas. The canvas is freely zoomable using mousewheel
or pinch zoom. Files of source code are represented as tiles in the masonry grid. Lines of code are
represented as coloured strips within each tile. Two styles of visual encoding are available: one based on
the age of each line of code, and the other on the last author of the line of code.

The frontend is written in TypeScript, using React and MobX. The Mantine library is used as a
component base, and UI components are styled using SCSS.

Kurzfassung

Diese Arbeit präsentiert die Benutzeroberfläche und das Frontend von Gizual, einem Open-Source Web-
Tool zur Informationsvisualisierung, das zur Erkundung von Git-Repositories verwendet wird. Gizual
nutzt einen WebAssembly-Kern, um die Daten aus dem Git-Repository zu verarbeiten. Alle Daten werden
lokal innerhalb des Webbrowsers verarbeitet. Spezifische Git-Branches und Zeitbereiche können über die
Query-Schnittstelle von Gizual oder eine interaktive Zeitleiste eingegeben werden. Dateien können über
Dateinamen, Erweiterungen, oder durch einen performanten Verzeichnisbaum ausgewählt werden.

Die Visualisierung basiert auf dem Konzept eines Information Murals, bestehend aus Auflistungen von
Quellcode, die in einem Raster auf einer interaktiven zweidimensionalen Leinwand platziert sind. Die
Leinwand kann mit dem Mausrad oder per Touch-Geste vergrößert oder verkleinert werden. Einzelne
Dateien werden in dem Raster als Kacheln repräsentiert. Einzelne Zeilen werden als farbige Bänder
innerhalb einer Kachel dargestellt. Zwei Arten der visuellen Kodierung stehen zur Verfügung: eine
basiert auf dem Alter der Zeile und die andere auf dem letzten Autor der Zeile.

Das Frontend ist in TypeScript geschrieben und nutzt React und MobX. Die Mantine-Bibliothek
fungiert als die Basis für einzelne Komponenten in der Benutzeroberfläche, während SCSS für die
Anpassung des Stils genutzt wird.

Contents

Contents iv

List of Figures vi

List of Tables vii

List of Listings ix

Acknowledgements xi

Credits xiii

1 Introduction 1

2 Visualising Software 3
2.1 Information Visualisation . 3
2.2 Software Visualisation. 5
2.3 Visualising Software Repositories . 5

3 Frontend Web Design 11
3.1 The Modern Web Browser . 11
3.2 HTML . 12

3.2.1 Semantic Markup . 12
3.2.2 ARIA . 12

3.3 CSS . 14
3.3.1 CSS Syntax . 14
3.3.2 CSS Origin Types . 14

3.4 The Rendering Pipeline . 16
3.4.1 Parsing and Tokenisation . 16
3.4.2 Value Computation . 16
3.4.3 Cascade . 17
3.4.4 CSS Object Model (CSSOM) 17
3.4.5 Layouting . 17
3.4.6 Painting . 19
3.4.7 Composition . 19

i

3.5 JavaScript . 19
3.6 TypeScript . 20
3.7 Frontend Frameworks . 21

3.7.1 React . 22
3.7.2 Angular. 23
3.7.3 Vue . 23
3.7.4 Svelte . 23
3.7.5 Choosing React . 24

3.8 Building Web Applications . 24
3.8.1 Build Tools and Bundlers . 24
3.8.2 Package Managers . 25

3.9 Responsive Web Design . 26

4 Gizual Architecture 31
4.1 Architectural Requirements . 31

4.1.1 Non-Blocking . 31
4.1.2 Asynchronicity . 32
4.1.3 Parallel Execution . 32
4.1.4 Separation of Concerns . 32

4.2 Architectural Overview . 32
4.2.1 Explorer Pool . 34
4.2.2 Renderer Pool . 34
4.2.3 SQLite Database . 34
4.2.4 UI Controllers . 34
4.2.5 UI Components . 35
4.2.6 Maestro. 35

4.3 State Management . 36
4.3.1 Introduction to MobX . 36
4.3.2 State Management in React. 36
4.3.3 Advanced Reactivity Within MobX. 37
4.3.4 MobX Usage in Gizual . 39

4.4 Query Interface . 39
4.4.1 Scope commit-range . 39
4.4.2 Scope files . 39
4.4.3 Scope visualisation . 41

5 Gizual User Interface 43
5.1 Design Principles . 43
5.2 Design Tooling . 44

5.2.1 Figma . 44
5.2.2 User Interface Component Libraries 45

ii

5.3 User Interface Components in Gizual 47
5.4 Previous Design Iterations . 51
5.5 Current User Interface. 52
5.6 Designing for Interactivity . 53

6 Gizual Canvas 55
6.1 File Tiles . 55
6.2 Masonry Canvas . 60

6.2.1 Canvas Interactivity . 60
6.2.2 Canvas Minimap . 60
6.2.3 Canvas Legend . 60
6.2.4 Author Panel . 60

7 Visual Encoding in Gizual 63
7.1 Colour Spaces. 63
7.2 Gizual Colour Manager . 64

8 Query Bar 67
8.1 Query Modules . 67

8.1.1 The Time Module . 67
8.1.2 The File Module . 69
8.1.3 The Vis Module. 69

8.2 Implementation Details . 71
8.2.1 Query Editor . 71
8.2.2 Query Assistant . 75

8.3 Previous Iterations and Concepts . 76
8.3.1 QB1: Single Input Field . 76
8.3.2 QB2: Advanced Query Editor. 76
8.3.3 QB3: Hybrid Combination of Modules and JSON Input 76

9 Selected Details of the Implementation 79
9.1 Interactive SVG Timeline . 79

9.1.1 Commit Timeline . 79
9.1.2 Time Ruler . 79
9.1.3 Range Selector . 80

9.2 File Tree. 80

10 Outlook and Future Work 83

11 Concluding Remarks 85

A User Guide 87
A.1 Opening a Repository . 87

iii

A.2 Navigating the User Interface . 87
A.3 Modifying the Query . 89

A.3.1 Customising the Commit Range 90
A.3.2 Customising Selected Files . 90
A.3.3 Customising the Visualisation. 90

A.4 Canvas Navigation . 91
A.5 Inspecting Individual Files . 94
A.6 Export . 94

B Developer Guide 95
B.1 Development Stack . 95
B.2 Project Structure . 95

B.2.1 Gizual API . 95
B.2.2 Gizual App . 96
B.2.3 Maestro. 96
B.2.4 Explorer . 96
B.2.5 Renderer . 97

B.3 Data Flow . 97
B.4 Build and Deploy . 97

Bibliography 99

iv

List of Figures

2.1 Nightingale’s Rose Diagram . 4
2.2 Seesoft . 6
2.3 Seesoft: Fix-on-Fix Mode . 6
2.4 Spider Sense: Seesoft View . 7
2.5 Spider Sense: Treemap View . 8
2.6 RepoVis . 8
2.7 GitHub Contributors Statistics: Gizual Repository 9

3.1 Rendering Pipeline: Flow Chart . 16
3.2 Frontend Frameworks: Keyword Trend Analysis 21
3.3 NPM Trends: Bundlers . 25
3.4 Responsive Website . 28
3.5 Responsively App . 29

4.1 Software Architecture of Gizual . 33
4.2 Sequence Diagram for getFileContent() 34
4.3 Maestro Controller. 35
4.4 Visualisation Types . 42

5.1 Gizual User Interface . 44
5.2 Gizual User Interface: Design Theme in Figma 45
5.3 Gizual User Interface: POC1 (SS2022) 51
5.4 Gizual User Interface: POC2 (WS2022) 52
5.5 Gizual User Interface: Main Regions . 53

6.1 The Gizual Canvas. 56
6.2 Traditional Blame Output . 57
6.3 Line and Mosaic Visualisation Tiles . 57
6.4 Masonry Canvas: SVG Export . 61
6.5 Masonry Canvas: Minimap . 62
6.6 Masonry Canvas: Legend . 62
6.7 Masonry Canvas: Author Panel . 62

7.1 Author Panel . 66

v

8.1 Query Bar . 68
8.2 Query Bar: Module Arrangement . 68
8.3 Query Bar: Range by Date Module . 68
8.4 Query Bar: Range by Revision Module . 68
8.5 Query Bar: Time Module with Timeline . 68
8.6 Query Bar: File Module . 68
8.7 Query Bar: Vis Module. 69
8.8 Query Bar: Vis Type Dialog . 70
8.9 Query Bar: Query Editor . 74
8.10 Query Assistant . 75
8.11 Query Bar: QB1 . 76
8.12 Query Bar: QB2 . 77
8.13 Query Bar: QB3 . 77

9.1 Timeline Component . 80
9.2 File Tree Component . 81

A.1 Gizual: Welcome Screen . 88
A.2 Gizual User Interface: Main Regions . 89
A.3 Query Bar: Module Arrangement . 89
A.4 Time Module and Timeline . 90
A.5 Visualisation Type Dialog . 91
A.6 Canvas . 92
A.7 Palette by Author Visualisation . 93
A.8 File Tile . 93
A.9 Source Editor . 94

B.1 Software Architecture of Gizual . 98

vi

List of Tables

3.1 CSS Selector Specificity. 15
3.2 Parsed and Tokenised CSS . 17
3.3 CSS Value Computation. 18
3.4 CSS Style Cascade. 18

vii

viii

List of Listings

3.1 HTML5: Minimal Example . 12
3.2 HTML5: No Semantic Markup . 13
3.3 HTML5: Valid Semantic Markup . 13
3.4 CSS Syntax . 15
3.5 CSS Syntax: Button . 17
3.6 JavaScript Example . 19
3.7 TypeScript vs. JavaScript . 20
3.8 Example package.json file . 26

4.1 MobX Example: ToDo App . 37
4.2 MobX Example: ToDo App With React State 38
4.3 MobX Example: ToDo App With MobX State. 38
4.4 Maestro State Management. 40
4.5 Query Schema . 41

5.1 Gizual’s Workspace Structure . 47
5.2 Button Component: SCSS File . 48
5.3 Button Component: TypeScript File . 49
5.4 DatePicker Component: TypeScript File 50

6.1 Base Renderer Interface . 58
6.2 File Lines Renderer . 59

7.1 ColorManager Class . 65

8.1 Query Bar Source Code Structure . 71
8.2 BaseQueryModule Component . 72
8.3 ModuleProvider Component . 73

B.1 Gizual’s Project Structure . 96

ix

x

Acknowledgements

This thesis would not exist without the continuous support of my friends and family, for which I am
eternally grateful. I want to thank my supervisor, Prof. Keith Andrews, for providing his guidance and
knowledge throughout the entire duration of this thesis.

Furthermore, I want to thank my dear friend and colleague, Stefan Schintler, for the seamless collab-
oration on our shared project implementation of Gizual, and for providing extra motivation and keeping
me accountable during my studies and throughout this thesis.

Ich danke meinen Eltern für die bedingungslose Unterstützung während des gesamten Studiums, und
dafür, dass sie immer für mich da sind.

Zuletzt möchte ich mich bei all meinen Freunden bedanken. Mein besonderer Dank gilt dabei Lukas,
Eileen und Lisa, die mir während einer schwierigen Zeit in meinem Privatleben den nötigen Halt gegeben
haben.

Andreas Steinkellner

Graz, Austria, 09 Dec 2024

xi

xii

Credits

I would like to thank the following individuals and organisations for permission to use their material:

• The thesis was written using Keith Andrews’ skeleton thesis [Andrews 2021].

• Figure 2.2 was extracted from Eick et al. [1992] and is used under §42f.(1) of Austrian copyright
law.

• Figure 2.3 was extracted from Eick et al. [1992] and is used under §42f.(1) of Austrian copyright
law.

• Figure 2.4 was extracted from N. H. Reddy et al. [2015] and is used under §42f.(1) of Austrian
copyright law.

• Figure 2.5 was extracted from N. H. Reddy et al. [2015] and is used under §42f.(1) of Austrian
copyright law.

• Figure 2.6 was extracted from Feiner and Andrews [2018] and is used under §42f.(1) of Austrian
copyright law.

• Figure 3.2 was obtained from Stack Overflow [2024b] and is used under §42f.(1) of Austrian
copyright law.

• Figure 3.3 was obtained from Potter [2024] and is used under the terms of Creative Commons
Attribution 4.0.

• Chapter 4 and Appendix B were written jointly with Stefan Schintler.

xiii

xiv

Chapter 1

Introduction

The web is a highly complex and dynamic environment. New technologies frequently transform the
way the web is used on a daily basis. Motivated by the possibilities of the web as a platform, an
increasing number of tools and applications try to reach a broader audience by harnessing the web not
only as a platform to host static content, but as a place in which to create truly dynamic applications.
With increasing support for native binaries through the use of WebAssembly [W3C 2024d], the web
is becoming a strong choice for developers around the world due to its widespread availability and
ease-of-access. Modern toolchains try to eliminate the performance drawbacks of crafting non-native
applications, allowing performance-critical tools to be created for the web.

This general shift in computing architecture makes the web an attractive target for information visualisa-
tion. In information visualisation, the characteristics of the human visual perception system are harnessed
to create intuitive visual presentations of abstract information spaces [Tominski and Schuhmann 2020;
Ware 2021; Andrews 2024]. Providing such visualisations on the web leads to visual experiences that
users can easily grasp within tools they already understand. This reduces the barrier to entry and provides
a sense of familiarity, allowing users to focus on the content rather than the tool or platform. Newspa-
pers recognised this phenomenon when they started adding interactive visualisations to their web pages,
offering novel insights into datasets that were otherwise difficult to grasp [McGhee 2010].

This thesis presents Gizual, a novel way to visualise Git software repositories on the web, with
an emphasis on ease-of-use, responsiveness, and high performance. Gizual is an open-source web
application written in TypeScript and Rust using React, WebAssembly, and other tools to visualise
arbitrary Git repositories. It uses the metaphor of hanging listings of the desired files in a repository on a
wall. Users can interact with a scalable and interactive canvas to focus on specific files in a repository, or
see the state of files within a branch on an interactive timeline element. To ensure that user data always
remains private, all processing is done locally by leveraging the power of web workers and WebAssembly.

The source code of Gizual is open-source and available on GitHub [Schintler and Steinkellner 2024].
A deployed version can be accessed at gizual.com. Whereas this thesis [Steinkellner 2024] focuses
on Gizual’s user interface, the companion thesis by Stefan Schintler [Schintler 2024] focuses on the
implementation of Gizual’s data layer, which enables browser-based exploration of Git repositories.

The main contribution of this thesis lies in the implementation of a user interface and frontend core,
which allows users to easily interface with the underlying data from the Git module. Standard HTML
and CSS techniques were leveraged to provide an easily maintainable and extendable core, conforming
to the latest accessibility standards. This thesis also introduces a custom implementation of a web worker
that renders the user’s desired visualisation either in an HTML canvas for high-performance interactivity,
or as an SVG files for easy export in a freely scalable format. An interchangeable set of query modules
assists users in choosing the appropriate visualisation for their desired set of files. An interactive timeline
displays commits over time.

1

https://gizual.com/

2 1 Introduction

Chapters 2 and 3 of this thesis discuss related work in the areas of software visualisation and frontend
web design. Chapter 2 introduces information visualisation and its connection to visualising software.
Chapter 3 explains the current state of frontend web design, including tools, concepts and frameworks
that are used to bring web applications to life.

The second part of this thesis, in Chapters 4 to 9, describes the original ideas and concepts applied in
Gizual. Chapter 4 gives an overview of the Gizual architecture and explains the tight connection between
Gizual’s data layer and user interface. Chapter 5 presents the user interface of Gizual and provides insights
into the various composite UI elements. Chapter 6 describes the interactive Canvas, the file tiles, and their
usage within the visualisation. Chapter 7 presents the visual encodings provided in the visualisation.
Chapter 8 explains the modular Query Bar, which handles user input. Chapter 9 provides a more detailed
explanation of both the interactive Timeline and the custom file tree. Finally, Chapter 10 looks ahead to
some potential future improvements and enhancements.

Chapter 2

Visualising Software

Software projects usually require a symbiosis of understanding both the domain of a problem and the
technological intricacies of crafting an elegant solution. Developers generally need to be able to work
with a wide variety of tools ranging from project management to source control utilities. Additionally, it
is fundamental that software engineers can mentally envision the project as a whole.

Since the inception of software engineering, researchers have tried to pinpoint a measure for success in
developing successful software products [Linberg 1999; Procaccino et al. 2022; Reel 1999], and generally
conclude with a multitude of different skills that the team and the individuals need in order for projects
to be completed in a timely manner. Often, problems with failing software development projects can be
traced back to poor communication, planning, budgeting, or management issues [Kaur and Sengupta 2011;
Bjørner 2009]. Proper and thoughtful management of software engineering workloads can be taxing on
project managers, because they sometimes lack a deep technical understanding of the underlying source
code. Software visualisation can increase mutual understanding of interdependencies, progress, metrics,
and issues. This chapter introduces the field of information visualisation and demonstrates its application
for software visualisation.

2.1 Information Visualisation
Information visualisation aims to provide visual support for understanding connections within complex
datasets. It is built around the fundamental properties of human perception, which determine how people
experience and understand the world around them [Eden 2005]. An early example was a chart created
by Florence Nightingale in 1856, when she was a nursing administrator of a British army hospital.
Nightingale conducted a study to understand how general sanitary conditions affected survival rates in
military hospitals [Small 2013]. In order to better convey her results that improved sanitary conditions
reduced the number of deaths due to preventable disease, she created a visualisation that would be more
easily digestible to readers, shown in Figure 2.1.

Visualisations more generally can be traced back around 4,500 years, with visualisations by the Meso-
potamians etched into clay tablets [Agosti et al. 2013]. In general, the field of information visualisation
gained a huge boost in popularity through the means of electronic devices, simplifying both the creation
and consumption of visual content. Newspapers, magazines, and ordinary websites alike are now using
visualisation techniques to analyse and present their data in more cohesive ways. With the widespread
adoption of mobile devices with powerful touch-screen navigation, additional layers of interactivity are
being added to visualisations.

Manovich [2011] proposes that information visualisation only relies on two core principles: reduction,
and the use of spatial variables. Reduction is the process of simplifying and reducing real-world objects,
people, or ideas to simple geometric shapes, such as circles, rectangles or triangles, and by encoding

3

4 2 Visualising Software

Figure 2.1: Florence Nightingale’s “rose diagram” visualisation of the reduction of deaths in military
hospitals due to preventable diseases with increasing sanitary standards. [Image obtained from the
Wellcome Collection and used under terms of the Public Domain Mark license.]

the connections between them as lines. Reduction can also be applied to the quantity of objects and
connections visible at a single point in time. Effective information visualisation should also consider the
limits of cognitive memory capacity.

The concept of spatial variables describes using properties such as position, size, shape, and curvature
to represent differences between data points and relationships. This definition is coherent with the use of
the Gestalt principles, and makes logical sense. More generally, the field of information visualisation is
closely intertwined with design, sharing common important properties and ideas such as layout, alignment
and visual coherence [Hu 2022]. Behrisch et al. [2018] conducted a study on 14 different subfields of
information visualisation, and concluded that simple clutter reduction might not be sufficient to increase
visualisation quality. Instead, they propose a set of techniques for each visualisation type that help
facilitate pattern recognition. For all fields related to information visualisation, creating recognisable
patterns seems to be a rewarding approach to making information accessible. An increasing focus
has also been on the generation of highly sophisticated infographics, usually used by newspapers or
magazines, which also heavily rely on these principles [Dur 2014]. Increasing amounts of available
information generally lead to an increasing need for techniques to condense key points and make them
easily digestible.

Unfortunately, it is out of scope for this thesis to describe the vast field of information visualisation and
the rich history of contributions that shaped it in more detail here. There are numerous resources that
serve as a starting point for further reading, such as Chen and Floridi [2013], Unwin [2020], IBM [2024],
or Behrisch et al. [2018].

Software Visualisation 5

2.2 Software Visualisation
Software visualisation aims to provide deeper insight into the structure of code, its authors, or to provide
possible hints about where to improve performance or optimise procedures. Petre and de Quincey [2006]
defines the term software visualisation as visualisations which use visual representations to make software
more visible. Knight and Munro [1999] propose the following definition: “Software visualisation is a
discipline that makes use of various forms of imagery to provide insight and understanding and to reduce
complexity of the existing software system under consideration.” A systematic literature review by Mattila
et al. [2016] found that the main applications for software visualisation are in understanding software
structure, behaviour, and evolution. According to their study, results are most often presented in graph or
hierarchical structures.

The field itself gained popularity when computer programs were becoming increasingly capable, but
their output were often just single-coloured rectangles on a screen. The main goal of software visualisation
then was to transform these patterns of structural data into a web of interconnected nodes, which feels
more natural for the brain to process [Price et al. 1992]. With modern computer hardware, visualisations
can be much more elaborate and transformative to the consumption of information, since content is no
longer constrained to fit into a two-dimensional plane. This can be especially useful when working
on datasets which change over time. Previous research has demonstrated the usefulness of introducing
multidimensionality to the output of software visualisation [Rainer 2010; Wettel and Lanza 2007; Marcus
et al. 2003], a technique that allows the exploration of data spanning multiple variables or dimensions.

In a meta-analysis by Merino et al. [2018], it was discovered that only 38% of proposed software visual-
isation tools include evaluation methodologies. The researchers identified that this lack of evaluation, or
the vague definition of visualisation-related goals, is a major source of failure for these tools. Supported
by this data, it appears to be highly beneficial to plan for evaluation of any given software visualisation
tool during its design stage.

2.3 Visualising Software Repositories
Since there are usually a number of metrics and data points behind each line of code in a typical software
repository, researchers have been looking for ways to visualise these additional metrics in addition to the
textual content of the line of code.

Seesoft was the first visualisation tool for software repositories. It was created by Eick et al. [1992],
and could analyse up to 50,000 lines of code simultaneously, combining various visualisation interactivity
techniques, such as binning and brushing. Instead of only rendering a static visualisation of the data, a
highly sophisticated graphical user interface allowed users to customise the output of the visualisation
according to their current needs. Seesoft and its derivatives are the main inspiration for the ideas proposed
in this thesis. As shown in Figure 2.2, Seesoft uses rectangular boxes to lay out files. Each of these file
boxes contains a number of strips corresponding to lines within the file. The colour of each strip is based
on the age of that specific line of code, with blue representing changes that were made a long time ago
(cold), and red representing changes that were made more recently (hot). Special modes allowed different
colouring algorithms to highlight other metrics of interest. The Fix-on-Fix mode, shown in Figure 2.3,
indicates which parts of the code were issued with bug fixes multiple times in a row.

In addition to being used as a tool to gain a general overview of the state of a source code repository,
Seesoft also contained functionality for detailed code profiling [Eick and Steffen 1992]. Further research
was conducted to confirm the positive influence of graphically displaying textual information in source
code repositories [Eick 1994].

Spider Sense was created to provide developers with a visualisation-backed toolkit for repository
activity analysis, automated testing, and development activities [N. H. Reddy et al. 2015]. It features a
Seesoft view, shown in Figure 2.4, where source code is displayed in a zoomed out overview and the lines

6 2 Visualising Software

Figure 2.2: The Seesoft tool by Eick et al. [1992]. Files are laid out as rectangular boxes, and each
coloured strip within a box represents a line of code. The colour of the strip is based on the
age of the line of code. Blue strips represent changes that were made long ago (cold). Red
strips represent more recent changes (hot). [Image extracted from Eick et al. [1992] and used under §42f.(1)
of Austrian copyright law.]

Figure 2.3: The Seesoft tool in Fix-on-Fix mode, proposed by Eick et al. [1992]. It highlights lines
within files which were changed multiple times in a row. [Image extracted from Eick et al. [1992] and used
under §42f.(1) of Austrian copyright law.]

Visualising Software Repositories 7

Figure 2.4: The Spider Sense Seesoft view of a Java source file, with lines of code corresponding
to a particular metric colour-coded in green. [Image extracted from N. H. Reddy et al. [2015] and used under
§42f.(1) of Austrian copyright law.]

of code corresponding to a particular metric are colour-coded in green. Spider Sense also has a treemap
view, shown in Figure 2.5, which displays an overview of the entire folder hierarchy of a project.

The RepoVis project [Feiner and Andrews 2018] featured a Seesoft-like visualisation and combined it
with full-text search for projects maintained in Git repositories. It can be seen in Figure 2.6. Sophisticated
legend and timeline components provided a rich user experience. Tooltips provided additional utility
through interactivity, and searching was available via full-text input or predefined tags. Similar to other
related projects in this field, repository analytics are best performed on small to medium size repositories.
Larger and more complex Git repositories impose a performance bottleneck on Git history parsing and
full-text search.

Gource produces an animated tree view of the change history within a Git repository [Caudwell 2010].
Active contributors float in proximity to the files they recently contributed to, and a dynamic camera
reframes the scene to focus on the most relevant sections.

Nowadays, some statistics and metrics developed years ago have been integrated into popular source
code repository management software, such as GitHub [GitHub 2024b], GitLab [GitLab 2024], or
Bitbucket [Bitbucket 2024]. For example, Figure 2.7 shows the contributor statistics of the Gizual source
code repository on GitHub. It gives an overview of the commits and total number of additions and
deletions within the repository by each contributor. Statistics like these can help with the onboarding
process of new developers, or give the team a general sense of code ownership within a project.

Sourcegraph [Sourcegraph 2024] takes this idea one step further and provides an entire code intelligence
platform to their users. The idea behind the product is to provide a sophisticated tool to facilitate all sorts of
analysis operations on a given source directory, with support for full text search, detailed custom-tailored
statistics, and a powerful query language.

Although all of these programs and utilities provide an abundance of data, a study by Merino et al.
[2016] found that developers are often still hesitant to use dedicated visualisation tools for their software

8 2 Visualising Software

Figure 2.5: The Spider Sense treemap view for a set of Java files in a repository, displaying an
overview of the entire folder hierarchy. [Image extracted from N. H. Reddy et al. [2015] and used under §42f.(1)
of Austrian copyright law.]

Figure 2.6: RepoVis provided a visual overview of files in a Git repository, overlaid with full-text
search results. [Image extracted from Feiner and Andrews [2018] and used under §42f.(1) of Austrian copyright law.]

Visualising Software Repositories 9

Figure 2.7: GitHub Contributors statistics for the Gizual repository, taken on 30 Jun 2024, providing
an overview of commits and the total number of additions and deletions performed by each
contributor. [Screenshot created by the author of this thesis.]

development needs. They found that often these visualisations tend to be solutions to problems which
matter little to actual developers. Few tools cover the issues of implementation rationale and intent. Many
visualisations instead focus on providing data about project dependencies and source code history, which
may be of more interest to project managers than developers. According to this study, it would seem that
focusing on visualisations that directly target software comprehension could provide engineers with a
more immediate tangible benefit. However, models proposed for increased software comprehension, like
Pacione et al. [2004] or Hawes et al. [2015] often fail to be adopted by software engineers [Duru et al.
2013], possibly due to the added complexity of their integration within the hectic development workflow.

10 2 Visualising Software

Chapter 3

Frontend Web Design

Web-based tools have become increasingly popular in recent years. The web as a platform no longer just
serves static web pages, it now contains a variety of content, ranging from typical media all the way to tools
and applications for scientific or professional work. The line between web-based tools and native tools
is blurring, as more and more native features become available in a web-based environment. Initiatives
like the Web Standards Project (WaSP) [WaSP 2024] laid out the foundational work of standardising the
web and the features users have come to expect. Additionally, official groups like the IETF [IETF 2024]
and the World Wide Web Consortium [W3C 2024c] have been regulating the development and scope of
new additions to the web for many decades. An impressive window into this standardisation process was
provided during the introduction of the web for mobile devices, where standards had to be introduced
quickly and efficiently [Ibrus 2013].

A web browser is the client software (frontend) used to access a web server (backend). Web servers can
host both traditional websites and web applications. This chapter discusses frontend web development,
with a focus on frameworks and developer tooling.

3.1 The Modern Web Browser
With the increasing prevalence of the web as an interactive application platform, web browsers have
needed to incorporate more and more functionality into their repertoire. Nowadays, with WebAssembly
[W3C 2024d] bringing low-level code execution to the browser, developers are able to access features
from the operating system that were previously only available to developers of native applications.

Web browsers combine an optimised low-level rendering engine with a graphical user interface. The
most frequently used web browser is Google Chrome with a market share of around 65%, followed by
Safari (~18%), Edge (~5%), and Firefox (~3%) [StatCounter 2024], with many browsers often based on
the same underlying browser engines. The browser’s rendering engine is responsible for interpreting the
source code and assets of a website and transforming them into visual and interactive experiences for
users. This process is quite complex and usually consists of multiple steps. This thesis does not go into
detail about individual rendering engines. Section 3.4 provides an overview of the rendering pipeline,
but detailed discussion of low-level operating system code are omitted for brevity.

The modern web could not exist in its current form without the three pillars of web development:
HTML defines the content and structure of the page, CSS is responsible for the visual appearance of page
elements, and JavaScript adds behaviour and interactivity via code execution.

11

12 3 Frontend Web Design

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8" />
5 <title>Title of the document</title>
6 </head>
7 <body>
8 <p>Content of the document.</p>
9 </body>

10 </html>

Listing 3.1: A minimal example of valid HTML5 syntax.

3.2 HTML
The Hypertext Markup Language (HTML) is the predominant language to structurally define documents
and media elements for the use within a web browser. It is in continuous development through the World
Wide Web Consortium (W3C) [W3C 2024c] and the Web Hypertext Application Technology Working
Group (WHATWG) [WHATWG 2024b], and is now maintained as a “living standard” [WHATWG
2024a]. Listing 3.1 provides a minimal example of a valid HTML5 document. Structure is created by
nesting elements within other elements. All elements have a starting tag and a corresponding closing
tag, except for a small number of so-called void elements, which never have content or children. In such
cases, the closing tag can be omitted, by prepending the end of the element tag with a forward slash.
Some examples of valid HTML elements are the root <html> element, the <head> which usually contains
document meta-data, and the <body>, which is usually filled with the content of the page, nested in smaller
elements.

3.2.1 Semantic Markup

HTML markup can be written in a variety of ways. The most generic HTML elements are <div> and
, which inherently do not convey any meaning beyond containing other elements. Creating a
web page or application with only these types of elements is possible, but in the process of doing so,
the benefits of the highly structured nature of HTML are lost. In order to create good and accessible
web pages, developers are encouraged to use semantically correct elements for the types of content they
are laying out on a page [MDN 2024n]. In total, there are currently 115 functional elements, with an
additional 27 marked as deprecated or obsolete [MDN 2024i]. Listing 3.2 shows an example of a simple
HTML5 page with no semantic meaning conveyed, whereas Listing 3.3 contains the same content, but
follows the principle of good semantic markup.

In the example in Listing 3.3, the <nav> element is used to properly define the region which will contain
the buttons to navigate from page to page. The <button> element is used instead of the generic <div>
element, which automatically provides information to the user that the element can be interacted with.
Finally, the <section> element creates a new block that can be properly parsed as a logically cohesive
block, and the individual header and paragraph elements properly structure the content of the page. Whilst
technically both of the provided examples can be styled to look exactly the same, the browser handles
default styling automatically when provided with proper semantic markup. Section 3.3 goes into more
detail about the styling of elements.

3.2.2 ARIA

An increasingly important topic for creating inclusive computing environments is the adherence to the
Accessible Rich Internet Applications (ARIA) standard. ARIA defines rules and techniques to ensure

HTML 13

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8" />
5 <title>Example without semantic markup</title>
6 </head>
7 <body>
8 <div>
9 <div>Home</div>

10 <div>About</div>
11 </div>
12
13 <div>
14 <div>This is a heading.</div>
15 <div>This is a sub-heading.</div>
16 <div>This is the content of the page.</div>
17 </div>
18 </body>
19 </html>

Listing 3.2: A minimal example of valid HTML5 syntax with no semantic markup.

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8" />
5 <title>Example with semantic markup</title>
6 </head>
7 <body>
8 <nav>
9 <button>Home</button>

10 <button>About</button>
11 </nav>
12
13 <section>
14 <h1>This is a heading.</h1>
15 <h2>This is a sub-heading.</h2>
16 <p>This is the content of the page.</p>
17 </section>
18 </body>
19 </html>

Listing 3.3: A minimal example of valid HTML5 syntax with proper semantic markup. Elements
like <nav>, <button>, <section>, and <h1> convey semantic meaning.

14 3 Frontend Web Design

web pages and applications are equally accessible to people with various forms of disabilities, and is
generally considered a supplement to writing semantically correct markup in HTML [MDN 2024a]. The
World Wide Web Consortium (W3C) provides a detailed list of ARIA recommendations, ranging from
very generic advice such as following colour contrast rules, all the way to specific elements that uniquely
benefit people requiring screen readers [W3C 2024a]. For developers, it is often difficult to understand
when to incorporate special ARIA properties in their markup, and to even know which HTML element
or ARIA property to use in a given circumstance. Instead of providing additional HTML elements,
the ARIA specification defines a set of additional HTML attributes and properties, which can be used
to enhance existing HTML elements with additional accessibility information. Good web design with
accessibility in mind can be more difficult to achieve initially, but will often also benefit people without
any disabilities. The interested reader is referred to further literature, such as Pickering [2016].

Even years after the initial draft of the ARIA specifications, many websites still remain partially
unusable for disabled people [Abuaddous et al. 2016]. Some websites even struggle with accessibility
issues despite, or perhaps because they are, using ARIA attributes, but in a non-standard way [Matuzovic
2022; Martins and Duarte 2023]. Generally, it is preferable to only use ARIA attributes in situations where
semantic HTML does not provide enough context for assistive technologies or people with disabilities to
navigate the page properly.

3.3 CSS
HTML only provides content and semantic structure. It does not incorporate any style customisations for
elements. In order to create unique and visually distinct user experiences, Cascading Style Sheets (CSS)
are used to apply visual styling to semantic content on a page. To properly understand the intricacies of
modern CSS, the concept of style application order must be introduced. This section gives an overview of
basic CSS rules, the order in which they are typically applied, and scratches the surface of the underlying
rendering pipeline to explain how these rules are transformed into pixels on a screen.

3.3.1 CSS Syntax

A typical CSS rule includes a target, which can be anything on the page, and a set of style rules to apply
onto that target [MDN 2024g]. Targets are selected via CSS selectors, special instructions that allow
developers to target one or many elements at once, and those selectors can be grouped together to select
multiple targets at once. Listing 3.4 shows a typical way of styling an HTML <button> element, with
three distinct ways to target the button. All three rules target the same button. However, they are not
applied in document order (top to button), but rather in order of rule specificity.

Specificity is a required concept to enhance the selection of CSS targets. In short, the higher a CSS
selector’s specificity, the later it is applied in the rendering pipeline. This means it is applied after rules
with a lower specificity, overwriting them. In the example in Listing 3.4, the selector button has the
lowest specificity and is applied first, the .button-class selector is applied next, and the #button-id
selector has the highest specificity and is applied last. Inline styles that are embedded directly into
the element tag have an even higher specificity, and using the !important keyword creates the highest
possible specificity in the chain. For each CSS rule, a specificity score is calculated by iterating through
the selectors and assigning a numerical value based on the scores shown in Table 3.1.

3.3.2 CSS Origin Types

CSS can come from three distinct origin types: user-agent stylesheets, author stylesheets and user
stylesheets [MDN 2024k]. User-agent stylesheets have the least priority and are generally provided by
the browser for default styling. In some browsers, they can be customised or modified to achieve a
different default behaviour that applies to all web pages viewed with that browser. In modern web design,

CSS 15

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <style>
5 button {
6 background-color: red;
7 }
8
9 #button-id {

10 background-color: green;
11 }
12
13 .button-class {
14 background-color: blue;
15 }
16 </style>
17 </head>
18 <body>
19 <button id="button-id" class="button-class">Click me!</button>
20 </body>
21 </html>

Listing 3.4: An example HTML page with a button and inline styles to apply to that button, in
order to showcase both CSS rule syntax and target selector specificity. The rule with the highest
specificity (in this case, the ID selector #button-id) wins.

Selector Specificity Value

Universal selector (*) 0
Element or pseudo-element 1
Class, pseudo-class or attribute 10
Identifier 100
Inline style attribute 1,000
!important keyword 10,000

Table 3.1: The specificity of CSS selectors.

however, it is quite rare to see web applications which solely rely on user-agent stylesheets, since there are
visual differences between different browsers. Pages which use proper semantic markup, as detailed in
Section 3.2.1, generally benefit from the included user-agent stylesheets, because they provide a suitable
default for these elements.

Author stylesheets come next in the priority hierarchy, and they are the most common source of modern
CSS, written by web developers and designers to accompany their HTML markup. A commonly used
practice by developers is to normalise the default CSS behaviour to a consistent default and then to apply
custom styling on top of that.

User stylesheets are custom overrides that apply on a per-page basis and allow the end user of a web
page to modify the style of elements on the page. User stylesheets are often used by web developers to
test out design ideas before they are included in author stylesheets. The user stylesheets of a page can be
modified with developer tooling, such as the built-in developer console in a standard web browser.

These three origin types define the basis of CSS rule application order. Stylesheets are normally parsed
from top to bottom, and later styles overwrite the rules that came before, whilst regarding the specificity
of the selectors, as explained in the previous section. Unfortunately, sometimes this application order

16 3 Frontend Web Design

 Parsing / Tokenisation Value Computation Cascade

 CSSOM

 Layouting Painting Composition

Figure 3.1: Simplified flow chart of the rendering pipeline in a modern web browser. The pipeline
consists of seven steps, starting with the parsing and tokenisation of CSS, followed by value
computation, cascade, CSSOM creation, layout calculations, painting, and finally composition.
[Diagram created by the author of this thesis.]

is undesired or not sufficient to define the target style of an element. The !important modifier can be
added to any valid CSS rule to hoist the application of that rule further down the pipeline, breaking out
of the general cascade. Recently, modern browsers all gained support for a new feature in CSS called
cascade layers [MDN 2024b], which allows for more fine-grained control of CSS application by providing
user-defined layers which can be ordered in any way.

To properly understand the concept of origin types and specificity, the following section provides a
brief introduction to the rendering pipeline and the way in which a web browser transforms CSS rules
into applicable styles.

3.4 The Rendering Pipeline
Browsers have become very sophisticated and efficient at parsing and applying CSS through a streamlined
rendering pipeline [Irish and Garsiel 2011; Whitworth 2018; Andrew 2020]. This rendering pipeline
provides the functionality of converting code, usually HTML, CSS, and JavaScript into rendered pixels
on a screen. Figure 3.1 illustrates the typical sequence of seven steps within the rendering pipeline in a
simplified and condensed flow-chart.

3.4.1 Parsing and Tokenisation

Before the CSS can be properly interpreted, it is parsed and tokenised. Throughout this process, an internal
representation of all individual CSS rules is created. During this step, all shorthand CSS properties that
internally map to one or many properties at once are resolved. The CSS in Listing 3.5 is transformed to
the internal representation displayed in Table 3.2.

3.4.2 Value Computation

The next step in the pipeline deals with value computation, and transforms all values into their standardised
unit equivalent. Considering the example provided in Table 3.2, the value for the font-size property
will be transformed from 2em to the standardised value of 32px. Additionally, all values containing CSS
computations are resolved, floating-point values are rounded, and viewport units are translated into pixel
values. Table 3.3 shows a few example values and their computed output after this step.

The Rendering Pipeline 17

1 button {
2 background: green;
3 border: 1px solid red;
4 font-size: 2em;
5 }
6
7 .my-button {
8 background-color: blue;
9 }

Listing 3.5: Example CSS syntax for a simple button.

Selector Property Value

button background-color rgb(0,255,0)
button border-width 1px
button border-style solid
button border-color rgb(255,0,0)
button font-size 2em
.my-button background-color rgb(0,0,255)

Table 3.2: The parsed and tokenised CSS from the rules in Listing 3.5.

3.4.3 Cascade

The tokenised and parsed values are now fed into the cascade step, where the rules outlined in Sec-
tions 3.3.1 and 3.3.2 are applied to extend the internal representation with information about rule
specificity and document order. After this step, the internal representation of the example defined in
Listing 3.5 is shown in Table 3.4. In a real example, the styles defined in the user-agent stylesheet would
need to be considered as well, but for simplicity, they are not shown in the table.

3.4.4 CSS Object Model (CSSOM)

After the cascade step, the browser knows exactly which styles apply to which element on the page in
what order. All of this information is now stored in the CSS Object Model (CSSOM) [MDN 2024f]. This
representation keeps track of the current values and allows developers to later manipulate each of these
rules with JavaScript.

3.4.5 Layouting

After every element has an assigned style, the next step is layouting. For each element, boxes are created.
Every element within a web page is placed in a box, and all boxes support common properties, such as
margins, paddings, or content-fit properties. During the creation of the layout boxes, the CSS properties
that apply to positioning are considered, and the final size of each box is reported back to the parent node
in the DOM tree. As soon as floating elements are introduced, an additional measurement step is required
to report minimum and maximum dimensions to the parent nodes as well.

In order to properly deal with blocks of content which can vary in size, the browser performs a special
layout calculation to measure the size of all children in infinite space, and then calculate the minimum
and maximum size from there [Whitworth 2018]. The flexible children are then fitted according to their
respective properties, and the layout calculation can proceed with a positioned block.

18 3 Frontend Web Design

Specified CSS Value Computed Value

font-size: 1em font-size: 16px
width: 50% width: 50%
width: 123.456789px width: 123.46px
height: calc(8px + 1rem) height: 24px
height: 50vh height: 800px

Table 3.3: Some examples of initial CSS values and their computed sizes after value computation.

Selector Property Value Specificity Origin Document Order

button background-color rgb(0,255,0) 1 1 0
button border-width 1px 1 1 1
button border-style solid 1 1 2
button border-color rgb(255,0,0) 1 1 3
button font-size 2em 1 1 4
.my-button background-color rgb(0,0,255) 10 1 5

Table 3.4: The resulting internal representation from the CSS outlined in Listing 3.5 after the cascade
step.

3.4.5.1 CSS Flexible Box Layout (Flexbox)

Some layouts are quite difficult to create with the traditional box method, which is why the CSS Flexible
Box Layout with the display:flex property was introduced in 2018 [W3C 2018]. Its aim is to introduce
a more flexible model for positioning elements of variable size. It facilitates this by providing simple
ways of distributing size among children at the cost of omitting some document-centric properties that
are present in display:block mode. The defining feature of this layout is its ability to define an item as
flexible, which means it alters its width and height to fit the remaining space in the main dimension.

In this context, the main dimension is the axis in which the items are laid out, and it can either be row or
column. The property that controls this behaviour is flex-direction. Additionally, the flex-wrap property
controls if there should be any wrapping of elements, if the size of the container in the main dimension
would overflow. Both the flex-direction and flex-wrap properties can be assigned simultaneously with
the flex-flow shorthand. The order property controls the order in which flex items appear in the container.
It defaults to document order, meaning that items that are defined first in the HTML are positioned first,
but by providing an integer value to this property, the default ordering can be overwritten.

To control the flexibility of items, the flex-grow property determines how much the item will grow in
relation to the other flex items. Similarly, the flex-shrink property determines how much the item will
shrink in relation to the other flex items. Finally, the flex-basis property determines the main size of a
flex item before free space distribution according to the other properties. The behaviour of this property
is similar to setting width or height in the main dimension of the item.

3.4.5.2 CSS Grid Layout

CSS Grid layout was first proposed in 2011 [W3C 2011], as a better alternative to position elements
without having to rely on HTML tables, but was only fully implemented by modern web browsers
recently. At its core, CSS grid still resembles HTML tables, as it also works with columns and rows
for managing items. By defining grid-template-columns, an element set to display:grid is assigned
a fixed set of columns. Row behaviour can be adjusted by specifying grid-template-rows. Column
or row information can also be automatically determined by the browser, if the grid-auto-columns, or

JavaScript 19

1 function updateDOM() {
2 var content = document.querySelector("#content");
3 if (!content) return;
4
5 content.setAttribute("style", "overflow: scroll");
6 content.innerHTML = "Hello World! I have been replaced by JavaScript content";
7 }
8
9 updateDOM();

Listing 3.6: Example JavaScript function which sets the content within a HTML div element, and
applies a new style.

grid-auto-rows properties are used instead. Descendant elements can target a specific column or row
inside the grid with the grid-column or grid-row properties. Both CSS Grid and CSS Flexbox provide
developers with powerful tools to create responsive web applications that can dynamically adjust, based
on the available viewport dimensions.

3.4.6 Painting
After layouting, every DOM node has a fixed size and can be positioned appropriately, but nothing has
been painted on the screen yet. In the painting step, each element is rendered to the screen in the following
order: background > border > content. After this step, each element is converted into a bitmap, which
is ultimately the representation that the browser paints to the screen. The stacking context which defines
object culling is determined through the DOM hierarchy and the additional CSS property z-index.

3.4.7 Composition
In the final composition step, layers are created and then rendered to the screen. Each layer contains a
number of bitmaps that are already evaluated, positioned, and painted. Composition is commonly done
on a separate compositor thread, which allows for high-performance animations, since entire layers can
be shifted around with minimal computational effort before being rendered to the screen.

3.5 JavaScript
JavaScript (JS) is a scripting language for the web, used on billions of pages around the world, and is one
of the most widely used programming languages. Its initial release version was created within a few days
by Brendan Eich, in order to include dynamic code into otherwise static web pages, and was released
in 1995 [Wirfs-Brock and Eich 2020]. Whilst the fundamentals of the language still remain partially
intact, modern JavaScript has evolved over the past decades to incorporate more robust and error-safe
methods to write dynamic code for web applications. Similar to HTML and CSS, features and aspects of
the language were quickly standardised, with the driving force being the Ecma International organisation
[Ecma 2024a]. Their standardised version of JavaScript is called ECMAScript [Ecma 2024b], and the
two terms are commonly used synonymously.

The most common way to interface with a web page using JavaScript is by using the Document Object
Model (DOM) API [MDN 2024h; W3C 2024e]. The DOM API provides an in-memory structural
representation of the web page, which enables read and write access to the elements within it. The API
is maintained by the World Wide Web Consortium (W3C) [W3C 2024c]. Listing 3.6 shows an example
JavaScript function to manipulate an element of the DOM by modifying attributes and setting its inner
HTML to custom content.

With the rise of web frameworks, JavaScript was often used quite heavily for general page layout or

20 3 Frontend Web Design

1 interface User {
2 name: string;
3 age: number;
4 }
5
6 function printUserTyped(user: User) {
7 console.log("Name:", user.name);
8 console.log("Age:", user.age);
9 console.log("Address:", user.address); // Static type error

10 }
11
12 function printUserUntyped(user) {
13 console.log("Name:", user.name);
14 console.log("Age:", user.age);
15 console.log("Address:", user.address); // Runtime error, no type information
16 }

Listing 3.7: Comparison of a typed function in TypeScript to an untyped function in plain JavaScript.
The typed function throws a static error at compile time, whereas the untyped function will throw
an error at runtime.

interaction. This often lead to applications that were either slow to load or unusable without JavaScript.
A common metric to measure the computational load on a given web page is to measure the time it takes
the browser to do the Largest Contentful Paint (LCP) [W3C 2024b]. Roughly speaking, it measures the
time it takes for the browser to finish painting a large portion of the page, which most likely corresponds
to a meaningful document change for the user. Optimising for LCP requires minimising initial JavaScript
loading times, which can be done by splitting large chunks of code into more manageable snippets that
load on demand, or by reducing the computational complexity of the project. It is often said that the
best way to handle JavaScript on a web page, is to only use it for things that absolutely require it, and
handle all other interactions with HTML and CSS, if possible. This technique is commonly referred to
as progressive enhancement [MDN 2024m], and it revolves around designing functional sites which still
work when JavaScript is disabled.

3.6 TypeScript
TypeScript (TS) is an extension of the ECMAScript language, with the goal of adding static typing to
improve the general developer experience and minimise errors [Microsoft 2024b]. It is developed and
maintained by Microsoft and version 1.0 was first released in 2014 [Turner 2014]. The main benefit
of using TypeScript as a web developer comes from the fact that many mistakes can be caught before
runtime, which can speed up development significantly and create better code understanding [Bogner
and Merkel 2022]. Additionally, it can help reduce general code smells, a metric to indicate negative
software quality attributes [Alkharabsheh et al. 2018]. It also enables code editors and IDEs to implement
sophisticated code completion.

Listing 3.7 highlights the key difference between typed and untyped functions that print data to the
console. In the typed version of the function, accessing an undefined element within the user object is
not allowed and results in a static compile-time error. In the untyped version, the browser will happily
execute the code and then throw a runtime error instead.

According to a recent paper by Reid et al. [2023], 73.7% of the code snippets in NPM documentation
contain errors, a number that can be reduced drastically to 25.1% after running the snippets through
the TypeScript compiler. This demonstrates the power of static code analysis quite impressively, and is
consistent with other literature on the topic [Louridas 2006; Bardas 2010].

Frontend Frameworks 21

2010 2012 2014 2016 2018 2020 2022 2024

Year

0.00%
0.50%
1.00%
1.50%
2.00%
2.50%
3.00%
3.50%
4.00%
4.50%
5.00%
5.50%
6.00%
6.50%
7.00%

%
 o

f S
ta

ck
 O

ve
rfl

ow
 q

ue
st

io
ns

 th
at

 m
on

th
Tag
reactjs
angularjs
angular
vue.js
vuejs3
svelte

Figure 3.2: Comparison of keyword occurrence of the top frontend frameworks on Stack Overflow.
[Image obtained from Stack Overflow [2024b] and used under §42f.(1) of Austrian copyright law.]

On the flip-side, whilst adding TypeScript to a project can significantly reduce code smells [Bogner and
Merkel 2022], it adds complexity to the development process. Whilst JavaScript files can be embedded
into an HTML document without further processing, TypeScript files require an additional transpilation
step, which performs the static analysis and produces JavaScript files that can be embedded normally.
Since this process is usually done on a per-file basis, it is common practice to use package managers such
as npm [npm 2024], yarn [yarn 2024a], pnpm [pnpm Contributors 2024] or similar tools to manage project
dependencies and handle static task execution. The process of transforming loosely coupled source code
files into usable web pages will be explained in Section 3.8.1.

3.7 Frontend Frameworks
Frontend frameworks have markedly changed the typical flow of web development. They provide
structural assistance to speed up the development of feature-rich applications using HTML, CSS, and
JavaScript. According to a simple keyword trend search on StackOverflow [Stack Overflow 2024a], shown
in Figure 3.2, React [React 2024a] appears to be the most popular frontend framework currently, followed
by Angular [Angular 2024a], Vue [Vue 2024a], and Svelte [Svelte 2024] [Stack Overflow 2024b].

Generally, frameworks solve the problem of bidirectional state synchronisation of elements in the
DOM, so that JavaScript can be used seamlessly to inject dynamic behaviour into otherwise static pages.
All frameworks listed above follow different approaches in the way they are architectured, and they each
have unique benefits or drawbacks. In web development, choosing one framework over the another often
comes down to personal preference, the fit into the existing technology stack, and the maintenance status
and potential future releases. The following will introduce each framework individually, but will focus
mostly on the intricacies of React, since it was the framework of chosen for implementing Gizual.

22 3 Frontend Web Design

3.7.1 React

ReactJS [React 2024a] is a JavaScript framework developed by Meta [Meta 2024a], formerly Facebook.
It was initially developed as a tool for creating the Facebook and Instagram news feeds, and was open-
sourced in 2013. React was initially built as a way to simplify reactivity in the UI of web applications
[Meta 2024f].

3.7.1.1 The Virtual DOM

At the core of the React architecture is the virtual DOM. It encapsulates manipulations on real DOM
elements, allowing the scheduler to batch them together and update only necessary parts of the real DOM
by using a diffing algorithm to compare differences [Aggarwal 2018; Meta 2024e]. In essence, this allows
developers to just define the state they want the UI to be in, and React will optimise the updating of the
actual underlying DOM structure. This process of synchronising states is called reconciliation [Meta
2024d]. During this step, the algorithm will parse through the tree of React elements after executing their
render function. DOM elements that do not need to be discarded just have their attributes updated, instead
of being replaced entirely. A custom key attribute is often used to assist the reconciliation process when
dealing with dynamically created child elements. Assigning the same key attribute to a React element
tells the reconciler to perform an attribute update instead of an expensive re-render.

3.7.1.2 Design Principles

The React framework is built around a set of core design principles that dictate the ways in which
different problems can be solved within the framework [Meta 2024c]. Knowing these principles can
help avert problematic or non-idiomatic usage of React’s built-in utility functions and help with general
understanding of the complex architecture. In brief, the seven core principles are:

• Composition: It is encouraged to rely on composition for components as much as possible. This
means ensuring that adding state or lifecycle methods to a component does not create a destructive
ripple effect within the entire codebase. In general, React developers try to encapsulate as much
functionality as possible into separate and independent component blocks, which can be re-used
within the entire codebase. This idea of composition is not inherently isolated to React developers
though, and can be observed in many programming languages as a general paradigm [Alam and
Kienzle 2012].

• Common Abstraction: The general approach of the React team is to provide as few utility functions
as possible to avoid bloating the library with potentially irrelevant code. Exceptions to this rule are
usually functions that would need to be re-written for every codebase, such as state and lifecycle
methods.

• Escape Hatches: The React team diligently investigates new features in regard to their feasibility and
compatibility with existing core concepts before committing to their integration. Still, sometimes
there may be patterns that can become obsolete and deprecated. Usually, it is advised for developers
to keep an eye on official blog posts and release documentation to gain an overview of upcoming
features or breaking changes.

• Interoperability: One of the main concepts and strengths of React is its interoperability with non-
React code in the same codebase. It is feasible, and even encouraged, to start by implementing some
features as separate React components and gradually transition to React, rather than re-writing the
entire codebase from scratch. React provides enough escape hatches to incorporate different kinds
of models and support for other UI libraries to facilitate gradual adoption.

• Scheduling: Although the current idiomatic way of defining reusable components within the React
framework is by expressing them as self-contained functions, a conceptual distinction to common

Frontend Frameworks 23

JavaScript functions needs to be made. The function that defines a functional component is not
called directly on usage, but rather stored inside the internal model of the Virtual DOM. In practice,
this allows the framework to delay function execution until it is necessary, while maintaining full
control over the entire call stack. Delayed function execution can be used to optimise rendering for
components that are not currently in view, or to add prioritisation to the rendering process. Whilst
this technique is not currently used in the framework, the functional component approach allows for
these gradual improvements to be implemented over time.

• Developer Experience: The React team maintains a strong connection to its core user-base and
maintainers. Tools like the popular React DevTools extension help with easy adoption by providing
easy-to-use insights into an otherwise rather complex rendering pipeline. Since other frameworks
are emerging quite frequently, this connection to developers and users alike maintains a strong
market position for the framework, which is crucial for attracting new users and maintainers.

• Debugging: Debugging, the process of isolating an error down to its origin, is simplified by the
aforementioned React DevTools extension. Since it exposes the render tree, it is possible to traverse
from the erroneous point up the tree to find the source of faulty components, component properties,
or general mistakes in the rendering flow.

3.7.2 Angular

Angular [Angular 2024a] is a JavaScript framework developed by Google and a large community of
open-source contributors. Its first stable release was in 2010, called AngularJS [GitHub 2024a]. As of
January 2022, AngularJS is no longer maintained [Angular 2024b], and was superceded by Angular, with
the latest current version being Angular v18, released in May 2024 [Gechev 2024]. In contrast to React,
Angular aims to provide an out-of-the-box full stack framework experience, which supports two-way
data binding, dependency injection, and a Model-View-Controller model, without the need for additional
libraries or packages [Raval 2024].

Instead of relying on a Virtual DOM model like React does, Angular relies on an Incremental DOM
[Angular 2024c]. The key difference between the Virtual DOM and the Incremental DOM models are
the number of iterations each diffing pass requires and the space complexity of the implementation. In
the Virtual DOM model, a virtual DOM tree is generated and then compared against the physical DOM,
with changes being patched if necessary. In the Incremental DOM model, these virtual DOM nodes are
parsed iteratively, and changes are applied as they are found [Ubl 2015]. This means that there is no need
to store any data if there are no changes to a specific part of the DOM. This greatly reduces the memory
usage of the implementation in comparison to strictly virtual DOM diffing algorithms.

3.7.3 Vue

Vue [Vue 2024a] is a JavaScript framework, created by Evan You and first released in 2014 [You 2014].
Its initial design goals were to extract the minimum required features from Angular and to create a
lightweight alternative framework with them. Similar to React, Vue also relies on a Virtual DOM for
rendering [Vue 2024b]. However, in contrast to React’s runtime implementation of the Virtual DOM, Vue
implements a hybrid-based Compiler-Informed Virtual DOM algorithm. It improves the performance of
a runtime implementation by hoisting blocks of static markup out of the virtual DOM rendering pipeline,
and specifically encoding rendering information into elements through a concept called Patch Flags.

3.7.4 Svelte

Svelte [Svelte 2024] is a JavaScript framework, created by Rich Harris and first released in 2016 [Harris
2016]. It was developed based on the idea that modern web applications, especially those that use giant
frameworks like Angular or React, are inherently too bloated. Svelte aims to be a framework that provides

24 3 Frontend Web Design

just the bare minimum needed functionality to create JavaScript modules that act as typical progressive
enhancement to otherwise standard HTML and CSS. Svelte deliberately does not use a Virtual DOM
implementation for performance reasons [Harris 2018].

3.7.5 Choosing React

With all of these frameworks explained briefly, the choice to use React for this project boils down to its
long history of being interoperable with different JavaScript blocks in the same repository, and the fact
that the framework has proven its stability over a number of years. For this thesis, React was deemed to be
a safe choice, because countless libraries and utilities have been explicitly written to support the current
version of React, and there is a large ecosystem of active web developers maintaining the framework and
its related tooling.

When optimising for performance and developer experience in a large-scale web application, using the
React built-in state management functionality is often not sufficient. There are numerous libraries and
tools that integrate seamlessly with React and provide a more sophisticated developer experience and
better tools to manage complex state derivations. The Gizual codebase relies on MobX [MobX 2024] as
its state management library, which will be described in Section 4.3.

For completeness, it must be noted that, at the time of writing, the React team is working diligently to
release React Version 19 [React 2024b], which will include a new compiler which can statically optimise
React component memoisation [React 2024c]. This new compiler could solve many pain points within
the React ecosystem, by providing an easier onboarding experience to new developers and reducing the
mental complexity of optimising re-renders for all developers.

Nonetheless, the choice of React does have negative performance implications for some long-running
tasks within Gizual’s rendering pipeline. In order to circumvent these issues, higher-order components
within Gizual generally rely on MobX to handle state, and operate outside the typical idiomatic React
lifecycle.

3.8 Building Web Applications
Traditionally, creating web applications did not require much additional software and dependencies. As
the ecosystem grew larger, more sophisticated tooling was needed, and build tools and package managers
emerged to simplify development and streamline the process of building web applications. Without these
tools, the process of building web applications is much more cumbersome and time-consuming, which is
why these tools are now considered standard [MDN 2024c].

3.8.1 Build Tools and Bundlers

Build tools are used to transform plain JavaScript or TypeScript code scattered across a multitude of
folders into optimised chunks of minified code. This transformation step is necessary to allow developers
to keep a clean directory structure during development, and still benefit of from optimised output at the
end. The industry standard tool to use at the time of writing this thesis is Vite [Vite 2024a], which
slowly took over the market share of the previously used tools Webpack [Webpack 2024], Parcel [Parcel
2024], and Rollup [Rollup 2024]. A general sense of the industry trend to adopt Vite can be observed
in Figure 3.3, generated by npm trends [Potter 2024]. The data obtained from a simple download trend
analysis is not very representative of real-world adoption of a tool, but the general trend can still be
observed.

Vite uses esbuild [esbuild 2024a] to pre-bundle dependencies in an attempt to drastically improve hot
module reload times. Instead of using JavaScript bundlers, esbuild is written in Go and is typically around
38 times faster than the quickest JavaScript alternative, according to benchmarks released on their own

Building Web Applications 25

Figure 3.3: Graph comparing the weekly downloads of the most common web bundlers (Vite,
Rollup, Parcel, and Webpack). [Image obtained from Potter [2024] and used under the terms of Creative
Commons Attribution 4.0.]

website [esbuild 2024b]. Source code files are not pre-bundled, and instead are served as native ESM
modules, which lets the browser take over the heavy computational load of bundling the files together.
Whilst a detailed explanation of the historic development and current usage of JavaScript modules is
beyond the scope of this thesis, detailed resources are available online for interested readers, such as
[MDN 2024l].

3.8.2 Package Managers

Usually, complex web applications consist of a multitude of packages and libraries. Package managers
were developed to simplify the process of managing installed dependencies, scheduling updates, and
interacting with the project as a whole. The basic functionality of a package manager is to download
dependencies, check them for potential security vulnerabilities, place them in the correct directory within
a project, add code that includes the package in the project, and handle package upgrade and deletion
requests. The most popular package manager to date appears to be npm [npm 2024], but obtaining an
accurate percentage-based comparison between package managers may not be feasible due to pre-bundled
inclusions or different versions that are quite difficult to track [Wojciech 2023].

Generally, package managers manage versions of dependencies by creating a lock file, which contains
the name of the package, its origin, the version of the package, and its location on the disk. The lock file
must be in sync with the package.json file of a project, which is usually edited by the developer by hand,
or by interfacing with the command-line interface of the package manager. Listing 3.8 shows a typical
package.json file for a small React project, with Vite and its starter template being used as a build tool,
and React with MobX included as dependencies.

In the case of Gizual, yarn [yarn 2024a] is used instead of npm, because a feature called yarn workspaces
[yarn 2024b] helps with project structure in large mono-repositories. This feature allows developers to
create multiple subprojects that share the same lock file, which in turn allows the package manager to
download each dependency only once, whilst still keeping all subprojects separate.

26 3 Frontend Web Design

1 {
2 "name": "snippets",
3 "private": true,
4 "version": "0.0.0",
5 "type": "module",
6 "scripts": {
7 "dev": "vite",
8 "build": "tsc -b && vite build",
9 "lint": "eslint . --ext ts,tsx --report-unused-disable-directives --max-warnings

0",
10 "preview": "vite preview"
11 },
12 "dependencies": {
13 "mobx": "^6.12.4",
14 "mobx-react-lite": "^4.0.7",
15 "react": "^18.3.1",
16 "react-dom": "^18.3.1"
17 },
18 "devDependencies": {
19 "@types/react": "^18.3.3",
20 "@types/react-dom": "^18.3.0",
21 "@typescript -eslint/eslint-plugin": "^7.13.1",
22 "@typescript -eslint/parser": "^7.13.1",
23 "@vitejs/plugin-react-swc": "^3.5.0",
24 "eslint": "^8.57.0",
25 "eslint-plugin-react-hooks": "^4.6.2",
26 "eslint-plugin-react-refresh": "^0.4.7",
27 "typescript": "^5.2.2",
28 "vite": "^5.3.1"
29 }
30 }

Listing 3.8: A simple package.json file used in a small React project. Vite is used as a build tool,
and npm is used as a package manager.

3.9 Responsive Web Design
In a world where applications often need to scale to a plethora of differently sized screens, and be used on a
multitude of devices, Responsive Web Design (RWD) emerged as a strategy to develop applications which
behave consistently and expectedly in these circumstances. Users often use their smartphone instead of
their desktop computers to browse the web [Adepu and Adler 2016], further increasing the importance
of designing for multiple device sizes and capabilities at once. Unfortunately, devices like smartphones
and tablets can come with hefty limitations regarding screen size, interactivity, and computing power
[Buering et al. 2006; Müller et al. 2019].

Utilising the unique benefits of touchscreen devices, for example, often requires additional thought
regarding the implementation of hover states, which would be common with traditional mouse and
keyboard navigation [Lee et al. 2012]. These differences not only create difficulties for web applications,
but also for more general computing [Punchoojit and Hongwarittorrn 2017]. Additionally, assumptions
about specific device usage or interaction patterns can disregard certain accessibility concerns, so it is
paramount to design modern web applications with a focus on responsive and adaptable user interfaces
which can scale to any device and screen size.

Ideally, web applications should be designed in a way to natively support scaling up or down to the
size of the device viewport. In practice, however, this often proves to be a challenge, since menu bars,
icons, and buttons often take up considerable screen real estate. In the case of web applications that need
to scale to mobile and desktop equally, it is often necessary to create two or three different versions of

Responsive Web Design 27

the user interface, and choose the most appropriate for the current viewport size. Optimising for mobile
devices after implementing the desktop user interface often requires a radical approach of re-imagining
an application, which is why the “mobile first” approach of developing web applications has gained
popularity [Kim 2013]. The general trend of user interfaces is currently to reduce the user interface
for phones to an absolute minimum, whilst maximising the amount of content that can be shown. On
larger interfaces, more options are frequently exposed and easily accessible, while being tucked away in
a sub-menu on a mobile device. Figure 3.4 shows the website of the Boston Globe on a wider screen
(iPad Air in landscape orientation) and a narrower screen (iPhone SE). The layout adapts to the different
screen widths.

Designing applications for multiple different screens and devices is not a trivial task, often requiring a
plethora of different test devices or sophisticated tools. The most simple way to develop an application for
different screen sizes is generally to use the browsers’ built-in developer tools to constrain the viewport
size to the dimensions of the target device. With this approach, the general scaling and positioning of
elements on the screen can be tested and confirmed. Tools like Responsively [ResponsivelyApp 2024] aim
to solve the problem of constantly testing with differently sized viewports by providing an application that
contains multiple viewport sizes, and syncs the UI state across them. This allows for easy testing across
multiple differently sized viewports at once, without the overhead of manually adjusting the settings every
time. Figure 3.5 shows the use of Responsively to test the Boston Globe website.

Virtual testing for different viewport sizes is great for observing responsive behaviour of simple web
applications, but to test more device-specific features, or quirks with different browser on different
devices, a more sophisticated approach must be used. Platforms like BrowserStack [BrowserStack 2024]
and LambdaTest [LambdaTest 2024] provide powerful device farms, where real device testing can be
done on a wide variety of different physical hardware.

28 3 Frontend Web Design

(a) Wider screen.

(b) Narrower screen.

Figure 3.4: A responsive website adapts itself to the available display space. The website of the
Boston Globe uses a three-column layout on wider screens where more space is available, and
shrinks down to a one-column layout on narrower screens. [Both screenshots created by the author of this
thesis.]

Responsive Web Design 29

Figure 3.5: The Responsively App being used to simultaneously test the website of the Boston Globe
across several different viewport sizes. [Screenshot created by the author of this thesis.]

30 3 Frontend Web Design

Chapter 4

Gizual Architecture

“ I feel that it’s lovely when, as a user, you’re not aware of the complexity. ”

[Jonathan Ive; British and American designer, former Chief Design Officer at Apple.]

Gizual is a browser-based web application for visualising Git repositories. It is implemented with
modern web technologies including HTML, SCSS, React, TypeScript, MobX, WebAssembly, Rust, web
workers, and Node.js. All repository data processing is done in the browser, no external servers or
databases are required. To bring all of these technologies together, a sophisticated software architecture
was evolved.

This chapter was written jointly by Stefan Schintler and Andreas Steinkellner.

4.1 Architectural Requirements
Being a web application, Gizual can harness some unique benefits of the web as a platform. From a
development standpoint, web libraries are available in abundance, reducing the complexity of building
an application from scratch. For end users, the web generally provides a simple and easy-to-use platform
for utilities that they can trust, since browser security policies are generally strict enough to protect
from malicious actors. Building applications for the web does, however, come with a unique set of
challenges, many of which are irrelevant for desktop applications. During the initial project ideation
phase of Gizual, the team agreed upon some non-negotiable architectural requirements that would ensure
that the application would match the perceived performance of a native tool.

4.1.1 Non-Blocking
By default, all JavaScript code within a web application is processed on the main thread. In addition to
being responsible for layout and reflow operations, custom JavaScript execution is also part of the main
thread’s responsibilities. For simple websites, this behaviour is usually not problematic, since JavaScript
execution engines have become increasingly performant over the years. Users’ device performance is
also steadily increasing, making performance optimisations less relevant for a typical web development
workflow. Gizual, however, needs to process large quantities of data rapidly, usually in bursts that occur
when users zoom or pan around on the visualisation canvas. Batching file manipulation and calculation
operations into the same thread handling user interactions creates a performance choke point, leading to
an unresponsive user interface or jittery animations. One of the agreed upon architectural requirements
was to implement a solution which would reduce the computational complexity on the main thread by
assigning pools of web workers [Surma 2019; WHATWG 2024c] to handle time-consuming tasks such
as rendering and git exploration. With less work on the main thread, user interactions and animations
would not be impeded by rendering tasks, and the application would always feel responsive.

31

32 4 Gizual Architecture

4.1.2 Asynchronicity

In synchronous contexts, instructions are processed sequentially. In the context of web applications, one
JavaScript thread runs through its set of instructions and processes them in order. Unfortunately, this can
lead to long and inefficient wait times, drastically reducing the user experience and slowing down the
application. Asynchronicity solves this problem by providing developers with functionality to let their
code run outside the boundaries of the synchronous execution context. Writing asynchronous functions
creates a chain of asynchronicity within the application, since any function which calls an asynchronous
function must itself be asynchronous. This is why asynchronous functions are often referred to as
being contagious [Haverbeke 2024b, Chapter 11]. For Gizual, doing all calculations sequentially in a
synchronous manner would not be feasible. Asynchronicity was deemed necessary, despite the additional
complexities this concept invariantly introduces.

4.1.3 Parallel Execution

Complex functions within Gizual are generally expected to be executed in parallel. In order to achieve this,
the project heavily relies on the use of asynchronous code and web workers. Without parallel execution of
simultaneous file operations, the Git exploration performance would be too slow at providing repository
analytics, slowing down the performance of the entire application. Additionally, parallel execution unlocks
the power of modern multicore processor architecture, with different tasks being scheduled across many
threads or even processor cores. However, the process of spawning and coordinating multiple threads
(web workers) creates a slight computational overhead. Gizual relies on a defined limit of concurrent
web workers, adhering to best practice recommendations in order to achieve maximum performance.

4.1.4 Separation of Concerns

The Gizual architecture consists of many modules of varying complexity, linked together via common
bridges and interfaces. This loose coupling of segregated functions adheres to the general software
engineering concept of separation of concerns. The term was initially used in a blog post by famous
computer scientist Edsger W. Dijkstra [Dijkstra 1974], who used it to describe the process of clustering
and ordering thoughts. In software engineering, the term is often used in conjunction with programming
concepts like model-driven development [Kulkarni and S. Reddy 2003]. It describes the strategic separ-
ation of self-contained functions into smaller modules, which can be used across the entire application.
This module-based approach invites the use of abstract interfaces, which greatly enhance modularity and
simplify code maintenance.

Separation of concerns is a prevalent concept in web development too, where the three distinct
technologies HTML, CSS, and JavaScript are used in tandem to create a single application. Modern
frameworks, however, enable developers to forego this distinction, if desired. The Gizual architecture
required more separation of concerns than a typical web application, since the architectural requirements
defined in the previous three subsections already necessitate additional layers of abstraction and workload
distribution.

4.2 Architectural Overview
To fulfil the architectural requirements, the project is split into six packages. A single, central management
component, called Maestro, is responsible for managing the application, including global application state,
user input, and data processing. Maestro controls the explorer and renderer pools of web workers, manages
global state for the three UI Controllers and various higher-order UI Components, and populates an SQLite
database with indexable metadata such as the names of authors (developers) for efficient querying.
Figure 4.1 provides a structural overview of the interconnected packages and their communication
pathways.

Architectural Overview 33

ViewModelController

MainController

Maestro

SettingsController

Canvas

QueryInput

Timeline

...

Explorer Pool

Node 1 Node 2 Node 3 Node 4

Renderer Pool

Node 1 Node 2

SQLite 
Database

UI Controllers

UI Components

Main thread

Web workers

Figure 4.1: The software architecture of Gizual. UI controllers and UI components are instantiated
in the main thread. The explorer pool, renderer pool, and SQLite database are executed asyn-
chronously in web workers inside the browser. The Maestro provides a unified interface across
the different realms. [Diagram created by the authors of this chapter.]

34 4 Gizual Architecture

MainController Maestro Explorer Pool Node 1

MainController Maestro Explorer Pool Node 1

call getExplorerPool()

request job schedule

execute job

return file content

return file content

return file content

time

Figure 4.2: Sequence diagram for the getFileContent function. [Diagram created by the authors of this
chapter.]

4.2.1 Explorer Pool

The explorer pool is a managed pool of web workers, responsible for handling data analysis and interactions
with Git repositories. A set number of individual self-contained explorer workers are spawned by a central
pool master. Maestro provides new workloads, which are distributed evenly across the worker pool, as
illustrated in Figure 4.2. Each worker node is a continuously running process, awaiting a new job when
idle. Every node is written in WebAssembly [WACG 2024] and leverages the open-source library libgit2
[libgit2 2024] to interact with the Git repository chosen by the user.

4.2.2 Renderer Pool

The renderer pool is a collection of web workers which generate bitmaps for visualisation tiles. Distri-
bution is handled through a central pool master, which schedules jobs and assigns them to idle workers.
Each job results in a single bitmap image (tile) representing one file in the repository, which is used in
the masonry grid on the main visualisation canvas.

4.2.3 SQLite Database

For performance reasons, an SQLite [SQLite 2024] database is used to store certain indexable metadata
such as the names of authors (developers), so they can be efficiently queried. The SQLite database runs
inside the web browser in its own web worker through WebAssembly. It is not persisted between sessions.

4.2.4 UI Controllers

Higher-Order UI Components use view models based on MobX [MobX 2024] to store state. These
view models are centrally managed through the ViewModelController, which handles their assignment and
keeps a reference for garbage collection. This controller is exposed to the Maestro via the MainController,
responsible for grouping common UI functionality, variables, and controllers. User settings are handled

Architectural Overview 35

Main Thread

query

queryErrors

metrics

state

screen

Maestro

Web Worker

query

queryErrors

metrics

state

screen

Functions

Events

Figure 4.3: The Maestro controller has two parts: MaestroMain and MaestroWorker. MaestroMain is created
in the main thread. MaestroWorker is invoked within a worker thread to manage longer-running
asynchronous tasks. [Diagram created by the authors of this chapter.]

through the SettingsController, which exposes all settings as a single JavaScript object, and manages their
state and persistence.

4.2.5 UI Components

The project has two distinct types of UI component: Primitive UI Components, which keep track of state
internally in typical React fashion, and Higher-Order UI Components, which have a view model assigned
to them to access global state. The three most notable Higher-Order UI Components are:

• Canvas: The Canvas component provides an interactive way to navigate the visualisation. Tiles are
arranged in a masonry grid, and users can interact with the canvas through mouse and touch.

• QueryInput: The QueryInput component aggregates all supported query modules in a single component.
It is directly attached to the Maestro and the query interface.

• Timeline: The Timeline component aggregates functionality to navigate time within a repository. It
displays commits and the selected start and end dates in an interactive way.

4.2.6 Maestro

Gizual’s architecture is based upon a single main controller called Maestro. Maestro is responsible for
managing the overall state of the application, including loading a repository, selection of files, and the
visualisation chosen by the user. To accomplish this while reducing the chance of blocking the main
thread, Maestro actually consists of two entities, MaestroMain and MaestroWorker, as shown in Figure 4.3.

The MaestroMain instance is created within the main thread and is responsible for handling user input
and maintaining global state for the user interface in a MobX store, to allow UI components to subscribe
to changes and update themselves accordingly. This allows the user interface to remain responsive, while

36 4 Gizual Architecture

the application works in the background. The MaestroWorker instance is invoked within a worker thread and
is responsible for handling longer-running asynchronous tasks. Global application state is synchronised
between Maestro and MaestroWorker using a custom, event-based protocol.

4.3 State Management
Managing state in Gizual across different realms requires additional tooling compared to a standard
single-threaded web application. In order to synchronise state globally, Gizual uses a set of functions and
events across different threads. The underlying state management between realms is handled by Maestro.
It uses MobX to store a reactive representation of the global application state in the main thread. UI
controllers and components subscribe to this state representation and update accordingly.

4.3.1 Introduction to MobX

MobX [MobX 2024] is a state management library that aims to simplify the process of managing UI
state. It does so by providing an easy way for components to automatically derive their state from the
general application state. In the context of React, it ensures that only the components that are affected by
a state update are re-rendered, providing a substantial boost to perceived speed and performance. MobX
solves state management issues through state, actions, and reactions, which are all part of the library.

Actions in MobX are functions that modify state. Executing an action will task MobX with investigating
which state variable was changed during this action, such that it can propagate a state update to all functions
that “observe” that piece of state. Through that interface, components can all share a common similar
state, stored in a MobX class, and re-render events will only propagate to those components that require
them.

4.3.2 State Management in React

Typically, the proposed way of managing state within React is to propagate state updates down the
rendering hierarchy. This goes hand in hand with the paradigm of “lifting state up”, a term used to
describe the process of moving the assignment of state to the parent component if a sibling component
might also need access. For smaller applications, this process is quite intuitive and easy to grasp.
As applications grow in scale, business requirements often create a need to extend component state to
encapsulate more design variants or general functionality. At some point, managing state manually can
become quite cumbersome and error-prone.

The traditional way of managing React state uses the following syntax:
[state, setState] = React.useState(undefined)

As soon as a variable is stateful in the context of a React component, every usage of this state variable
is tracked by React automatically, and changing the state by calling the setState function re-renders the
component. Sometimes, state updates need to be conditional and based on other variables, like function
properties or calls to an API. This is usually handled with the useEffect function, which allows developers
to specify an optional set of tracked variables that trigger a function execution. One of the more common
problems that React developers frequently face is unnecessary component re-rendering, usually triggered
by non-idiomatic or erroneous usage of the useEffect function, which trigger unnecessary state updates.

To illustrate this concept, the example app in Listing 4.1 uses two implementations of a simple ToDo
list, called in lines 21 and 22. The first function component, TodoReact, shown in Listing 4.2 uses plain
React code and state management logic, while the second implementation, TodoMobX shown in Listing 4.3,
uses MobX to manage state. The button that adds a ToDo to the list is deliberately placed as a sibling to
the components that display the items. With simple React state management code, it would be an expected

State Management 37

1 import React from "react";
2 import "./App.css";
3 import { TodoMobX, TodoStore } from "./TodoMobx";
4 import { TodoReact } from "./TodoReact";
5
6 const store = new TodoStore();
7
8 function App() {
9 const [todos, setTodos] = React.useState([

10 "Example Todo 1",
11 "Example Todo 2",
12]);
13
14 const addTodo = () => {
15 store.addTodo();
16 setTodos([...todos, ‘Example Todo ${todos.length + 1}‘]);
17 };
18
19 return (
20 <main>
21 <TodoReact todos={todos} />
22 <TodoMobX store={store} />
23 <button onClick={addTodo}>Add Todo</button>
24 </main>
25);
26 }
27
28 export default App;

Listing 4.1: A simple React application with two alternative components to manage a ToDo list.
The first component, TodoReact called in line 21, uses vanilla React to store state. It is shown
in Listing 4.2. The second component, TodoMobX called in line 22, uses MobX and is shown in
Listing 4.3.

procedure to lift state up, which means transferring it to the App component. This would allow for both the
list and the button to access the state value and update it accordingly. Doing so works perfectly fine, but
adds an unnecessary re-render for all components within the App component as soon as the state changes.
The MobX implementation, on the other hand, only re-renders the components that are affected by the
state change, which is only the TodoList component in this example.

The key strength of MobX lies in the automatic tracking of state changes by observing access to
the values of observable properties within tracked functions. Instead of tracking the specific values of
observable objects, MobX tracks the property access. In principle, this means that once the proper
decorator annotations are placed to differentiate observable, action and computed objects appropriately,
MobX automatically handles state propagation. In practice, this is enough for most application code, but
sometimes reactivity needs to be defined on a more granular basis.

4.3.3 Advanced Reactivity Within MobX

When automatic reactivity tracking is not sufficient for the specific needs of an application, MobX
provides custom functions to attach reactions to specific observable values. With the autorun function,
it is possible to define an encapsulated function block, in which all used observable values are tracked
automatically. Additionally, an optional delay can be specified to introduce a wait time before the initial
function execution.

For more granularity, a custom reaction function can be used to define the observable objects that

38 4 Gizual Architecture

1 function TodoReact({ todos }: { todos: string[] }) {
2 return (
3 <div className="container">
4 {todos.map((t) => (
5 <div>{t}</div>
6))}
7 </div>
8);
9 }

10
11 export { TodoReact };

Listing 4.2: A simple ToDo list implemented with basic React state management.

1 import { makeAutoObservable } from "mobx";
2 import { observer } from "mobx-react-lite";
3
4 class TodoStore {
5 _todos: string[]; // Internal representation of state.
6
7 constructor() {
8 this._todos = ["Example Todo 1", "Example Todo 2"];
9

10 /* Automatically let MobX track variables as state, functions as actions. */
11 makeAutoObservable(this, undefined , { autoBind: true });
12 }
13
14 addTodo() {
15 this._todos.push(‘Example Todo ${this._todos.length + 1}‘);
16 }
17
18 get todos() {
19 return this._todos;
20 }
21 }
22
23 const TodoMobX = observer(({ store }: { store: TodoStore }) => {
24 return (
25 <div className="container">
26 {store.todos.map((t) => (
27 <div>{t}</div>
28))}
29 </div>
30);
31 });
32
33 export { TodoStore };
34 export { TodoMobX };

Listing 4.3: A simple ToDo list implemented with React and MobX. An additional store is introduced
to efficiently manage state updates and actions.

Query Interface 39

MobX needs to track manually. A supplied callback function will then automatically be executed once
any of the supplied dependencies update. This behaviour is similar to the functionality React provides
with its useEffect hook.

Regardless of using autorun or reaction, both functions exist outside the scope of MobX’s automatic
garbage collection and cleanup pipeline, so they need to be disposed of manually when no longer needed.
Within Gizual, both autorun and reaction are used across parts of the application to fine-tune the reactivity
of components. The architectural split between View and ViewModel, explained in Section 4.2, often
requires a granular approach to state management to reduce unnecessary re-renders whilst keeping state
consistent and synchronous across the entire application.

4.3.4 MobX Usage in Gizual

In Gizual, Maestro encapsulates the application state into specific objects, called observable boxes in
MobX terminology. UI components can individually subscribe to specific parts of state they depend
on by observing these boxes. Listing 4.4 shows a truncated example of the observable boxes used by
Maestro.

4.4 Query Interface
Users can customise the output of the visualisation through a defined set of input parameters. These
parameters are grouped into a single query object. This object is a crucial part of the application state,
and is encapsulated into a separate reactive box within Maestro.

The query interface allows communication between the user interface and the data layer. It consists
of a strict data schema to represent the user’s input and desired output. To make this data accessible
to the main thread and other realms, the query object is JSON-serialisable. It satisfies the QuerySchema
interface shown in Listing 4.5. The query is configured using three scopes: commit-range, files, and
visualisation.

4.4.1 Scope commit-range

The number of files inside a repository usually varies over time. Each commit can add or remove files,
thereby changing the available file list. To specify the desired range of commits, two options are available:

• branch and rangeByDate: Select commits from a specific branch within a given time range.

• rangeByRev: Select commits between two Git revisions (e.g. a commit id or a tag).

By specifying either of these options, a start commit and an end commit are selected. The end commit
defines the available file list, which is then narrowed down by the files scope. The start commit saves
time by limiting the backward extent of the Git blame operation on each file.

4.4.2 Scope files

The files scope defines the files the user would like to see. Gizual supports the following file selection
types:

• path:string: Select files by their path using a glob pattern.

• path:string[]: Select files by their distinct paths using a file picker.

• changedInRev:string: Select files which were changed in the specified Git revision (e.g. a commit
id or a tag).

40 4 Gizual Architecture

1 import { observable } from "mobx";
2
3 class Maestro {
4 globalState = observable.box<State>(
5 {
6 screen: "welcome" as "welcome" | "initial-load" | "main",
7 queryValid: false,
8 repoLoaded: false,
9 authorsLoaded: false,

10 commitsIndexed: false,
11 filesIndexed: false,
12 error: undefined ,
13 currentBranch: "",
14 tags: [],
15 branches: [],
16 remotes: [],
17 // ... truncated
18 },
19 { deep: false }
20);
21
22 metrics = observable.box<Metrics >(
23 {
24 numExplorerJobs: 0,
25 numExplorerWorkersBusy: 0,
26 numExplorerWorkersTotal: 0,
27 numRendererJobs: 0,
28 numRendererWorkersBusy: 0,
29 numRendererWorkers: 0,
30 numSelectedFiles: 0,
31 },
32 { deep: false }
33);
34
35 query = observable.box<Query >(
36 { branch: "", type: "file-lines" },
37 { deep: false }
38);
39
40 queryErrors = observable.box<QueryError[] | undefined >(undefined , {
41 deep: false,
42 });
43
44 // ... truncated
45 }

Listing 4.4: Partial implementation of the global state management defined in Maestro. State is
encapsulated into observable boxes, which leverage the MobX reactivity ecosystem.

Query Interface 41

1 export interface QuerySchema {
2 branch: string;
3 time:
4 | {
5 rangeByDate: [string, string] | string;
6 }
7 | {
8 rangeByRev: [string, string] | string;
9 };

10 files:
11 | {
12 path: string[] | string;
13 }
14 | {
15 lastEditedBy: string[] | string;
16 }
17 | {
18 changedInRev: string[] | string;
19 };
20 type:
21 | "file-lines"
22 | "file-lines-full"
23 | "file-mosaic"
24 | "author-mosaic" /* Future work */
25 | "author-contributions" /* Future work */
26 | "file-bar" /* Future work */
27 | "author-bar" /* Future work */;
28 preset:
29 | {
30 gradientByAge: [string, string];
31 }
32 | {
33 paletteByAuthor: [string, string][];
34 };
35 }

Listing 4.5: TypeScript interface for the query schema. The files, time and branch properties define
the target input for the visualisation. The type and preset properties define the desired output
shape.

4.4.3 Scope visualisation

The visualisation scope defines two properties of the resulting visualisation: the visualisation type and
its visual encoding. Gizual supports three visualisation types, shown in Figure 4.4:

• file-lines: Displays file contents as a series of coloured lines. Each line represents one line of
code.

• file-lines-full: Displays file contents as a series of full-width coloured lines. Each line represents
one line of code.

• file-mosaic: Displays file contents as a mosaic of coloured tiles. Each tile represents one line of
code.

Gizual currently implements two different visual encodings:

• gradientByAge: Colours are assigned based on the age of the line of code.

• paletteByAuthor: Colours are assigned based on the author of the line of code.

42 4 Gizual Architecture

Figure 4.4: The three visualisation types provided by Gizual. [Image created by the authors of this chapter.]

Chapter 5

Gizual User Interface

“Design is the intermediary between information and understanding. ”

[Hans Hoffman; American painter, artist and teacher; 1880–1966]

To provide a good user experience, Gizual’s user interface design followed accepted design principles
and best practice [Lidwell et al. 2023; Pereyra 2023; Shneiderman et al. 2017]. This chapter describes
the evolution of the Gizual user interface, the current version of which is shown in Figure 5.1.

5.1 Design Principles
One extensively studied topic in the field of psychology is the dissonance between the impact of positive
and negative experiences on the human psyche, often referred to as Negativity Bias [Vaish et al. 2008;
Peeters 1991; Peeters and Czapinski 1990]. Aesthetically pleasing design is incredibly difficult to create,
but can subconsciously invoke positive emotions. Software design is no different, and user interfaces
should be crafted in a way that makes them visually appealing and easy to use [Setlur and Cogley 2022].
Some aspects of good software design are timeless. A focus on accessibility, minimising distractions,
and maximising user attention should always be retained. Other principles, like a focus on certain input
devices, should regularly be adapted to fit current industry trends and standards [Pereyra 2023].

Humans are very good at perceiving order and patterns in chaos. A group of German psychologists
developed theories on how people perceive the world, and called them Gestalt Principles [Todorovic
2008], reasoning about vision and the bidirectional process of the mind informing the eye of what it sees
and vice-versa. There are several overlapping Gestalt Principles, including:

• Closure: When humans see incomplete shapes, they automatically fill in the gaps to create a complete
image.

• Common Region: Elements in containing regions are grouped automatically, inherently adding a
sense of relatedness to items within the same visual group.

• Proximity: Elements that are closer together in physical space are assumed to be more related than
those farther apart.

• Similarity: Similarly shaped, coloured, or spaced out elements are naturally grouped into categories.

These principles can not only be frequently found in the design of everyday objects and things, they
can also provide insights in how to create visualisations that are easy to understand and follow. In case a
chart or graph needs to break with one or more of these principles, it can be difficult to convey the proper
meaning without additional context.

43

44 5 Gizual User Interface

Figure 5.1: The user interface of the Gizual application, visualising the Gizual source code repository.
[Screenshot created by the author of this thesis.]

The Gizual user interface was crafted to adhere to the following general principles and guidelines:

• Simplicity: The user interface should never feel cluttered or overwhelming. Unnecessary labels,
buttons, or other forms of visual disorder are to be avoided.

• Similarity and Cohesion: Similar HTML elements should look and feel consistent across all elements
of the user interface.

• Proximity: Elements should be logically grouped alongside their most relevant siblings, making
them obvious to find.

These core values often placed restrictions on what the user interface would allow in terms of general
functionality. During the process of incrementally implementing features into the application, the design
and the internal UI framework were extended accordingly.

5.2 Design Tooling
As in any developed field of expertise, specialised tooling can immensely speed up the web design
and development processes. Prototyping tools and design systems help designers define and maintain
consistent styles across components. User interface component libraries provide a set of reusable
components with a cohesive look and feel for developers to use.

5.2.1 Figma

One of the most commonly used design tools in the software industry is Figma [Figma 2024]. It was
initially created by Dylan Field and Evan Wallace in 2012 [Berg 2012], and has since become a pillar
of modern web development. According to a recent survey, [Geoco et al. 2023], it captures more than
80% of the design tool market. Many online resources provide guides on getting started, but a complete
introduction can be found in Staiano [2023]. One of the core strengths of Figma is its prototyping tool,

Design Tooling 45

Figure 5.2: The design theme for Gizual, created in Figma. Colours and text styles are laid out
in a clear and structured manner, so that they can be reused from anywhere in the design file.
[Screenshot created by the author of this thesis.]

allowing designers to test out user interactions without the need to write any source code. Simple flow
charts represent the flow of the UI from one interactive prototype to the next. With the recent introduction
of variables, even complex behaviours like adding items to a shopping cart can be simulated within the
prototype.

Many of the interactions in Gizual were not possible to recreate in Figma due to their complexity, but
the tool was still heavily used to draft isolated components of the user interface before implementing
them. Figure 5.2 shows the Figma design theme for Gizual, where all text styles and colours are grouped,
so that they can be reused across the entire application design.

5.2.2 User Interface Component Libraries

Creating user interface components with all modern standards of interactivity and accessibility in mind
can be a challenging endeavour. User interface frameworks help designers and developers by providing
basic components that can be reused across the entire codebase. Using a well-established component
library is often the quickest way to create a coherent user interface, without the need to consciously think
about all possible variants of components. During the implementation of Gizual, two component libraries

46 5 Gizual User Interface

were used extensively: first Ant [Ant Design 2024] and then later Mantine [Mantine 2024a].

At the start of the project, every component for Gizual was manually crafted using regular HTML and
CSS. Best practices for user interface components had to be checked manually, and additional variants
for component hover states or interactive feedback were made by hand. During the later stages of the first
prototype, it became important to increase the speed of development of the user interface, so that new
feature ideas could be rapidly tried out.

5.2.2.1 Ant Design

Ant Design [Ant Design 2024] is a popular user interface component library for React. It is open-source
and maintained by the Chinese technology company Ant Group. It features a wide array of customisable
React components for building feature-rich web applications.

The Ant Design library was added to the project for its file tree and input field components. It
promised to be very extensible, and its design was highly compatible with the design language of Gizual.
Significant efforts were dedicated to optimising the rendering of Ant components, especially the file
tree, to ensure that large repositories could still be visualised without any major performance issues.
Section 9.2 gives a detailed explanation of the rendering optimisations that were necessary to create a
custom high-performance file tree component in the later stages of the project. Unfortunately, the Ant
components that were used within Gizual proved to be quite difficult to style with the standard CSS
techniques used by the user interface components within the project. This led to increasingly hard to
maintain CSS across a line of components. Eventually, Ant was removed from the project entirely, since
the maintenance issues started to outweigh the benefits.

5.2.2.2 Mantine

Mantine [Mantine 2024a] is a component library for React. It focuses on usability, accessibility and
developer experience. Adoption has steadily climbed since its first stable release in 2021.

The core components from Ant were replaced with implementations from Mantine [Mantine 2024a],
which were much easier to customise. In order to align the design of the Mantine components with Gizual,
a MantineProvider is wrapped around the application entry point, and it provides default colours, fonts,
and spacing. In addition to the core of Mantine, Gizual also uses the following community packages:

• Mantine-Datatable: This package is used to create responsive tables with pagination for listing the
authors within a repository.

• Mantine-Contextmenu: The core of Mantine only provides a menu component attached to a button.
This package provides menu functionality wrapped inside a context menu.

• Mantine-Notifications: This package provides a notification system that can be used globally across
the application to show important notifications.

User Interface Components in Gizual 47

gizual-app/
src/
assets/
controllers/
primitives/
animated -logo/
author-panel/
button/
button.module.scss
button.module.scss.d.ts
button.tsx
index.ts

canvas/
checkbox/
color-picker/
css/
date-picker/
dialog-provider/
editor/
file/
file-tree/
...
toolbar/
index.ts
package.json
tsconfig.json

utils/
package.json
...

index.html
package.json
svg.d.ts
...

Listing 5.1: The structure of Gizual’s source code repository, showing the gizual-app/ workspace.

5.3 User Interface Components in Gizual
The user interface in Gizual is encapsulated into separate self-contained components. These components
are stored in the src/primitives/ directory within the gizual-app package. Listing 5.1 shows a truncated
excerpt of the directory and file structure. Each component is located in a subdirectory, which usually
consists of the following files:

• <component>.module.scss: An SCSS module with all required styles for this component.

• <component>.module.scss.d.ts: An automatically generated file with TypeScript types correspond-
ing to the SCSS definitions in the <component>.module.scss file, allowing them to be accessed with
type annotations.

• <component>.tsx: The main entry file for the component, which imports the styles defined within
the <component>.module.scss file and exports a React function component with the corresponding
component name.

• index.ts: An index file which exports the main entry file, allowing imports to target @app/primiti
ves/<component> instead of @app/primitives/<component>/<component>.

The SCSS and TypeScript files for the Button component within Gizual are shown in Listings 5.2 and
5.3. Every reusable part of the user interface is defined in this same way. The Button component uses

48 5 Gizual User Interface

1 @use "@/mixins" as *;
2 @use "@/colors";
3
4 .ButtonBase {
5 @include transition-all;
6 padding: 0.25rem 1rem;
7 display: inline-flex;
8 flex-direction: row;
9 gap: 0.5rem;

10 align-items: center;
11 justify-content: center;
12 text-align: center;
13 border: none;
14 }
15
16 .Button {
17 border-radius: 4px;
18 font-weight: 500;
19 border: 1px solid var(--border-tertiary);
20
21 &:active {
22 @include button-click-animation;
23 }
24 &:hover {
25 cursor: pointer;
26 }
27 &:disabled {
28 border-color: var(--border-primary);
29 color: var(--foreground-disabled);
30 & > svg {
31 & > path {
32 fill: var(--foreground-disabled);
33 }
34 }
35 background-color: var(--background-tertiary);
36 cursor: not-allowed;
37 }
38 & > svg {
39 margin: 0;
40 }
41 }
42
43 .ButtonUnstyled {
44 &:hover {
45 cursor: pointer;
46 }
47
48 &:disabled {
49 cursor: default;
50 }
51 }
52 // Content truncated

Listing 5.2: The file button.module.scss contains styling for Gizual’s Button component. Hover and
active states are defined to ensure consistent behaviour.

User Interface Components in Gizual 49

1 import clsx from "clsx";
2 import React from "react";
3 import style from "./button.module.scss";
4
5 type ButtonVariant =
6 | "filled"
7 | "outline"
8 | "gray"
9 | "dangerous"

10 | "unstyled"
11 | "primary"
12 | "secondary";
13 type ButtonSize = "small" | "regular" | "large";
14 const buttonVariantCSSMapping: Record<ButtonVariant , string> = {
15 filled: style.ButtonFilled ,
16 dangerous: style.ButtonDangerous ,
17 outline: style.ButtonOutline ,
18 gray: style.ButtonGray ,
19 unstyled: style.ButtonUnstyled ,
20 primary: style.ButtonFilled ,
21 secondary: style.ButtonGray ,
22 };
23 const buttonSizeCSSMapping: Record<ButtonSize , string> = {
24 small: style.ButtonSmall ,
25 regular: style.ButtonRegular ,
26 large: style.ButtonLarge ,
27 };
28 type ButtonProps = React.ButtonHTMLAttributes<HTMLButtonElement> & {
29 children: React.ReactNode;
30 variant?: ButtonVariant;
31 size?: ButtonSize;
32 };
33 export const Button = React.forwardRef<HTMLButtonElement , ButtonProps>(
34 ({ className , children , variant = "filled", ...props }, ref) => {
35 return (
36 <button
37 className={clsx(
38 className ,
39 style.ButtonBase ,
40 variant === "unstyled" ? undefined : style.Button,
41 ‘${buttonVariantCSSMapping[variant]}‘,
42 ‘${buttonSizeCSSMapping[props.size ?? "regular"]}‘
43)}
44 type="button"
45 {...props}
46 ref={ref}
47 >
48 {children}
49 </button>
50);
51 }
52);

Listing 5.3: The file button.tsx serves as the main source file for the Button component.

50 5 Gizual User Interface

1 import { DatePickerInput } from "@mantine/dates";
2
3 import { DATE_DISPLAY_FORMAT } from "@giz/utils/gizdate";
4
5 import style from "./date-picker.module.scss";
6
7 type DatePickerProps = {} & React.ComponentProps<typeof DatePickerInput>;
8
9 /**

10 * Wrapper around the Mantine DatePickerInput component.
11 * @param styles - Styles appended to the default overrides.
12 * @param props - The props for the DatePicker component.
13 */
14 function DatePicker({ styles, ...props }: DatePickerProps) {
15 const height = 30;
16 return (
17 <DatePickerInput
18 className={style.DatePicker}
19 styles={{
20 input: {
21 height: height,
22 minHeight: height,
23 maxHeight: height,
24 padding: "0 0.5rem",
25 minWidth: 150,
26 width: "100%",
27 },
28 label: {
29 fontWeight: 500,
30 },
31 ...styles,
32 }}
33 {...props}
34 valueFormat={DATE_DISPLAY_FORMAT}
35 />
36);
37 }
38
39 export { DatePicker };

Listing 5.4: The date-picker.tsx file serves as the main entry file for the DatePicker component, and
wraps around Mantine’s built-in DatePickerInput component.

the basic HTML <button> element internally. Other components often rely on a component base from
the Mantine library, but the directory setup for the UI component in Gizual is the same. This ensures a
consistent look and feel across all parts of the user interface that use this component. If changes need to
be made, they propagate through the entire user interface seamlessly. Listing 5.4 demonstrates this setup
for the DatePicker component. The default styles of the input element within the component are replaced
with defaults that better suit the design of Gizual, and the DATE_DISPLAY_FORMAT variable is used to format
all date values consistently.

With all user interface elements grouped in the single primitives/ directory, exposing them for import
in other modules is quite trivial, using basic functionality provided through the yarn package manager.
All user interface elements are registered in the @app/primitives package, and can be used from anywhere
in the application by including @app/primitive/<component>.

Previous Design Iterations 51

Figure 5.3: The user interface of Gizual POC1, created by Korduba et al. [2022] in the summer term
of 2022. The interface features a visualisation canvas in the centre, a file tree on the left, and a
horizontally aligned legend component at the top. [Screenshot created by the author of this thesis.]

5.4 Previous Design Iterations
The version of Gizual presented in this thesis was built on top of learnings from two previous seminar
projects on the same topic [Korduba et al. 2022; Pinheiro de Souza et al. 2023], which will be referred
to as Proof of Concept 1 (POC1) and Proof of Concept 2 (POC2) respectively. In contrast to the design
principles laid out in Section 5.1, the first two versions of Gizual were mostly research experiments. As
such, they did not follow any strict guidelines on user interface design, and were generally crafted in a
way to include as much functionality as was possible to create within the span of a few weeks. As such,
functionality was often cumbersome to reach, and the general user experience was subpar, especially on
non-standard desktop viewports. Additionally, devices smaller than tablets were disregarded completely,
and the tool was unusable on them.

Figure 5.3 shows the user interface of POC1, as described by Korduba et al. [2022]. It features a central
canvas to display files, a file tree and settings panel on the left, and a horizontal legend component at
the top. Users were able to scroll within the central canvas component, and hovering on a line within
the visualisation would reveal additional information. As a proof of concept, this interface was sufficient
to demonstrate the feasibility of the general project architecture. File selection was quite cumbersome,
as each file had to be selected manually, and the application itself only worked well on screens with the
viewport size of a typical desktop monitor. Additional problems included general sluggishness during
scroll interactions, lack of overview within the main canvas, and lack of customisation of the visualisation
output.

In POC2, described by Pinheiro de Souza et al. [2023], some of these problems were addressed. The
result of this iteration can be seen in Figure 5.4. A new canvas implementation allowed for more files
to be visible at one time, whilst still keeping a familiar look and feel. The settings panel on the left was
extended to feature additional toggles and options to customise the visualisation colour. The file tree
was enhanced, and the option to filter files via matching expressions was added. This interface solved
issues regarding general user interface usability. Proximity grouping in a single settings panel on the left
ensured that all relevant toggles were located next to each other. Unfortunately, the new canvas layout

52 5 Gizual User Interface

Figure 5.4: The user interface of Gizual POC2, created by Pinheiro de Souza et al. [2023] in the
winter term of 2022/23. The interface features a visualisation canvas in the centre and a file tree
and settings panel on the left. [Screenshot created by the author of this thesis.]

re-introduced some inconveniences when file names needed to be truncated, and general sluggishness of
scrolling within the visualisation still remained an issue.

5.5 Current User Interface
The issues that were prevalent in POC1 and POC2 provided valuable insights for the current user interface
of Gizual. The user interface is split into five main regions, as shown in Figure 5.5:

• Canvas: A central canvas acts as the heart of the visualisation. Individual tiles represent files, and
coloured strips within the tiles represent lines of code. The colour-coding is based either on the
age or the author of each line of code. Tiles are laid out in a masonry grid, and the entire area is
interactive. Users can navigate around by zooming, panning, or pinching.

• Query Bar: The Query Bar above the Canvas provides all functionality relating to file selection and
customisation of the visualisation.

• Toolbar: The Toolbar on the left provides quick access to navigation functionality, so that users without
a mouse-wheel or people with special needs can navigate within the Canvas.

• Sidebar: The Sidebar on the right provides a custom Minimap, which mirrors the content of the main
canvas in an abstracted, global overview. Both components are synchronised, so that any movement
within either one of them is immediately replicated in the other. Additionally, a legend component
at the bottom of the Sidebar provides an overview of the visualisation colours and quick toggles to
change them directly.

• Status Bar: The Status Bar provides feedback about ongoing operations and current resource usage. It
displays the number of selected files, the current usage of explorer workers, and the current usage of
renderer workers, as explained in Chapter 4.

Designing for Interactivity 53

Figure 5.5: The user interface of the current release of Gizual. The interface is separated into
five main regions. The central Canvas provides the visualisation of files in the repository. The
Query Bar at the top customises file selection. The Toolbar on the left provides quick access to
navigation functionality. The Sidebar to the right provides an abstracted, global overview of the
Canvas. Finally, the Status Bar at the bottom provides feedback about ongoing operations and current
resource usage. [Screenshot created by the author of this thesis.]

Each distinct region provides users with access to closely related functionality. The most feature-
packed region of the user interface is the Query Bar, which will be described in detail in Chapter 8. During
the project phase of this thesis, many iterations were necessary to reach the final design. Feature requests
always had to be considered carefully, in order to keep the general design language and the look and feel
of the application consistent.

The Gizual user interface is optimised for a variety of viewport sizes, devices, and web browsers. On
devices with narrow viewports, sections of the user interface like the Query Bar are hidden or behave
differently. The main canvas is always the most prominent UI component on display, and it can be
navigated equally well with mouse, touch, or touchpad devices.

5.6 Designing for Interactivity
Interactivity in software design is a well-defined field, with notable contributions made in the gaming and
virtual reality sectors by Ryan [2003], and in the advertising sector by Li [2011]. Interactive web design
shares some similarities with video games and advertising, but requires tailored solutions for different
kinds of problems. The field of interactive data visualisation, as popularised by modern newspapers,
often pushes the boundaries of the media by creating novel and unique approaches to visualise data.
An example of an infinitely zoomable visualisation is the Scale of the Universe project by Huang et al.
[2024], which uses interactivity to help users grasp the vastness of space. An interactive slider can be
used to adjust the camera position within the visualisation, giving users full agency about their desired
exploration speed.

Using interactivity to put the user in a central role within a virtual space or a representation of data
has become a common practice in modern web design. The user interface of Gizual aims to provide the
minimum required amount of interactivity, so that things are sufficiently interactive, but the additional
complexity is not too overwhelming. Designing web experiences with interactivity in mind often requires

54 5 Gizual User Interface

a slight mental shift. Instead of exposing functionality in always visible elements of the user interface,
clever use of interactivity may allow for features to be hidden, reducing the visual complexity at first
glance. Doing so does come at the cost of discoverability, though. Decluttering the user interface
too much and hiding features in difficult to navigate sub-menus can also lead to user exhaustion and
frustration. Within Gizual, the following user interactions were deemed natural enough to require no
additional explanations or hints, primarily concerning the Canvas and Timeline:

• Zoom: Both the Canvas and Timeline allow users to zoom by scrolling with the mouse-wheel.

• Pan: The Canvas allows users to pan with a single finger or mouse drag. The Timeline supports the
same motion, but requires a three-finger gesture on touch devices, since a drag with a single finger
moves the selected time range. This behaviour is deliberate and is described in Section 9.1. Users
with a mouse and keyboard can pan the timeline by scrolling while holding down the Shift key.

• Pinch: Both the Canvas and the Timeline support pinch-zooming for touch screens.

The Canvas is described in Chapter 6. Usage of the Timeline is explained in Chapter 8. Section 9.1
provides a detailed explanation of the interactive elements in the Timeline.

Chapter 6

Gizual Canvas

The main visualisation canvas in Gizual was inspired by the design and feature set of Seesoft [Eick et al.
1992], using the metaphor of listings of source code hanging on a wall far away. It can also be regarded as
a kind of information mural [Jerding and Stasko 1998], providing a condensed, abstract two-dimensional
representation of an information space, with the ability to selectively focus in on a specific subset of data
within the space.

Seesoft used a rectangular box for each file in the visualisation. Inside the box, individual lines of code
were represented as coloured strips. If the number of lines of code exceeded a certain threshold, the box
wrapped into a second column. The colour-coding of a strip reflected the particular metric of interest,
such as age of the line of code or last author of the line of code. Multiple levels of zoom window were
provided to zoom down to the level of individual lines of code.

In Gizual, the visualisation canvas is a mural of tiles, organised in a masonry layout [MDN 2024e].
Each tile represents one file in the repository, typically of source code. Within a tile, each line of code
is represented by a coloured strip. This representation is implemented in the Canvas component, which
is shown in Figure 6.1. On wide viewports, the Sidebar is displayed to the right of the Canvas. The
Minimap component in the Sidebar shows the currently visible viewbox, in relation to the entire canvas.
Interactive navigation supports zooming and panning across the visualisation, so a user can both obtain an
overview and zoom in on a particular region or an individual file. For the purpose of this discussion, the
“visualisation canvas” represents the virtual arrangement of files in infinite space. The Canvas represents
the UI component that displays a section of the visualisation canvas within its viewbox and provides
support for interactivity. The Sidebar and Author Panel are placed to the right of the Canvas.

6.1 File Tiles
Each rectangular tile on Gizual’s visualisation canvas represents one file in the repository. Within a
tile, each line of code is represented by a coloured strip. Binary files such as images are represented by
special tiles. Technically, each tile is considered to be a block within the Gizual architecture. Tiles can be
arranged in arbitrary orders and are designed to be self-contained, so that they can be printed or exported
in isolation.

Unlike Seesoft, Gizual does not wrap long files into multiple columns, since that would interfere with
the masonry layout algorithm of the Canvas. Instead, each tile displays up to 400 lines of code per file
at once. If a file contains more lines of code it is truncated, and an additional text at the bottom of the
tile informs the user about the truncation. The defined number of lines per file is exposed as a setting
and users can freely modify it, or disable truncation entirely. When fully zoomed out, the characters may
be too small to read, but the user can easily zoom in. This is in contrast to the original implementation
in Seesoft, which used a separate zooming window to show individual lines of code. To avoid issues

55

56 6 Gizual Canvas

Figure 6.1: Gizual’s Canvas with Gradient by Age visual encoding. Each tile represents a file of source
code. Tiles are arranged in a masonry layout. The Sidebar is displayed on the right, and contains
the Minimap and Legend. [Image created by the author of this thesis.]

with files containing very long lines of code, Gizual trims each line at a fixed maximum length of 120
characters. This ensures a consistent visual layout and improves the readability of the visualisation.

Inside each tile, each line of code is represented by a coloured strip. The horizontal extent of each strip
corresponds to the number of characters in the associated line of code (or spans the entire width of the
container, depending on user preference). Gizual renders the content of each line of code as text inside
the coloured strip. Figure 6.2 shows a side-by-side comparison of traditional Git blame output and the
Gizual equivalent for part of a package.json file.

For large repositories with many files, screen real-estate can be conserved at the expense of seeing lines
of source code, by rendering lines in mosaic mode. Instead of rendering each line of code as a strip in the
tile, each line is rendered as a coloured box, and 10 boxes are rendered from left to right. The colouring
of each box is identical to the colouring of the standard strip. Figure 6.3 shows Gizual’s line mode and
mosaic mode side by side.

Source code repositories often contain many thousands of individual files. To rapidly generate visual
representations for all relevant source code files, the rendering of each tile is performed by a web worker
from a shared pool. Gizual supports three different types of renderer:

• CanvasRenderer: Renders into an offscreen canvas.

• SvgRenderer: Renders into an SVG string.

• AnnotationRenderer: Renders into an HTML string.

File Tiles 57

> git blame package.json

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 1) {

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 2) "name": "gizual",

b217b886 (Andreas Steinkellner 2024-09-06 12:23:24 +0200 3) "version": "1.0.0-alpha.24",

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 4) "packageManager": "yarn@3.5.0",

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 5) "license": "Apache-2.0",

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 6) "private": true,

a9ab27c8 (Stefan Schintler 2023-03-21 17:24:44 +0100 7) "workspaces": [

680994dc (Stefan Schintler 2023-03-30 02:48:39 +0200 8) "./apps/*",

680994dc (Stefan Schintler 2023-03-30 02:48:39 +0200 9) "./packages/*",

aacd5989 (Andreas Steinkellner 2023-07-17 08:27:40 +0200 10) "./tools/*",

aacd5989 (Andreas Steinkellner 2023-07-17 08:27:40 +0200 11) "./apps/gizual-app/src/*"

Figure 6.2: Comparison of output from a traditional Git blame command on the left, and the
equivalent in Gizual on the right (coloured by age of line of code). [Image created by the author of this
thesis.]

Figure 6.3: Comparison of visualisation tiles in standard line mode (left) and mosaic mode (right).
In line mode, each coloured strip represents one line of code. In mosaic mode, each coloured box
represents one line of code, and ten boxes are drawn in each row. [Image created by the author of this
thesis.]

All three renderers are based on the BaseRenderer interface, which enforces the structure of their imple-
mentation. Listing 6.1 shows the interface definition of the BaseRenderer.

This modular approach of composing different renderers based on a shared interface ensures that
the renderer worker can use any of the three renderers to complete a given rendering job. The shared
interface enforces the structure of input and output. In the source code, the choice of renderer is passed
to the web worker through a mode variable. Based on this variable, the web worker then instantiates the
corresponding renderer, and assigns the drawing context to it. Once the context has been assigned, the
web worker executes a rendering function based on the selected visualisation type. The implementation of
this rendering function for the file-lines and file-lines-full visualisation types is shown in Listing 6.2.
After executing a rendering function, the result from the rendering worker is handed over to Maestro,
which propagates it back to the main thread, where the browser takes over and renders the image in the
Canvas.

58 6 Gizual Canvas

1 import { SvgAttributes , SvgElement } from "@app/utils/svg";
2
3 export type AnnotationContext = Object;
4
5 export type RectAnnotation = {
6 width: number;
7 height: number;
8 x: number;
9 y: number;

10 color: string;
11 ctx: AnnotationContext;
12 };
13
14 export type TextAnnotation = {
15 text: string;
16 x: number;
17 y: number;
18 fontSize: number;
19 ctx: AnnotationContext;
20 };
21
22 export type AnnotationObject = TextAnnotation | RectAnnotation;
23
24 export type ValidContext = OffscreenCanvas | SvgElement | AnnotationObject[];
25
26 export interface BaseRenderer {
27 prepareContext(width: number, height: number, dpr?: number): void;
28 assignContext(ctx: ValidContext): void;
29 getContext(): ValidContext | undefined;
30 getReturnValue(): Promise<string | string[]>;
31
32 applyTransform(x: number, y: number): void;
33 drawRect(attr: SvgAttributes , annotationCtx?: AnnotationContext): void;
34 drawText(
35 text: string,
36 attr: SvgAttributes ,
37 annotationCtx?: AnnotationContext
38): void;
39 }
40
41 export function evaluateTransform(
42 x: number,
43 y: number,
44 transform: { x: number; y: number }
45): { x: number; y: number } {
46 return { x: x + transform.x, y: y + transform.y };
47 }

Listing 6.1: The BaseRenderer enforces function implementations and types across all three supported
renderers.

File Tiles 59

1 async drawFileLines(ctx: FileLinesContext , renderer: BaseRenderer) {
2 const colors: string[] = [];
3 const { width } = calculateDimensions(ctx.dpr, ctx.rect);
4 const lineHeight = 10 * ctx.dpr;
5 this.colorManager.init(ctx.colorDefinition);
6 let currentY = 0;
7 const widthPerCharacter = width / ctx.lineLengthMax;
8
9 for (const line of ctx.fileContent) {

10 const lineLength = line.content.length;
11 let rectWidth = width;
12 let lineOffsetScaled = 0;
13
14 if (ctx.visualizationConfig.style.lineLength === "lineLength") {
15 lineOffsetScaled = (line.content.length -
16 line.content.trimStart().length) * widthPerCharacter;
17 rectWidth = Math.min(
18 lineLength * widthPerCharacter - lineOffsetScaled ,
19 width - lineOffsetScaled ,
20);
21 }
22
23 const color =
24 line.commit && !ctx.isPreview
25 ? this.colorManager.interpolateColor(ctx, line)
26 : "transparent";
27 line.color = color;
28 colors.push(line.color ?? "#000");
29
30 renderer.drawRect({
31 x: lineOffsetScaled ,
32 y: currentY,
33 width: rectWidth ,
34 height: lineHeight ,
35 fill: color,
36 });
37
38 if (ctx.showContent)
39 renderer.drawText(line.content, {
40 x: 0,
41 y: currentY + Math.round(lineHeight / 1.5),
42 fontSize: "4.1",
43 fill: ctx.visualizationConfig.preferredColorScheme
44 === "dark" ? "white" : "black",
45 });
46 currentY += lineHeight + VisualizationDefaults.lineSpacing;
47 }
48 const result = await renderer.getReturnValue();
49 return { result, colors };
50 }

Listing 6.2: The drawFileLines function is called inside the renderer web worker to generate visual
output for the file-lines and file-lines-full visualisation types.

60 6 Gizual Canvas

6.2 Masonry Canvas
All rendered file tiles are placed on a two-dimensional canvas. Pan, zoom, and pinch operations are
supported within this Canvas component, using the react-zoom-pan-pinch [BetterTyped 2024] library.

Tile positioning on the Canvas is determined by a masonry layout algorithm [MDN 2024e]. In essence,
this algorithm creates 1..𝑁 columns, based on user preference, with a default of 10. All tiles are sorted
based on their calculated height. The highest tile is inserted into the currently shortest column in the
layout. This step is repeated until all tiles have been assigned to a column. Afterwards, tiles are sorted
within their respective columns based on their ID, which typically corresponds to the name of the file.
Finally, all columns are sorted left to right based on their height, with the shortest on the left. This
algorithm produces a stable masonry layout for an arbitrary number of tiles, and is used for the masonry
canvas and the SVG export. Figure 6.4 shows an SVG export of a masonry grid created with Gizual.

6.2.1 Canvas Interactivity

The Canvas can be navigated with the mouse or by touch. Clicking and dragging with the mouse and
touching and dragging with a finger trigger a pan operation, which moves the viewbox of the visualisation.
Scrolling on the mouse wheel or pinching with two fingers are converted into a zooming interaction. To
maintain a smooth user interface during the animation of these transform operations, tiles can be rendered
in varying degrees of detail. Zooming out reduces the required resolution for each tile in the visualisation.
The Intersection Observer API [MDN 2024j] is used to track tiles which are currently in the viewbox.
Tiles outside the viewbox are disregarded. Zooming into the visualisation uses the same logic to determine
which tiles to render at a higher resolution. Once a tile has been rendered in a different resolution, the
image in the visualisation is replaced with the new result. This process ensures smooth interactivity
within the Canvas by reducing the resolution of items the browser needs to render.

6.2.2 Canvas Minimap

The Canvas can display many tiles simultaneously, and grows infinitely in height. User navigation can
become increasingly more disorienting with increased canvas height. For this reason, a Minimap component
was added to the Sidebar, as shown in Figure 6.5. The Minimap displays the entire canvas of tiles at a much
lower scale, and uses grey rectangles to reduce information density. The current viewbox of the Canvas is
indicated with a blue rectangle.

The react-zoom-pan-pinch library provides an implementation of a minimap out of the box, but it
had to be adapted to include interactivity. In Gizual, the Minimap syncs bidirectionally with the Canvas.
Panning or zooming in the Canvas updates the Minimap, and dragging the blue viewbox rectangle in the
Minimap updates the Canvas.

6.2.3 Canvas Legend

The Sidebar also features a Legend, displaying the selected colour coding and commit range for the Gradient
by Age visual encoding, as shown in Figure 6.6. The component features two colour pickers, which provide
quick access to change the start and end colour of the colour gradient.

6.2.4 Author Panel

When the Palette by Author visual encoding is selected, the Author Panel displays the authors of the selected
commits. Figure 6.7 shows the Canvas for the Palette by Author visual encoding, with the Author Panel visible
on the right. Author names and avatars are anonymised for this example.

Masonry Canvas 61

apps/gizual-app/src/index.scss

apps/.../color-picker/color-picker.module.scss

apps/...anced/advanced-query-input.module.scss

apps/.../author-panel/author-panel.module.scss

apps/...r-progress/linear-progress.module.scss

apps/...uery-input/modules/modules.module.scss

apps/gizual-app/src/colors.scss

apps/...tured-repos/featured-repos.module.scss

apps/...itives/font-icon/font-icon.module.scss

apps/...umn/resizable-split-column.module.scss

packages/...ted-logo/animated-logo.module.scss

apps/...rc/pages/settings/settings.module.scss

apps/...nimated-logo/animated-logo.module.scss

apps/...itives/file-tree/file-tree.module.scss

apps/...es/message-bar/message-bar.module.scss

apps/...itives/title-bar/title-bar.module.scss

apps/...imitives/css/shared-styles.module.scss

apps/...primitives/loading/loading.module.scss

apps/...own-viewer/markdown-viewer.module.scss

apps/...c/primitives/select/select.module.scss

apps/...ages/welcome-v2/cards/card.module.scss

apps/...es/date-picker/date-picker.module.scss

apps/...c/primitives/editor/editor.module.scss

apps/...p/src/primitives/file/file.module.scss

apps/.../query-editor/query-editor.module.scss

apps/...charts/container/container.module.scss

apps/...al-app/src/pages/main/main.module.scss

apps/...c/primitives/button/button.module.scss

apps/...imitives/checkbox/checkbox.module.scss

apps/...imitives/timeline/timeline.module.scss

apps/gizual-app/src/mixins.scss

apps/...-app/src/pages/error/error.module.scss

apps/...c/pages/welcome-v2/welcome.module.scss

apps/...ent-legend/gradient-legend.module.scss

apps/...primitives/toolbar/toolbar.module.scss

apps/gizual-app/src/app.module.scss

apps/...s/welcome-v2/header/header.module.scss

apps/...c/primitives/footer/footer.module.scss

apps/...primitives/masonry/masonry.module.scss

apps/...ives/radio-grid/radio-grid.module.scss

apps/...c/primitives/canvas/canvas.module.scss

apps/...g-provider/dialog-provider.module.scss

apps/...es/icon-button/icon-button.module.scss

apps/...src/primitives/input/input.module.scss

apps/...-input/query-bar/query-bar.module.scss

Figure 6.4: SVG export of a masonry grid created in Gizual. The resulting layout of the algorithm
is stable. Columns are sorted left to right by their height. Within columns, tiles are sorted based
on their ID. The text of lines of code is not exported. [Image created by the author of this thesis.]

62 6 Gizual Canvas

Figure 6.5: The Minimap component in Gizual, for a set of tiles where the user has zoomed in on the
Canvas. All tiles in the Minimap are displayed as simple gray rectangles, retaining only their relative
height. The blue rectangle indicates the current viewbox of the Canvas. [Image created by the author of
this thesis.]

Figure 6.6: The Legend component in the Gizual Canvas for the Gradient by Age visual encoding. Two
colour pickers provide quick access to customise the start and end colours of the colour gradient.
The selected commit range is shown in text. [Image created by the author of this thesis.]

Figure 6.7: A Gizual visualisation using the Palette by Author visual encoding. The Author Panel on
the right shows the colour palette used to identify the author of each line of code. Avatars are
anonymised in this example. [Image created by the author of this thesis.]

Chapter 7

Visual Encoding in Gizual

In Gizual’s visualisation canvas, files are drawn as rectangular tiles and lines of code are drawn as coloured
horizontal strips within them. The length of the horizontal strip typically depends on the length of the
line of code (number of characters). The horizontal strips are colour-coded according to one of two visual
encodings: Gradient by Age or Palette by Author. In Gradient by Age encoding, the colour of each horizontal strip
is calculated according to the timestamp of the last modification of the line of code. Users can freely
choose the colour of the start and end of the time range, and the colour value for a particular line of code
is interpolated between those colours based on the timestamp. In Palette by Author encoding, each author
within the selected time range is assigned a colour value from a palette. Each horizontal strip is assigned
the colour of the author who last modified the line of code. Users can freely customise the assigned
colour values of each author, but sensible defaults ensure that there is clear visual distinction between the
first 30 authors.

7.1 Colour Spaces
Traditionally, computer displays have relied on the RGB colour coding to persuade the human brain that
it is looking at a vivid, colourful image, when, in reality, it is just looking at a set of millions of tiny red,
green and blue lights. To represent the colour red, an RGB value of rgb(255,0,0) would be used, whilst the
colour blue would be represented as rgb(0,0,255). This approach of encoding colour makes sense based
on its physical origin. However, colours coded with RGB are usually hard to understand for humans,
because the mixture between colour channels is not linear. Instead, the human brain can perceive slight
variations in RGB values as huge changes in colour, making it difficult to create proper colour gradients
within this colour space.

A more modern alternative for representing colour, better-suited for the purpose of data visualisation, is
the HCL colour space [Zeileis et al. 2009], often also referred to as CIELChuv. Ihaka [2003] popularised
its use for information graphics by applying the principles of colour from Munsell [1919] to the colour
space, proposing a set of uniformly distributed colours. For visualisation, the HCL colour space has
benefits over RGB, because it eliminates the bias of varying saturation of colours, rooted within the
human visual system. An excellent write-up on the historic developments of the HCL colour space
and comparisons to other colour spaces was published by Rhyne [2021]. The hclwizard.org website
[hclwizard 2024] shows an overview of hue, chroma, and luminance colour maps and serves as a great
introduction.

63

https://hclwizard.org/

64 7 Visual Encoding in Gizual

7.2 Gizual Colour Manager
Within the Gizual project, colour distribution is managed through instances of a ColorManager class. This
class is responsible for assigning colour to domain values, and for transforming values from one colour
space to another. Through this abstraction layer, all web workers within the Gizual architecture can access
the ground truth mapping of domain value to colour by instantiating an instance of the ColorManager with
the same ColorSetDefinition. Listing 7.1 showcases a version of the ColorManager with the function
implementations removed for brevity.

For low-level colour manipulation, the ColorManager uses scale and colour transformation functions
provided by the D3 library [Bostock et al. 2011; Bostock 2024a], a well-established project for creating
data-driven documents and interactive visualisations. D3 provides excellent functions for managing
colour bands and colour space conversion.

The colour gradient for the Gradient by Age visual encoding is calculated by assigning a user-defined value
to the chosen start and end timestamp. If the timestamp value of a line of code is within the specified range
of commits, it is passed into a D3 colour range function, otherwise a semi-transparent colour is assigned.
Users can freely modify the colour values of the two extreme values, and the colour of timestamps that
are out of the selected time range. The D3 colour range uses a linear scale [Bostock 2024b] to transform
the timestamp value and the two user-defined start and end values into the final colour value for a given
line of source code.

Colouring for the Palette by Author visual encoding works by first assigning a fixed set of colours to a
colour palette. The colour palette is initialised upon creation of the ColorManager instance, and defaults
to 30 distinct colours. Algorithmically, each colour is generated within the HCL colour space by evenly
distributing the hue across all values of the band, with chroma and luminance kept consistent for all
colours. This colour scale is fed into a ScaleOrdinal [Bostock 2024c], which maps the 30 colour values
to values within the target domain. If a value for a specific domain entry is user-defined, it is fed into the
init function of the ColorManager, which assigns it directly to the associated domain value. Figure 7.1
shows a design prototype of the Author Panel, which displays author colour next to author avatar, name,
email address, and number of commits.

Gizual Colour Manager 65

1 import { hcl, HCLColor } from "d3-color";
2 import { ScaleLinear , scaleLinear , ScaleOrdinal , scaleOrdinal } from "d3-scale";
3
4 export type ColorSetDefinition = {
5 excludedColors?: string[];
6 assignedColors?: [string, string][];
7 domain?: string[];
8 bandLength?: number;
9 };

10
11 export class ColorManager {
12 // The band of all colors that are available for default use.
13 colorBand: string[] = [];
14
15 // Ordinal scale that maps identifiers to colors.
16 colorScale?: ScaleOrdinal <string, string, never>;
17
18 // The target domain of the color band.
19 domain: string[] = [];
20
21 // Colors the user has explicitly excluded from the color band.
22 excludedColors: HCLColor[] = [];
23
24 // Colors the user has explicitly assigned to a specific identifier.
25 assignedColors: Map<string, string> = new Map();
26
27 // The length of the color band.
28 bandLength = 8;
29
30 constructor(ctx?: ColorSetDefinition) {}
31 init(csd: ColorSetDefinition) {}
32 get state(): ColorSetDefinition {}
33 assignColor(identifier: string, color: string) {}
34 excludeColor(color: string) {}
35 get isInitialized() {}
36 initializeColorBand() {}
37 getBandColor(identifier: string): string {}
38
39 // Conversion functions.
40 static stringToHcl(color: string): HCLColor {}
41 static hclToRgb(color: HCLColor): string {}
42 static stringToHex(color: string): string {}
43
44 // Interpolation functions based on Renderer Context.
45 interpolateColor(ctx: AuthorContributionsContext , value: GizDate): string;
46 interpolateColor(ctx: FileLinesContext , value: Line): string;
47 interpolateColor(ctx: FileMosaicContext , value: Line): string;
48 interpolateColor(ctx: AuthorMosaicContext , value: number): string;
49 interpolateColor(ctx: RendererContext , value: any): string {}
50 }

Listing 7.1: A stubbed version of the ColorManager class in Gizual, responsible for assigning
and distributing evenly spaced HCL colours for all possible domain values based on a
ColorSetDefinition.

66 7 Visual Encoding in Gizual

Author

Author One
author.one@example.com

123 commits

Author Two
author.two@example.com

120 commits

Author Three
author.three@example.com

99 commits

Author Four
author.four@example.com

95 commits

Author Five
author.five@example.com

90 commits

Author Six
author.six@example.com

80 commits

Author Seven
author.six@example.com

70 commits

Author Eight
author.eight@example.com

60 commits

Author Nine
author.nine@example.com

59 commits

Figure 7.1: Design prototype of the Author Panel for Gizual. It displays the visual encoding of authors
based on the HCL colour palette. From left to right, it displays the current colour, avatar, name,
email address, and number of commits for each author. [Screenshot created by the author of this thesis.]

Chapter 8

Query Bar

Gizual’s visualisation output can be restricted to a specific selection of files at specific points in the
history of a repository. Section 4.4 introduced the query interface and the three different query scopes
commit-range, files, and visualisation, which make up the single query object that represents state
in Gizual. The Gizual Query Bar, located immediately above the Canvas, provides the UI component to
customise the input for these scopes. Figure 8.1 shows the Query Bar in isolation. Figure 5.5 shows it in
relation to the full Gizual interface. Each query scope has a corresponding query module in the Query Bar.
Internally, JSON [Ecma 2024c] is used to represent queries within Gizual, as described in Section 4.4
and illustrated in Listing 4.5.

8.1 Query Modules
All query scopes are adjustable by the user in the Query Bar. Three query modules, the Time Module, File
Module, and Vis Module correspond to the three query scopes commit-range, files, and visualisation,
respectively. The shared interface implemented in Maestro ensures that both the Query Bar and the
underlying query interface remain synchronised, and both can be extended separately. Figure 8.2 shows
the Query Bar with annotated modules.

8.1.1 The Time Module

The Time Module controls the input for the commit-range scope. The scope supports two different input
combinations:

• Range by Date: A select box provides functionality to select a branch. Two date picker components
facilitate the selection of a start date and end date. Additionally, a Timeline Button toggles the
visibility of the Timeline component. This configuration can be seen in Figure 8.3.

• Range by Revision: Two input fields allow the input of two valid Git references, for example a branch
name, Git revision, or commit id. This configuration can be seen in Figure 8.4.

Gizual features a dedicated Timeline component to aid in the selection of a valid time range for the
commit-range scope. Figure 8.5 shows the Query Bar with the Timeline visible. In the Timeline, commits are
represented as circles. Selecting a start date and end date is done by dragging a rectangular selection
box over the desired commits. Scrolling the mouse wheel zooms the timeline. Dragging while holding
the Shift key pans the visible section horizontally. A detailed description of this component and a
discussion of animation and interaction is provided in Section 9.1.

67

68 8 Query Bar

Time Range by Date

Mon, 03 Nov 2022 Mon, 11 Nov 2023 Branch: main

Files Filter

*.ts

Vis

file-lines-full

Figure 8.1: The Query Bar allows a user to interact with Gizual’s query interface. [Image created by the
author of this thesis.]

Time

Module

Timeline

File

Module

Vis

Module

Figure 8.2: The Query Bar comprises three modules. The Time Module controls the selected commit
range and includes access to the Timeline component. The File Module controls the selected files.
The Vis Module controls the style of the visualisation. [Image created by the author of this thesis.]

Time Range by Date

Mon, 03 Nov 2022 Mon, 11 Nov 2023 Branch: main

Figure 8.3: The Time Module of the Query Bar facilitates the selection of a branch, a start date, and an
end date. The user input in this component is used for the commit-range scope. [Image created by the
author of this thesis.]

Time Range by Revision

From: feature1 To: main

Figure 8.4: The Range by Revision Module of the Query Bar facilitates the selection of two Git revisions
(pasted in as free text). [Image created by the author of this thesis.]

Figure 8.5: The Timeline associated with the Time Module supports the selection of a start date and an
end date. Commits are represented as circles, and each tick in the ruler represents a time range of
one week. The user input from this component is used for the commit-range scope. [Image created
by the author of this thesis.]

Files Filter

*.ts

Figure 8.6: The File Module of the Query Bar facilitates the selection of files with a glob pattern. The
user input from this component is used for the files scope. [Image created by the author of this thesis.]

Query Modules 69

Vis

file-lines-full

Figure 8.7: The Vis Module of the Query Bar facilitates the selection of a visualisation type. The user
input from this component is used for the visualisation scope. [Image created by the author of this
thesis.]

8.1.2 The File Module

The File Module controls the input for the files scope. This scope supports three different inputs:

• Pattern: A path can be specified in a text input field using a Unix-style glob pattern [Kerrisk 2024]. A
glob pattern to select all files with the TypeScript extension .ts would be: *.ts. This configuration
uses a regular text input field, as shown in Figure 8.6.

• File Picker: Multiple paths can be specified by selecting them with a custom file picker component.
The file picker is implemented as a tree view and opens in a separate modal dialogue. Nodes can
be individually collapsed and expanded. Entire directories can be selected, and the tree supports
partial selection. A detailed explanation of this component is provided in Section 9.2.

• Revision: A text input field can be used to enter a valid Git revision (pasted in as free text). All files
that were changed in the corresponding Git commit will be selected and loaded.

8.1.3 The Vis Module

The Vis Module provides functionality to change the output visualisation type. It is shown in Figure 8.7.
Three types of visualisation are currently available: file-lines, file-lines-full, and file-mosaic. Each
of these types supports the selection of a visual encoding. The supported encodings are: Gradient by Age,
and Palette by Author. A detailed description of their behaviour can be found in Chapter 7. The selection of
type and visual encoding is handled in a separate modal dialogue, shown in Figure 8.8.

70 8 Query Bar

Figure 8.8: The Vis Type Dialogue facilitates the selection of the visualisation type and visual encoding.
The visual encoding can be customised with custom colours. A preview section on the right
displays randomised demo output for the current settings. [Image created by the author of this thesis.]

Implementation Details 71

query-input/
modules/
file/
time/
time-base-module.tsx
time-menu.tsx
time-placeholder -module.tsx
time-range-by-date-module.tsx
time-range-by-ref-module.tsx

type/
base-query-module.tsx
index.ts
modules.module.scss
modules.module.scss.d.ts

query-bar/
index.ts
query-bar.module.scss
query-bar.module.scss.d.ts
query-bar.tsx

index.ts
module-provider.tsx
query.vm.ts
shared.ts

Listing 8.1: The file and directory structure of the Query Bar UI component in Gizual’s source code.

8.2 Implementation Details
The source code for the three query scopes in the Query Bar and their associated modules is structured
similarly in terms of files and directories, as can be seen in Listing 8.1. In the source code, the module
implementations for the Time Module are contained in the modules/time/ directory of the Query Bar. The
modules/file/ directory contains the source code for the File Module implementations. Finally, the
modules/type/ directory contains the source code for the Vis Type Module and the corresponding Vis Type
Dialog.

The basic shape and interactive elements of each module are derived from the BaseQueryModule
component, shown in Listing 8.2. All modules are then placed in a ModuleProvider component, shown in
Listing 8.3. The ModuleProvider is responsible for displaying the module that corresponds to the currently
selected option within each scope. All modules feature a Swap Button with a downward facing arrow on
the right. Clicking the button opens a menu, with which the user can choose a different module for that
particular scope. All modules also feature optional tooltips for additional information, and each module
can provide as many input elements as necessary for its corresponding scope. This modular setup of
components allows for easy customisation of existing query modules, and provides a streamlined way to
add new modules in the future.

8.2.1 Query Editor

The horizontal layout of modules works great for devices with wide viewports, but does not scale down
well to smaller, narrower devices. To accommodate a wide variety of different viewports, the Query Bar is
replaced by the Query Editor on devices with viewport widths of less than 64rem. The Query Editor provides
the most commonly used input variants for each scope in a modal dialogue window, shown in Figure 8.9,
which is easier to navigate on smaller devices.

72 8 Query Bar

1 // Imports and types truncated
2 export function BaseQueryModule(props: BaseQueryModuleProps) {
3 const { icon, title, children, hasSwapButton , onSwap, menuItems ,
4 containsErrors , hasHelpTooltip , helpContent , hasEditButton ,
5 onEdit, editButtonComponent } = props;
6
7 return (
8 <div
9 className={clsx(

10 style.BaseQueryModule ,
11 containsErrors && style.ContainsErrors
12)}
13 aria-expanded={swapMenuOpen}
14 >
15 <div className={style.ColumnContainer}>
16 <div className={style.QueryModuleHeader}>
17 <div className={style.QueryModuleIconWithText}>
18 {icon && <div className={style.QueryModuleIcon}>{icon}</div>}
19 {title && <div className={style.QueryModuleTitle}>{title}</div>}
20 </div>
21 {hasHelpTooltip && (
22 <Tooltip label={helpContent} withArrow>
23 <div>
24 <IconInfo className={style.QueryModuleIcon} />
25 </div>
26 </Tooltip>
27)}
28 </div>
29 <div className={style.RowContainer}>
30 {children}
31 {hasSwapButton && (
32 <Menu /* Props truncated */>
33 <Menu.Target>
34 <IconButton
35 className={style.SwapButton}
36 aria-expanded={swapMenuOpen}
37 >
38 <IconChevronDown className={style.CloseIcon} />
39 </IconButton>
40 </Menu.Target>
41 {menuItems}
42 </Menu>
43)}
44 {hasEditButton &&
45 (editButtonComponent ?? (
46 <IconButton onClick={onEdit}>
47 <IconEdit className={style.CloseIcon} />
48 </IconButton>
49))}
50 </div>
51 </div>
52 </div>
53);
54 }

Listing 8.2: The BaseQueryModule component serves as a base for all derived query modules. It
implements the basic layout and provides interactive elements for swapping modules.

Implementation Details 73

1 // Imports truncated
2 type ModuleProviderProps = {
3 viewMode: ViewMode;
4 };
5 const ModuleProvider = observer(({ viewMode }: ModuleProviderProps) => {
6 return (
7 <>
8 <TimeModuleProvider viewMode={viewMode} />
9 <FilesModuleProvider viewMode={viewMode} />

10 <PresetModuleProvider viewMode={viewMode} />
11 </>
12);
13 });
14
15 const TimeModuleProvider = observer(({ viewMode }: ModuleProviderProps) => {
16 const { query } = useQuery();
17 const timeMatch = match(query)
18 .with({ time: P.select() }, (time) => {
19 return match(time)
20 .with({ rangeByDate: P.select() }, () => {
21 return <TimeRangeByDateModule key="time-range-by-date-module" />;
22 })
23 .with({ rangeByRef: P.select() }, () => {
24 return <TimeRangeByRefModule key="time-range-by-ref-module" />;
25 })
26 .with({ sinceFirstCommitBy: P.select() }, () => {
27 return (
28 <TimeSinceFirstCommitByModule key="time-since-first-commit-by-module" />
29);
30 })
31 .otherwise(() => {
32 return <TimePlaceholderModule key="time-placeholder-module" />;
33 });
34 })
35 .otherwise(() => {
36 return <TimePlaceholderModule key="time-placeholder-module" />;
37 });
38
39 return React.cloneElement(timeMatch , { viewMode });
40 });
41 export {
42 // FilesModuleProvider , (truncated)
43 // PresetModuleProvider , (truncated)
44 TimeModuleProvider ,
45 ModuleProvider ,
46 };

Listing 8.3: The ModuleProvider component provides the logic for swapping modules. It is responsible
for displaying the correct user input module to the corresponding query state, and contains logic
to display a placeholder instead of a module in case of a state mismatch.

74 8 Query Bar

Figure 8.9: The Gizual Query Editor is a modal dialogue window. It replaces the Query Bar on devices
with a viewport width smaller than 64rem. [Image created by the author of this thesis.]

Implementation Details 75

Figure 8.10: Draft of the Query Assistant, which provides a simpler introduction to Gizual’s query
interface for new users. [Image created by the author of this thesis.]

8.2.2 Query Assistant

The Query Bar is most useful to experienced users, who already have an idea of what to expect when they
launch Gizual. These users can easily customise their desired set of input files and output style with a few
clicks. For new users, some modules can be overwhelming. For these users, an additional Query Assistant
is proposed, which shows fewer options in a more straight-forward layout. This should help new users
obtain a good first visualisation in a matter of seconds. A draft for the proposed dialogue can be seen in
Figure 8.10, but its implementation was declared out of scope for this thesis.

76 8 Query Bar

Aa-files: view-layer.tsx, main.tsx, app.tsx -contributor: Andreas Steinkellner .*

Figure 8.11: Early design prototype of QB1, a single search bar to customise the input query. Query
scopes, such as -files:, always follow the same syntax. They start with a minus, followed by
the name of the scope, and end with a colon. Custom syntax highlighting helps segregate query
scopes. [Image created by the author of this thesis.]

8.3 Previous Iterations and Concepts
The Query Bar is a central UI component within Gizual. As such, its usability has been a major concern
throughout development. Some earlier concepts, which were eventually discarded in favour of the current
implementation, included: 1) a modular query editor, based on a single input element (QB1), 2) a text
editor for JSON input called the Advanced Query Editor (QB2), and 3) a hybrid approach between modules
and a text editor (QB3).

8.3.1 QB1: Single Input Field

This first iteration was largely inspired by the search bars used on sites like GitHub [GitHub 2024b] or
Sourcegraph [Sourcegraph 2024]. It was implemented using the CodeMirror [Haverbeke 2024a] library
and featured a custom search syntax for chaining commands together. The syntax looked like this:

-files:OR(path=["index.html","index.js"],lastEditedBy=["joe"])

Each query scope had a defined set of acceptable input patterns. Other inputs would be marked as
erroneous and had to manually be fixed by the user. Custom syntax highlighting was introduced in order
to visualise the different scopes to the user. Each query scope had to follow a specific input shape: starting
with a minus, followed by the name of the scope, and ending with a colon. Figure 8.11 shows an early
design prototype of this component.

Eventually, this iteration of the Query Bar was discarded, because the interplay of a shared focus state
between the Query Bar and the Timeline proved to be problematic in terms of user experience. When users
moved the selection on the Timeline, the Query Bar needed to reflect that change immediately, regardless of
the current cursor position. Additionally, all input within the search bar had to be parsed continuously,
and errors were hard to pinpoint and resolve for end users.

8.3.2 QB2: Advanced Query Editor

The second iteration of the Query Bar focused on the rigid JSON structure of the query interface and
exposed it directly within a code editor. The Advanced Query Editor uses the Monaco [Microsoft 2024a] code
editor. Besides great support for plugins and styling, Monaco provides advanced source code highlighting
defaults and allows simple highlighting based on a predefined JSON schema. Since the query was already
written to support a JSON schema, it could easily be integrated into the Monaco editor. The Advanced Query
Editor is still used within the project for debugging purposes, but is currently only available when Gizual is
started in a development environment. Figure 8.12 shows the Advanced Query Editor with the default query.

8.3.3 QB3: Hybrid Combination of Modules and JSON Input

QB3 segregated the individual scopes into distinct modules, which could be added or removed to build
up the query. Advanced users were supposed to make edits in the Advanced Query Editor built in QB2, which
was accessible via a button on the right of the Query Bar. A design prototype of QB3 can be seen in
Figure 8.13.

Previous Iterations and Concepts 77

Figure 8.12: The Advanced Query Editor is a live implementation of a Monaco code editor, used to
directly edit the JSON query. Initially implemented as QB2, it is now used for debugging and is
only available when Gizual is started in a development environment. [Image created by the author of
this thesis.]

Range: 2022-07-01 2023-07-01 Pattern: *.tsx Gradient by Age:
Old changes:

#FF00A8
New changes:

#00E0FF

Figure 8.13: Design prototype of QB3, a hybrid approach with modules and the Advanced Query Editor
built in QB2. Modules can be added by clicking the green + button, and removed by clicking the
red × button within each module. [Image created by the author of this thesis.]

This iteration was functionally similar to the final implementation of the Query Bar, except for the support
of empty modules in QB3, which was removed in the final implementation. Additionally, the Advanced
Query Editor was eventually removed from QB3 for regular users, since the implemented query modules
became sophisticated enough to represent the entire JSON query appropriately.

78 8 Query Bar

Chapter 9

Selected Details of the Implementation

“Details matter, it’s worth waiting to get it right. ”

[Steve Jobs; Co-founder of Apple; 1955-2011]

Gizual’s user interface went through many iterations before arriving at its current state. This chapter
provides selected details about some components that were featured, but not fully explained in previous
chapters.

9.1 Interactive SVG Timeline
Navigating historical data within a repository requires a visually perceptible way of navigating time.
None of the user interface libraries used within the project provides a functionally complete timeline that
would fit the requirements of Gizual. Throughout this section, the words “time” and “date” are often used
synonymously. Technically, all selections in Gizual are always time-based. From a user perspective, date
selection is usually sufficient, and simpler to navigate. The Timeline in Gizual is a custom implementation
of an interactive SVG element, transformable through interaction with the mouse or by touch. The
component, shown in isolation in Figure 9.1, is split into the following three sections: The Commit Timeline
located at the top, the Time Ruler at the bottom, and the Range Selector as an overlay.

9.1.1 Commit Timeline

The Commit Timeline contains all historically relevant commits, displayed as circles on a horizontal line
representing infinite time. Some repository activities, such as merge commits, often lead to multiple
commits in the same repository with little temporal spacing between them. If two commits are too close
to each other, the Timeline visually groups them into an ellipse and displays the number of commits within
the group as a label. The width of each ellipse is based on the number of commits it aggregates within a
fixed region of influence, based on the current zoom level within the Timeline.

9.1.2 Time Ruler

The Time Ruler contains a visual legend to help users to orient themselves within the visible time range.
The distinct visual look of a ruler was replicated to display the distance between days or weeks, depending
on the zoom level. Each tick on the ruler represents the start of a new day or week. Additionally, the
corners show the earliest and latest date currently visible. A central information text indicates how many
days or weeks are currently in view, and how many of them are selected for the visualisation.

79

80 9 Selected Details of the Implementation

Figure 9.1: The Timeline component in Gizual, associated with the Time Module, supports the selection
of a start date and an end date. Commits are represented as circles, and each tick in the ruler
represents a time range of one week. The user input from this component is used for the
commit-range scope. [Image created by the author of this thesis.]

9.1.3 Range Selector

The Range Selector spans the entire Timeline and is positioned on top of it. It implements interactive controls
which can be manipulated with the mouse or touch. A rectangular selection box, coloured in light blue,
displays the current selection. Handles on the left and right edges can be grabbed to adjust the start or end
date of the selection. The entire selection can be moved to a different region by dragging the selection
rectangle. Finally, the Range Selector also displays an optional tooltip for each commit. Hovering over any
ellipse within the timeline shows a tooltip with information about the contained commits.

The timeline is built as a set of three stacked layers: The base layer contains the logic for the ruler
and legend. The commit layer contains the ellipses for the commits within the repository. Finally, the
interaction layer contains the interactive elements for capturing user input and displaying the selection
rectangle.

The base layer and commit layer are embedded into an SVG element. The SVG element is deliberately
three times as wide as it needs to be to display the entire user-selected time range. A CSS transformation
is used to transform the component, so that only the user-selected range is visible. The extra rendered
width to the left and right are added for performance reasons. They prevent the need for costly re-renders
when the user navigates back and forth in time. The ruler element, embedded into the base layer, adapts
the spacing and positioning of its ticks depending on the selected start and end time. A visible section of
less than 365 days is displayed with ticks on each day. If the visible section spans more than 365 days,
the ruler displays a tick for each week.

User interaction is handled through the interaction layer, which is implemented as a regular HTML
element outside the SVG. A custom TimelineEventHandler class receives all events from the interaction
layer, and directly synchronises with the TimelineViewModel. The TimelineViewModel controls the state of the
timeline and is implemented with MobX. The TimelineEventHandler defines custom functions for each user
input event, and contains optimisation for mouse movements and touch gestures.

9.2 File Tree
Large source code repositories can contain hundreds or even thousands of individual files, nested in
directories. None of the user interface component libraries investigated during the implementation could
handle this large number of files without stuttering or overloading the main thread. This introduced a
need for a custom, high-performance file tree component, which could handle the selection of thousands
of files without performance issues.

Gizual’s custom File Tree is shown in Figure 9.2. It uses a recursively rendered list of nodes to represent
a flat array of file paths as a tree. The array of file paths is obtained from Gizual’s data layer after an
initial loading period. Algorithmically, the tree is constructed by slicing the set of input paths to create a
nested structure. All tree items are then assigned one of three values to represent their state: unchecked,
indeterminate (partial selection of children), and checked. The tree items are stored in a flat map, with
their paths as a unique identifier. Each item contains a reference to its children and its parent. This

File Tree 81

Figure 9.2: The File Tree component in Gizual, associated with the File Module, which supports un-
checked, indeterminate (partial selection of children), and checked states for all tree items. [Image
created by the author of this thesis.]

82 9 Selected Details of the Implementation

approach reduces the lookup time for a specific path, which is useful for propagating the selection state
of an entire directory up and down the tree.

Each tree item is then recursively rendered in the corresponding React component, but only children
within a defined maximum render depth are added to the DOM. This avoids the performance issues that
all other investigated file tree implementations struggled with, by always minimising the number of items
in the DOM. Child elements further down in the tree are deliberately only appended to the DOM, when
their third ancestor is expanded.

Chapter 10

Outlook and Future Work

Gizual’s capabilities still have room to grow. Some features, like the additional visualisation types,
already have partial implementations, but were excluded from this thesis. Through the sophisticated split
between main thread and web workers, Gizual can handle computationally expensive operations in a
streamlined framework, allowing for easy future expansion into more nuanced visualisations or analytics.

The performance of the Canvas could be improved even further by eliminating the need for re-renders
during zooming operations. A possible solution for this would be to use SVG elements instead of
pre-rendered pixel-based images that require constant re-renders at different resolutions. Gizual already
features an SVG rendering backend in the rendering worker, which should allow this feature to be
implemented in a reasonable time-frame. This feature would also provide a simple solution to rendering
accurate line of code tooltips in the visualisation, since every rendered object could be associated with
mouse or touch events.

Similarly, panning in the Timeline could be improved further by replacing the current position update
through coordinates with a CSS transform operation, reducing the number of re-renders React needs
to compute for this component substantially. Additionally, the Timeline could feature more advanced
interactivity when hovering and interacting with commits. A visual indication of commits originating
from the same branch, or more advanced grouping and highlighting, come to mind.

Future versions of Gizual could also include more detailed analytics about repository statistics. At
the moment, the analytics section only features a bar chart with file extensions, and it is currently
disabled. Modern source code repository hosting providers, such as GitHub [GitHub 2024b] and Bitbucket
[Bitbucket 2024], provide a variety of analytics about a given repository. These analytics often give insight
in distinctive data about a project, such as the number of active contributors, or the general workload or
language distribution. While somewhat limited by performance constraints inside the browser sandbox,
Gizual could theoretically provide a number of interesting analytics, including:

• Commit Activity Over Time (Line Chart): Displays the number of commits in the repository as a
line chart. Data is aggregated over days, weeks, or months.

• Commit Activity (Bar Chart): Displays the number of commits for the hour of day, or the day of the
week, as a bar chart.

• Code Additions and Deletions (Line Chart): Displays the additions and deletions for a chosen user
as a line chart. Data is aggregated over days, weeks, or months.

• Top Modified Files (Bar Chart): Displays the files which were most often modified, as a bar chart.
The length of each bar corresponds to the number of modifications in the corresponding source file.

83

84 10 Outlook and Future Work

Other potential future improvements might include:

• With regard to visual encoding, a binning feature would allow users to select a specific range of time
within their selection, and update the colours for that specific range separately.

• A brushing feature would also be highly useful. It would allow users to hover over a specific line of
code in the Canvas, and all other lines of code that were changed within the same commit would also
be highlighted automatically.

• A treemap view of the hierarchical structure of a repository, like the one in Spider Sense [N. H.
Reddy et al. 2015], might be a useful addition to Gizual.

• The SVG export of the visualisation currently only renders the tiles and strips for each line of code.
The text of each line of code is not included in order to save space. In the future, the user should be
able to decide whether to include text or not.

Finally, web applications heavily depend upon the feature set provided by the browser engine. Major
updates to the available feature set could eventually lead to a breaking change. Tools like Electron
[Electron 2024] and Tauri [Tauri 2024] allow web applications to be bundled into an executable package,
which can be installed and run natively. This would insulate Gizual from such breaking changes in the
future.

Chapter 11

Concluding Remarks

“ In any series of elements to be controlled, a selected small fraction, in terms of numbers
of elements, always accounts for a large fraction in terms of effect. ”

[Vilfredo Pareto; Italian engineer, economist and teacher; 1848–1923]

Crafting a data visualisation application that is both functionally complete and aesthetically pleasing
to use is incredibly challenging. Many iterations were required to arrive at the final result, as presented
in this thesis. Very often, it felt like parts of the application were almost complete, but the final polish
required to make functionality seamless to use was very difficult to achieve.

The project goal was to find a novel solution to combine the ease-of-use of a web application with
the performance and capabilities of native code and harness it for data visualisation. During imple-
mentation, it often became apparent that some implementation details require strategic, out-of-the-box
thinking. Combining experimental browser features with a traditional visualisation style has been incred-
ibly rewarding, and it demonstrates the power of the web as an application platform. As web browsers
keep expanding their support for more advanced and computationally expensive operations, the web will
remain an interesting target for future information visualisation applications.

This thesis presented Gizual, an open-source, web-based visualisation tool for exploring Git source
code repositories. Powerful input mechanisms were combined into the Gizual Query Bar, so the user can
configure the set of selected files and type of visualisation. An interactive SVG-based Timeline component
supports the visual selection of a commit range. Files can be selected with a custom File Tree, which can
cope with many thousands of nested files. Two kinds of visual encoding allow the user to explore lines of
code by last modification date or by most recent author. The Gizual Canvas arranges file tiles in a masonry
layout, with a synchronised minimap to maintain orientation within the freely zoomable visualisation
canvas. The custom renderer achieves high performance by distributing rendering tasks across a pool of
web workers, and is capable of generating the file tiles both as raster images for the visualisation canvas
and as SVGs for exporting. Finally, the entire Gizual application is designed responsively, so it can adapt
to a variety of viewport sizes and end user devices.

The source code of Gizual is open-source and is available on GitHub [Schintler and Steinkellner 2024].
A deployed version can be accessed at gizual.com.

85

https://gizual.com/

86 11 Concluding Remarks

Appendix A

User Guide

Gizual’s interface was created to be as simple and intuitive as possible. Nevertheless, some components
and workflows deserve additional explanation. This guide is not a complete overview of Gizual as an
application, but serves as an entry point for new users, who want to get started as quickly as possible.

A.1 Opening a Repository
Since Gizual is a web application, no installation or manual setup on the user device is necessary. The
application can be opened by visiting app.gizual.com, or by cloning the Gizual repository [Schintler
and Steinkellner 2024] and building it from source locally. Once the application has loaded, the Gizual
welcome screen is displayed, as shown in Figure A.1. The welcome screen provides the interface to
open a Git repository in Gizual. Repositories can be loaded from a local directory, from GitHub [GitHub
2024b], or from a set of featured repositories.

A.2 Navigating the User Interface
After a repository has been loaded, Gizual’s main user interface is displayed. The interface is split into
five main regions, as shown in Figure A.2:

• Canvas: A central canvas acts as the heart of the visualisation. Individual tiles represent files, and
coloured strips represent lines of code. The colour-coding is based either on the age of the line of
code, or the author of the line of code. Tiles are laid out in a masonry grid, and the entire area is
interactive. Users can navigate around by zooming, panning, or pinching.

• Query Bar: The Query Bar above the Canvas provides all functionality relating to file selection and
customisation of the visualisation.

• Toolbar: The Toolbar on the left provides quick access to navigation functionality, so that users without
a mouse-wheel or people with special needs can navigate within the Canvas.

• Sidebar: The Sidebar on the right provides a custom Minimap, which mirrors the content of the main
canvas in an abstracted, global overview. Both components are synchronised, so that any movement
within either one of them is immediately replicated in the other. Additionally, the Legend component
at the bottom of the Sidebar provides an overview of the visualisation colour-coding and controls to
change it directly.

• Status Bar: The Status Bar provides feedback about ongoing operations and current resource usage. It
displays the number of selected files, and the current usage of explorer workers and renderer workers.

87

https://app.gizual.com/

88 A User Guide

Figure A.1: The Gizual welcome screen. Repositories can be loaded from a local directory, from a
remote URL on GitHub, or from a set of featured repositories. [Screenshot created by the author of this
thesis.]

Modifying the Query 89

Figure A.2: The user interface of Gizual is separated into five main regions. The central Canvas
provides the visualisation of files in the repository. The Query Bar at the top controls file selection.
The Toolbar on the left provides quick access to navigation functionality. The Sidebar to the right
provides an abstracted overview of the entire visualisation canvas. Finally, the Status Bar at the
bottom provides feedback about ongoing operations and current resource usage. [Screenshot created
by the author of this thesis.]

Time

Module

Timeline

File

Module

Vis

Module

Figure A.3: The Query Bar allows a user to interact with Gizual’s query interface. The Time Module
controls the selected commit range and includes access to the Timeline component. The File Module
controls the selected files. The Vis Module controls the style of the visualisation. [Image created by the
author of this thesis.]

A.3 Modifying the Query
The query in Gizual determines the set of files in a repository to be visualised and how they are visualised.
The query can be modified by interacting with the Query Bar at the top of the main Gizual window. It
contains all the functionality required to customise the range and style of the main visualisation. The bar
is split into three main modules: Time Module, File Module, and Vis Module, as can be seen in Figure A.3. The
Time Module also gives access to the Timeline component.

A module in Gizual’s Query Bar represents a structured way to enter data which is translated into Git
exploration commands, and leads to a valid output visualisation. Different modules are available for the
same scope, where a scope represents a block of information in the query. All modules follow the same
basic layout structure. The title field at the top with the associated icon displays information about the
current module. An information icon on the top right can be hovered to show a tooltip about this specific
module. The Swap Button at the right of every module can be used to swap the current module with a
different input module for the same scope.

90 A User Guide

Figure A.4: The Time Module and its associated Timeline supports the selection of a start date and an
end date. Commits are represented as circles, and each tick in the ruler represents a time range of
one week. The user input from this component is used for the commit-range scope. [Image created
by the author of this thesis.]

A.3.1 Customising the Commit Range

The range of commits can be adjusted by specifying a desired start and end time in the Time Module, as
shown in Figure A.4. The two date fields open up a date picker. Alternatively, the Timeline can be opened
by clicking the Timeline Button . If desired, a specific branch can be selected in the dropdown select box
on the right.

The Timeline can be used to visually customise the commit range in a quick and intuitive way. It
visualises time on a horizontal ruler, and represents commits as circles on that timeline. If too many
commits are in close proximity, they automatically merge into ellipses. Hovering over a commit displays
corresponding metadata. The selected range is displayed as a rectangle with a light blue background.
Handles on the left and right of the selection rectangle can be used to modify the start and end date of
the selection. Dragging anywhere in the selected range moves the entire selection. On desktop devices,
holding down the Shift button while scrolling the mouse wheel triggers a panning motion, moving the
viewbox of the Timeline horizontally. This movement can also be achieved by dragging with the middle
mouse button. On touch devices, dragging with one finger moves the selection box. Two-finger pinching
motions zoom on the timeline, while a three-finger drag pans the entire timeline horizontally.

A.3.2 Customising Selected Files

To customise the set of files to visualise, a valid glob pattern can be entered into the provided input field.
This glob pattern follows common Unix pattern rules. A simple example would be to match all files with
a certain extension, say *.ts.

A.3.3 Customising the Visualisation

The style and output of the visualisation can be configured by clicking the button in the Vis Module, which
brings up the Visualisation Type Dialogue, shown in Figure A.5. In this modal dialogue window, a visualisation
type can be chosen at the top, and a visual encoding (colour-coding) can be chosen at the bottom. The
available visualisation types are:

• File Lines: Displays file contents as a series of coloured lines. Each line represents one line of code.

• File Lines Full Width: Displays file contents as a series of full-width coloured lines. Each line represents
one line of code.

• File Mosaic: Displays file contents as a mosaic of coloured boxes. Each box represents one line of
code.

After a visualisation type has been selected, one of two visual encodings can be chosen:

• Gradient By Age: Colours are assigned based on the age of the line of code. The end points of the
colour gradient can be chosen by picking a start colour and an end colour.

Canvas Navigation 91

Figure A.5: The Visualisation Type Dialogue allows a visualisation type and visual encoding to be chosen.
[Image created by the author of this thesis.]

• Palette By Author: Colours are assigned based on the author of the line of code. The colour value for
each author can be customised in the Author Panel, which is shown on the right of the canvas when
this encoding type is selected.

A.4 Canvas Navigation
Once the query has been adjusted as desired, the main visualisation on Gizual’s Canvas can be explored.
Figure A.6 shows the Gizual Canvas with a File Lines visualisation and Gradient by Age visual encoding. Each
of the selected files is represented by a single tile, and all files are laid out in a masonry grid. The canvas
can be zoomed smoothly using the mouse wheel, pinch-zoom, or the Zoom In Button and Zoom Out Button

in the Toolbar on the left side. The Reset View Button resets the size and position of the visualisation to

92 A User Guide

Figure A.6: The Gizual Canvas with a File Lines visualisation and Gradient by Age visual encoding. It
provides an interactive viewbox to the entire visualisation canvas. Each tile represents a file of
source code. Tiles are arranged in a masonry layout. Lines of code are colour-coded. The Toolbar
on the left contains various controls. The Sidebar on the right contains the Minimap and Legend.
[Image created by the author of this thesis.]

its default state.

To the right of the Canvas, the Sidebar contains the Minimap and Legend. The Minimap shows the entire
visualisation canvas in simplified form. A blue rectangle indicates the current viewbox, and can be
dragged to quickly pan across the entire visualisation canvas. The Minimap and Canvas components are
synchronised and update bidirectionally. The bottom section of the Sidebar displays the Legend. The
colour gradient displays the interpolated range of colours used in a Gradient by Age visual encoding. The
start and end colours can be quickly adjusted by clicking on the coloured buttons at the endpoints. The
corresponding start and end dates are shown above the colour endpoints.

With the Palette by Author visual encoding selected, the Legend is hidden, and the Author Panel is shown on
the right. This configuration can be seen in Figure A.7.

Canvas Navigation 93

Figure A.7: The Gizual Canvas with a File Lines visualisation and Palette by Author visual encoding. The
Author Panel on the right of the Canvas displays the authors of the selected commits. Avatars are
anonymised for this example. [Image created by the author of this thesis.]

Figure A.8: A tile for a single file in Gizual. The icon on the left of the title bar indicates the file’s
extension. The file’s path is truncated in the middle to display the start and end of the path. The
Source Button on the top right opens the Source Editor. [Image created by the author of this thesis.]

94 A User Guide

Figure A.9: The Source Editor displays the content of a file. A coloured decoration to the left of
each line shows the blame information using the current visual encoding. A tooltip displays
information about the author and commit date. [Image created by the author of this thesis.]

A.5 Inspecting Individual Files
Each individual file within the visualisation is displayed as a rectangular tile. Each tile has a title bar,
displaying the extension icon, file path, and Source Button , as shown in Figure A.8. The Source Button
can be used to open the file in Gizual’s integrated read-only Source Editor in a separate modal dialogue
window, as shown in Figure A.9. A coloured decoration is prepended to each line of code, with the same
colour-coding as the main visualisation. Hovering over the coloured decoration displays a tooltip with
information about the author and commit date.

A.6 Export
The Export Button in the Toolbar on the left side of the main window can be used to export the current
visualisation as an SVG file. To reduce the size of the SVG file, this export only renders the tiles and
strips for each line of code, the text of each line of code is not included.

Appendix B

Developer Guide

This guide explains the structure of the Gizual code base and the development and build processes in the
Gizual project. It is aimed at developers who might wish to modify or extend Gizual. The most current
version with general contribution guidelines is available online in the Gizual repository [Schintler and
Steinkellner 2024].

This appendix was written jointly by Stefan Schintler and Andreas Steinkellner.

B.1 Development Stack
The Gizual project requires the following dependencies to be installed on the local development system:

• Node.js v18 or higher: Used for building and bundling the application and running the server-side
code [OpenJS 2024b].

• Yarn Berry v3.5.0: Used as a package manager because of its workspace support [yarn 2024a].

• Rust v1.79.0 or higher: Used for building the native parts of Gizual [RF 2024].

• Git: Used for version control of the source code [Git 2024].

B.2 Project Structure
Gizual uses the workspace feature of yarn [yarn 2024c] to group packages and their dependencies into
self-contained folders. Although technically self-contained, these workspaces can co-depend on other
workspaces within the repository. Listing B.1 shows the structure of the Gizual code repository.

B.2.1 Gizual API

The Gizual API workspace is located in the apps/gizual-api/ folder and contains the source code for the
server-side service, which provides a proxy for cloning Git repositories. This is necessary since GitHub
and other Git hosting services do not allow cross-origin requests (CORS) [MDN 2024d] from external
domains. However, since Gizual also offers the ability to explore local Git repositories, this service is
entirely optional. It is written in TypeScript, based on the Express v4 framework [OpenJS 2024a], and
makes use of the simple-git [King 2024] package to interact with Git hosting services.

95

96 B Developer Guide

gizual/
apps/
gizual-api/
src/
package.json
...

gizual-app/
src/
package.json
...

...
packages/
explorer/
src/
package.json
...

explorer -web/
src/
package.json
...

maestro/
...

Listing B.1: The overall structure of Gizual’s source code repository, showing the most important
workspaces. Each workspace defines its dependencies in its own package.json file.

B.2.2 Gizual App

The Gizual App workspace is located in the apps/gizual-app/ folder and contains the source code for the
frontend web application. It is written in TypeScript and based on the React framework [Meta 2024b]. For
state management, it uses the MobX [MobX 2024] library. Most of its UI components are based on the
Mantine [Mantine 2024b] library, and component styles are written in SCSS. This package aggregates all
other dependencies and serves as the main build target of the Gizual application. Building and bundling
is done with Vite [Vite 2024b].

B.2.3 Maestro

The Maestro workspace is located in the packages/maestro/ folder and contains the source code for the
main controller of the application. It is written in TypeScript and designed as the main gateway between
the user interface and the data layer. It is responsible for managing global application state and data
processing. A detailed description of this package can be found in Section 4.2.

B.2.4 Explorer

The Explorer workspace is located in the packages/explorer/ folder and contains the source code for the
git-explorer module. Its web bindings are located the packages/explorer-web/ folder. The Explorer is
written in Rust [RF 2024] and is based on the libgit2 [libgit2 2024] library. This module is responsible for
exploring local Git repositories and providing a list of files and their blame information. It is used by the
Gizual App to display the visualisation via the Maestro package. It also provides the pooling mechanism
to use multiple instances of explorer workers in parallel. The package exposes a simple TypeScript API
to interact with the underlying native module.

Data Flow 97

B.2.5 Renderer

The Renderer workspace is located in the packages/file-renderer/ folder and contains the source code for
the file visualisation module. Developed in TypeScript, it uses the OffscreenCanvas API to render images
off the main thread, enabling parallel processing. It contains rendering functions for each available
visualisation type, by leveraging the blame information provided by the Explorer. Communication
between the Gizual App and the Renderer is handled via Maestro.

B.3 Data Flow
Gizual depends on many interconnected components, running in separate threads. Figure B.1 provides
a structural overview of the interconnected packages and their communication pathways. Data flow in
Gizual begins with the updateQuery() function, which is executed on initial load, and then each time the
user modifies the query. This triggers Maestro to update its states. Maestro determines the set of selected
files off the main thread. It estimates the file lengths and generates information for each visualisation tile.
This information is then passed back to main thread and triggers a MobX state update. This state is used
to render the visualisation tiles in the Gizual App.

A corresponding component is created for each tile. Each component is coupled with a block in
Maestro, and an attached IntersectionObserver keeps track of its position in the viewport. This information
is provided to Maestro, which in turn determines if a re-render of this tile is necessary. Each time a tile is
rendered, Maestro passes the cached blame information to the renderer pool and executes the rendering
function. If a tile’s blame information is not yet cached, it is retrieved from the explorer pool first. The
rendered image is stored in an Object URL within the browser environment, and its URL is passed back
to Maestro, which in turn triggers a MobX reaction to update the block’s state and image. This two-way
reactive binding between the tile representation on the canvas and its internal state in Maestro is the
foundation of Gizual’s data flow.

B.4 Build and Deploy
The Gizual project consists of multiple distinct build targets, which all need to be built in the correct
order. Usually, web-based applications rely on a single build and bundling tool like Vite. However, the
Rust-based parts of Gizual require a more complex build process, which cannot easily be represented in
conventional build scripts, especially with hot module reloading during development.

To address this issue and streamline the overall build process, the Gizual project contains its own
designated build tool, called please. This tool is based on yarn workspaces and allows a workspace
to reference local dependencies, input source files, and necessary build commands. This information is
defined within the package.json file of each workspace. Based on this information and a target workspace,
please automatically traverses all referenced workspaces recursively and builds a dependency graph.
Recursive dependencies are detected and resolved. This graph is then used to determine the correct order
of building and bundling. The building process for each workspace is only executed, if the source files of
the corresponding workspace have changed.

To simplify the deployment process, Gizual is bundled into a single docker image. After please has
built the application, the build artefacts are copied into the docker image. The docker image is then
pushed to a container registry and is ready to be deployed.

98 B Developer Guide

ViewModelController

MainController

Maestro

SettingsController

Canvas

QueryInput

Timeline

...

Explorer Pool

Node 1 Node 2 Node 3 Node 4

Renderer Pool

Node 1 Node 2

SQLite 
Database

UI Controllers

UI Components

Main thread

Web workers

Figure B.1: The software architecture of Gizual. UI controllers and UI components are instantiated
in the main thread. The explorer pool, renderer pool, and SQLite database are executed asyn-
chronously in web workers inside the browser. The Maestro provides a unified interface across
the different realms. [Diagram created by the authors of this chapter.]

Bibliography

Abuaddous, Hayfa Y., Mohd Zalisham, and Nurlida Basir [2016]. Web Accessibility Challenges. Interna-
tional Journal of Advanced Computer Science and Applications 7.10 (01 Oct 2016), pages 172–181.
ISSN 2156-5570. doi:10.14569/IJACSA.2016.071023 (cited on page 14).

Adepu, Sushma and Rachel F. Adler [2016]. A Comparison of Performance and Preference on Mobile
Devices vs. Desktop Computers. Proc. 7th IEEE Annual Ubiquitous Computing, Electronics, & Mobile
Communication Conference (UEMCON 2016) (Columbia University, New York, USA). Oct 2016,
pages 1–7. doi:10.1109/UEMCON.2016.7777808 (cited on page 26).

Aggarwal, Sanchit [2018]. Modern Web-Development Using ReactJS. International Journal of Recent
Research Aspects 5.1 (01 Mar 2018), pages 133–137. ISSN 2349-7688. https://ijrra.net/Vol5issue1
/IJRRA-05-01-27.pdf (cited on page 22).

Agosti, Maristella, Nicola Ferro, Pamela Forner, Henning Müller, and Giuseppe Santucci [2013]. Infor-
mation Retrieval Meets Information Visualization. Volume 7757. Lecture Notes in Computer Science.
Springer, 2013. ISBN 3642364144. doi:10.1007/978-3-642-36415-0 (cited on page 3).

Alam, Omar and Jörg Kienzle [2012]. Designing with Inheritance and Composition. Proc. 3rd International
Workshop on Variability and Composition (VariComp 2012) (Potsdam, Germany). ACM, 26 Mar 2012,
page 19. doi:10.1145/2161996.2162002 (cited on page 22).

Alkharabsheh, Khalid, Yania Crespo, Esperanza Manso, and José A. Taboada [2018]. Software De-
sign Smell Detection: A Systematic Mapping Study. Software Quality Journal 27.3 (27 Oct 2018),
pages 1069–1148. ISSN 0963-9314. doi:10.1007/s11219-018-9424-8 (cited on page 20).

Andrew, Rachel [2020]. Why Are Some Animations Slow? web.dev, 06 Oct 2020. https://web.dev/artic
les/animations-overview#pipeline (cited on page 16).

Andrews, Keith [2021]. Writing a Thesis: Guidelines for Writing a Master’s Thesis in Computer Science.
Graz University of Technology, Austria. 10 Nov 2021. https://ftp.isds.tugraz.at/pub/keith/thesis/
(cited on page xiii).

Andrews, Keith [2024]. Information Visualisation: Course Notes. 08 Mar 2024. https://courses.isds.t
ugraz.at/ivis/ivis.pdf (cited on page 1).

Angular [2024a]. Angular. Google, 11 Jun 2024. https://angular.dev/ (cited on pages 21, 23).

Angular [2024b]. AngularJS Version Support Status. Google, 29 Jun 2024. https://docs.angularjs.org
/misc/version-support-status (cited on page 23).

Angular [2024c]. Incremental DOM. Angular, 29 Jun 2024. https://google.github.io/incremental-dom/
(cited on page 23).

Ant Design [2024]. Ant Design. Ant Group and Ant Design Community, 04 Jul 2024. https://ant.design/
(cited on page 46).

99

http://worldcatlibraries.org/wcpa/issn/2156-5570
https://doi.org/10.14569/IJACSA.2016.071023
https://doi.org/10.1109/UEMCON.2016.7777808
http://worldcatlibraries.org/wcpa/issn/2349-7688
https://ijrra.net/Vol5issue1/IJRRA-05-01-27.pdf
https://ijrra.net/Vol5issue1/IJRRA-05-01-27.pdf
http://amazon.co.uk/dp/3642364144/
https://doi.org/10.1007/978-3-642-36415-0
https://doi.org/10.1145/2161996.2162002
http://worldcatlibraries.org/wcpa/issn/0963-9314
https://doi.org/10.1007/s11219-018-9424-8
https://web.dev/articles/animations-overview#pipeline
https://web.dev/articles/animations-overview#pipeline
https://ftp.isds.tugraz.at/pub/keith/thesis/
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://angular.dev/
https://docs.angularjs.org/misc/version-support-status
https://docs.angularjs.org/misc/version-support-status
https://google.github.io/incremental-dom/
https://ant.design/

100 Bibliography

Bardas, Alexandru G. [2010]. Static Code Analysis. Journal of Information Systems & Operations Man-
agement 4.2 (2010), pages 99–107. http://rebe.rau.ro/RePEc/rau/jisomg/WI10/JISOM-WI10-A10.pdf
(cited on page 20).

Behrisch, Michael, Michael Blumenschein, Nam Wook Kim, Lin Shao, Mennatallah El-Assady, Johannes
Fuchs, Daniel Seebacher, Alexandra Diehl, Ulrik Brandes, Hanspeter Pfister, Tobias Schreck, Daniel
Weiskopf, and Daniel A. Keim [2018]. Quality Metrics for Information Visualization. Computer
Graphics Forum 37.3 (10 Jul 2018), pages 625–662. doi:10.1111/CGF.13446 (cited on page 4).

Berg, Maggie [2012]. CS Undergrad Wins Tech Fellowship. The Brown Daily Herald. 09 Sep 2012.
https://browndailyherald.com/article/2012/09/cs- undergrad- wins- tech- fellowship (cited on
page 44).

BetterTyped [2024]. react-zoom-pan-pinch. 13 Nov 2024. https://github.com/BetterTyped/react-zoom-
pan-pinch (cited on page 60).

Bitbucket [2024]. Bitbucket. Atlassian, 30 Jun 2024. https://bitbucket.org/ (cited on pages 7, 83).

Bjørner, Dines [2009]. Role of Domain Engineering in Software Development – Why Current Require-
ments Engineering Is Flawed! Proc. 7th International Conference on Perspectives of Systems Informat-
ics (PSI 2009) (Novosibirsk, Russia). Springer, 15 Jun 2009, pages 2–34. doi:10.1007/978-3-642-11486-1_2
(cited on page 3).

Bogner, Justus and Manuel Merkel [2022]. To Type or Not to Type? A Systematic Comparison of the
Software Quality of JavaScript and TypeScript Applications on GitHub. Proc. 19th International Con-
ference on Mining Software Repositories (MSR ’22) (Pittsburgh, Pennsylvania, USA). ACM, 23 May
2022. doi:10.1145/3524842.3528454. https://arxiv.org/abs/2203.11115 (cited on pages 20–21).

Bostock, Michael, Vadim Ogievetsky, and Jeffrey Heer [2011]. D3: Data-Driven Documents. IEEE
Transactions on Visualization and Computer Graphics 17.12 (23 Oct 2011), pages 2301–2309. doi:10
.1109/TVCG.2011.185. https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf (cited on page 64).

Bostock, Mike [2024a]. d3. 07 Jul 2024. https://d3js.org/ (cited on page 64).

Bostock, Mike [2024b]. d3 Linear Scales. 07 Jul 2024. https://d3js.org/d3-scale/linear (cited on
page 64).

Bostock, Mike [2024c]. d3 Ordinal Scales. 07 Jul 2024. https://d3js.org/d3-scale/ordinal (cited on
page 64).

BrowserStack [2024]. BrowserStack. BrowserStack, 30 Jun 2024. https://browserstack.com/ (cited on
page 27).

Buering, Thorsten, Jens Gerken, and Harald Reiterer [2006]. User Interaction with Scatterplots on Small
Screens - A Comparative Evaluation of Geometric-Semantic Zoom and Fisheye Distortion. IEEE
Transactions on Visualization and Computer Graphics 12.5 (Sep 2006), pages 829–836. ISSN 1941-0506.
doi:10.1109/TVCG.2006.187 (cited on page 26).

Caudwell, Andrew H. [2010]. Gource: Visualizing Software Version Control History. Proc. ACM Inter-
national Conference Object Oriented Programming Systems, Languages and Applications (OOPSLA
’10) (Reno, Nevada, USA). 17 Oct 2010, pages 73–74. doi:10.1145/1869542.1869554 (cited on page 7).

Chen, Min and Luciano Floridi [2013]. An Analysis of Information Visualisation. Synthese 190.16 (Nov
2013), pages 3421–3438. ISSN 0039-7857. doi:10.1007/s11229-012-0183-y (cited on page 4).

Dijkstra, Edsger W. [1974]. On the Role of Scientific Thought. In: Selected Writings on Computing: A
Personal Perspective. Edited by David Gries. EWD 447. Springer, 30 Aug 1974. ISBN 0387906525.
doi:10.1007/978-1-4612-5695-3_12. https://cs.utexas.edu/~EWD/transcriptions/EWD04xx/EWD447.html
(cited on page 32).

http://rebe.rau.ro/RePEc/rau/jisomg/WI10/JISOM-WI10-A10.pdf
https://doi.org/10.1111/CGF.13446
https://browndailyherald.com/article/2012/09/cs-undergrad-wins-tech-fellowship
https://github.com/BetterTyped/react-zoom-pan-pinch
https://github.com/BetterTyped/react-zoom-pan-pinch
https://bitbucket.org/
https://doi.org/10.1007/978-3-642-11486-1_2
https://doi.org/10.1145/3524842.3528454
https://arxiv.org/abs/2203.11115
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/TVCG.2011.185
https://idl.cs.washington.edu/files/2011-D3-InfoVis.pdf
https://d3js.org/
https://d3js.org/d3-scale/linear
https://d3js.org/d3-scale/ordinal
https://browserstack.com/
http://worldcatlibraries.org/wcpa/issn/1941-0506
https://doi.org/10.1109/TVCG.2006.187
https://doi.org/10.1145/1869542.1869554
http://worldcatlibraries.org/wcpa/issn/0039-7857
https://doi.org/10.1007/s11229-012-0183-y
http://amazon.co.uk/dp/0387906525/
https://doi.org/10.1007/978-1-4612-5695-3_12
https://cs.utexas.edu/~EWD/transcriptions/EWD04xx/EWD447.html

101

Dur, Banu İnanç Uyan [2014]. Data Visualization and Infographics in Visual Communication Design
Education at The Age of Information. Journal of Arts and Humanities 3.5 (May 2014), pages 39–50. ISSN
2167-9045. doi:10.18533/journal.v3i5.460. https://theartsjournal.org/index.php/site/article/view/460
(cited on page 4).

Duru, Hacı Ali, Murat Perit Çakır, and Veysi İşler [2013]. How Does Software Visualization Contribute to
Software Comprehension? A Grounded Theory Approach. International Journal of Human-Computer
Interaction 29.11 (Nov 2013), pages 743–763. ISSN 1044-7318. doi:10.1080/10447318.2013.773876 (cited
on page 9).

Ecma [2024a]. Ecma. 11 Jun 2024. https://ecma-international.org/ (cited on page 19).

Ecma [2024b]. ECMAScript. 11 Jun 2024. https://ecma-international.org/technical-committees/tc39/
(cited on page 19).

Ecma [2024c]. Introducing JSON. 29 Oct 2024. https://json.org/ (cited on page 67).

Eden, Brad [2005]. Information Visualization. Library Technology Reports 5.1 (Jan 2005), pages 7–17.
doi:10.5860/ ltr .41n1. https://journals.ala.org/index.php/ltr/article/view/4596/5424 (cited on
page 3).

Eick, Stephen G. [1994]. Graphically Displaying Text. Journal of Computational and Graphical Statistics
3.2 (Jun 1994), pages 127–142. ISSN 1061-8600. doi:10.2307/1390665. https://www.cs.kent.edu/~jmalet
ic/softvis/papers/eick1994.pdf (cited on page 5).

Eick, Stephen G. and Joseph L. Steffen [1992]. Visualizing Code Profiling Line Oriented Statistics.
Proc. 3rd IEEE Conference on Visualization (Vis ’92) (Boston, Massachusetts, USA). 19 Oct 1992,
pages 210–217. doi:10.1109/VISUAL.1992.235206 (cited on page 5).

Eick, Stephen G., Joseph L. Steffen, and Eric E. Sumner Jr. [1992]. Seesoft: A Tool for Visualizing
Line Oriented Software Statistics. IEEE Transactions on Software Engineering 18.11 (Nov 1992),
pages 957–968. doi:10.1109/32.177365. http://www.sdml.cs.kent.edu/library/Eick92.pdf (cited on
pages xiii, 5–6, 55).

Electron [2024]. Electron. 09 Dec 2024. https://electronjs.org/ (cited on page 84).

esbuild [2024a]. esbuild. 30 Jun 2024. https://esbuild.github.io/ (cited on page 24).

esbuild [2024b]. esbuild Performance Benchmark. 30 Jun 2024. https://esbuild.github.io/faq/#bench
mark-details (cited on page 25).

Feiner, Johannes and Keith Andrews [2018]. RepoVis: Visual Overviews and Full-Text Search in Software
Repositories. Proc. IEEE Working Conference on Software Visualization (VISSOFT 2018) (Madrid,
Spain). Sep 2018, pages 1–11. doi:10.1109/VISSOFT.2018.00009. https://ftp.isds.tugraz.at/pub/paper
s/feiner-vissoft2018-repovis.pdf (cited on pages xiii, 7–8).

Figma [2024]. Figma. 04 Jul 2024. https://figma.com/ (cited on page 44).

Gechev, Minko [2024]. Angular v18 is Now Available! Google, 22 May 2024. https://blog.angular.dev
/angular-v18-is-now-available-e79d5ac0affe (cited on page 23).

Geoco, Tommy, Taylor Palmer, and Jordan Bowman [2023]. 2023 Design Tools Survey. 05 Dec 2023.
https://uxtools.co/survey/2023/ui-design (cited on page 44).

Git [2024]. Git. 11 Jun 2024. https://git-scm.com/ (cited on page 95).

GitHub [2024a]. AngularJS Releases. Angular, 29 Jun 2024. https://github.com/angular/angular.js/r
eleases?after=v0.9.4 (cited on page 23).

GitHub [2024b]. GitHub. 30 Jun 2024. https://github.com/ (cited on pages 7, 76, 83, 87).

http://worldcatlibraries.org/wcpa/issn/2167-9045
https://doi.org/10.18533/journal.v3i5.460
https://theartsjournal.org/index.php/site/article/view/460
http://worldcatlibraries.org/wcpa/issn/1044-7318
https://doi.org/10.1080/10447318.2013.773876
https://ecma-international.org/
https://ecma-international.org/technical-committees/tc39/
https://json.org/
https://doi.org/10.5860/ltr.41n1
https://journals.ala.org/index.php/ltr/article/view/4596/5424
http://worldcatlibraries.org/wcpa/issn/1061-8600
https://doi.org/10.2307/1390665
https://www.cs.kent.edu/~jmaletic/softvis/papers/eick1994.pdf
https://www.cs.kent.edu/~jmaletic/softvis/papers/eick1994.pdf
https://doi.org/10.1109/VISUAL.1992.235206
https://doi.org/10.1109/32.177365
http://www.sdml.cs.kent.edu/library/Eick92.pdf
https://electronjs.org/
https://esbuild.github.io/
https://esbuild.github.io/faq/#benchmark-details
https://esbuild.github.io/faq/#benchmark-details
https://doi.org/10.1109/VISSOFT.2018.00009
https://ftp.isds.tugraz.at/pub/papers/feiner-vissoft2018-repovis.pdf
https://ftp.isds.tugraz.at/pub/papers/feiner-vissoft2018-repovis.pdf
https://figma.com/
https://blog.angular.dev/angular-v18-is-now-available-e79d5ac0affe
https://blog.angular.dev/angular-v18-is-now-available-e79d5ac0affe
https://uxtools.co/survey/2023/ui-design
https://git-scm.com/
https://github.com/angular/angular.js/releases?after=v0.9.4
https://github.com/angular/angular.js/releases?after=v0.9.4
https://github.com/

102 Bibliography

GitLab [2024]. GitLab. 30 Jun 2024. https://gitlab.com/ (cited on page 7).

Harris, Rich [2016]. Frameworks Without the Framework: Why Didn’t We Think of This Sooner? 26 Nov
2016. https://svelte.dev/blog/frameworks-without-the-framework (cited on page 23).

Harris, Rich [2018]. The Virtual DOM is Pure Overhead. 27 Dec 2018. https://svelte.dev/blog/virtua
l-dom-is-pure-overhead (cited on page 24).

Haverbeke, Marijn [2024a]. CodeMirror. 28 Oct 2024. https://codemirror.net/ (cited on page 76).

Haverbeke, Marijn [2024b]. Eloquent JavaScript. 4th Edition. 2024. ISBN 1593279507. https://eloquentj
avascript.net/Eloquent_JavaScript.pdf (cited on page 32).

Hawes, Nathan, Stuart Marshall, and Craig Anslow [2015]. CodeSurveyor: Mapping Large-Scale Soft-
ware to Aid in Code Comprehension. Proc. 3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015) (Bremen, Germany). Sep 2015, pages 96–105. doi:10.1109/VISSOFT.2015.7332419
(cited on page 9).

hclwizard [2024]. hclwizard. University of Innsbruck, 06 Jul 2024. https://hclwizard.org/ (cited on
page 63).

Hu, Miao [2022]. Information Visualization Design in the Environment of New Media Based on Computer
Technology. Proc. International Conference on Knowledge Engineering and Communication Systems
(ICKECS 2022) (Chikkaballapur, Karnataka, India). 29 Dec 2022, pages 1–4. doi:10.1109/ICKECS5652
3.2022.10059871 (cited on page 4).

Huang, Cary, Peter Ruette, Dave Caruso, Ben Plate, and James O’Loughlin [2024]. Scale of the Universe.
04 Jul 2024. https://scaleofuniverse.com/ (cited on page 53).

IBM [2024]. What is Data Visualization? 29 Jun 2024. https://ibm.com/topics/data-visualization
(cited on page 4).

Ibrus, Indrek [2013]. Evolutionary Dynamics of Media Convergence: Early Mobile Web and its Stan-
dardisation at W3C. Telematics and Informatics 30.2 (May 2013), pages 66–73. ISSN 0736-5853. doi:1
0.1016/j.tele.2012.04.004 (cited on page 11).

IETF [2024]. IETF | Internet Engineering Task Force. Internet Engineering Task Force, 10 Jun 2024.
https://ietf.org/ (cited on page 11).

Ihaka, Ross [2003]. Colour for Presentation Graphics. Proc. 3rd International Workshop on Distributed
Statistical Computing (DSC 2003) (Vienna, Austria). 20 Mar 2003. https://stat.auckland.ac.nz/~ih
aka/courses/787/color.pdf (cited on page 63).

Irish, Paul and Tali Garsiel [2011]. How Browsers Work. web.dev, 05 Aug 2011. https://web.dev/artic
les/howbrowserswork#global_and_incremental_layout (cited on page 16).

Jerding, Dean and John Stasko [1998]. The Information Mural: A Technique for Displaying and Navigating
Large Information Spaces. IEEE Transactions on Visualization and Computer Graphics 4.3 (03 Jul
1998), pages 257–271. ISSN 1077-2626. doi:10.1109/2945.722299 (cited on page 55).

Kaur, Rupinder and Jyotsna Sengupta [2011]. Software Process Models and Analysis on Failure of
Software Development Projects. International Journal of Scientific & Engineering Research 2.2 (Feb
2011). https://arxiv.org/abs/1306.1068 (cited on page 3).

Kerrisk, Michael [2024]. glob(7) - Linux Manual Page. 15 Jun 2024. https://man7.org/linux/man-pages
/man7/glob.7.html (cited on page 69).

Kim, Bohyun [2013]. Responsive Web Design, Discoverability, and Mobile Challenge. Library Technol-
ogy Reports 49.6 (Aug 2013), pages 29–39. https://journals.ala.org/index.php/ltr/article/viewFi
le/4507/5286 (cited on page 27).

https://gitlab.com/
https://svelte.dev/blog/frameworks-without-the-framework
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://codemirror.net/
http://amazon.co.uk/dp/1593279507/
https://eloquentjavascript.net/Eloquent_JavaScript.pdf
https://eloquentjavascript.net/Eloquent_JavaScript.pdf
https://doi.org/10.1109/VISSOFT.2015.7332419
https://hclwizard.org/
https://doi.org/10.1109/ICKECS56523.2022.10059871
https://doi.org/10.1109/ICKECS56523.2022.10059871
https://scaleofuniverse.com/
https://ibm.com/topics/data-visualization
http://worldcatlibraries.org/wcpa/issn/0736-5853
https://doi.org/10.1016/j.tele.2012.04.004
https://doi.org/10.1016/j.tele.2012.04.004
https://ietf.org/
https://stat.auckland.ac.nz/~ihaka/courses/787/color.pdf
https://stat.auckland.ac.nz/~ihaka/courses/787/color.pdf
https://web.dev/articles/howbrowserswork#global_and_incremental_layout
https://web.dev/articles/howbrowserswork#global_and_incremental_layout
http://worldcatlibraries.org/wcpa/issn/1077-2626
https://doi.org/10.1109/2945.722299
https://arxiv.org/abs/1306.1068
https://man7.org/linux/man-pages/man7/glob.7.html
https://man7.org/linux/man-pages/man7/glob.7.html
https://journals.ala.org/index.php/ltr/article/viewFile/4507/5286
https://journals.ala.org/index.php/ltr/article/viewFile/4507/5286

103

King, Steve [2024]. Simple Git. 19 Nov 2024. https://npmjs.com/package/simple-git (cited on page 95).

Knight, Claire and Malcolm Munro [1999]. Comprehension with[in] Virtual Environment Visualisa-
tions. Proc. 7th IEEE International Workshop on Program Comprehension (ICPC 1999) (Pittsburgh,
Pennsylvania, USA). 05 May 1999, pages 4–11. doi:10.1109/WPC.1999.777733 (cited on page 5).

Korduba, Yaryna, Stefan Schintler, and Andreas Steinkellner [2022]. Gizual - Repository Visualization
for Git. 706.057 Information Visualisation SS 2022 Project Report. Graz University of Technology,
07 Jul 2022. https://gizual.com/resources/gizual-paper-ss2022.pdf (cited on page 51).

Kulkarni, Vinay and Sreedhar Reddy [2003]. Separation of Concerns in Model-Driven Development.
IEEE Software 20.5 (Sep 2003), pages 64–69. ISSN 0740-7459. doi:10.1109/MS.2003.1231154. https://ci
teseerx.ist.psu.edu/document?doi=5b27c112f72fa5bc8e6f412412674ac0968a3c0b (cited on page 32).

LambdaTest [2024]. LambdaTest. LambdaTest, 30 Jun 2024. https://lambdatest.com/ (cited on page 27).

Lee, Bongshin, Petra Isenberg, Nathalie Henry Riche, and Sheelagh Carpendale [2012]. Beyond Mouse
and Keyboard: Expanding Design Considerations for Information Visualization Interactions. IEEE
Transactions on Visualization and Computer Graphics 18.12 (Dec 2012), pages 2689–2698. ISSN
1941-0506. doi:10.1109/TVCG.2012.204 (cited on page 26).

Li, Hairong [2011]. The Interactive Web: Toward a New Discipline. Journal of Advertising Research 51.1,
50th Anniversary Supplement (01 Mar 2011), pages 13–26. ISSN 0021-8499. doi:10.2501/JAR-51-1-013-026
(cited on page 53).

libgit2 [2024]. libgit2. https://libgit2.org/ (cited on pages 34, 96).

Lidwell, William, Kritina Holden, and Jill Butler [2023]. Universal Principles of Design. 3rd Edition.
Rockport, 23 May 2023. 424 pages. ISBN 076037516X (cited on page 43).

Linberg, Kurt R. [1999]. Software Developer Perceptions About Software Project Failure: a Case Study.
Journal of Systems and Software 49.2–3 (Dec 1999), pages 177–192. ISSN 0164-1212. doi:10.1016/S0164
-1212(99)00094-1 (cited on page 3).

Louridas, Panos [2006]. Static Code Analysis. IEEE Software 23.4 (Jul 2006), pages 58–61. ISSN 0740-7459.
doi:10.1109/MS.2006.114 (cited on page 20).

Manovich, Lev [2011]. What is visualisation? Visual Studies 26.1 (Mar 2011), pages 36–49. ISSN 1472-
586X. doi:10.1080/1472586X.2011.548488. http://manovich.net/content/04-projects/064-what-is-visua
lization/61_article_2010.pdf (cited on page 3).

Mantine [2024a]. Mantine. Mantine Contributors, 04 Jul 2024. https://mantine.dev/ (cited on page 46).

Mantine [2024b]. Mantine. 19 Nov 2024. https://npmjs.com/package/@mantine/core (cited on page 96).

Marcus, Andrian, Louis Feng, and Jonathan I. Maletic [2003]. 3D Representations for Software Visual-
ization. Proc. 2003 ACM Symposium on Software Visualization (SoftVis ’03) (San Diego, California,
USA). 11 Jun 2003, pages 27–36. doi:10.1145/774833.774837 (cited on page 5).

Martins, Beatriz and Carlos Duarte [2023]. A Large-Scale Web Accessibility Analysis Considering Tech-
nology Adoption. Universal Access in the Information Society 23 (Jul 2023), pages 1857–1872. ISSN
1615-5289. doi:10.1007/s10209-023-01010-0 (cited on page 14).

Mattila, Anna-Liisa, Ihantola Petri, Terhi Kilamo, Antti Luoto, Mikko Nurminen, and Heli Väätäjä
[2016]. Software Visualization Today: Systematic Literature Review. Proc. 20th International Academic
Mindtrek Conference (Mindtrek’16) (Tampere, Finland). ACM, 17 Oct 2016, pages 262–271. doi:10
.1145/2994310.2994327 (cited on page 5).

Matuzovic, Manuel [2022]. Lost in Translation. 02 May 2022. https://beyondtellerrand.com/events/du
sseldorf-2022/speakers/manuel-matuzovic (cited on page 14).

https://npmjs.com/package/simple-git
https://doi.org/10.1109/WPC.1999.777733
https://gizual.com/resources/gizual-paper-ss2022.pdf
http://worldcatlibraries.org/wcpa/issn/0740-7459
https://doi.org/10.1109/MS.2003.1231154
https://citeseerx.ist.psu.edu/document?doi=5b27c112f72fa5bc8e6f412412674ac0968a3c0b
https://citeseerx.ist.psu.edu/document?doi=5b27c112f72fa5bc8e6f412412674ac0968a3c0b
https://lambdatest.com/
http://worldcatlibraries.org/wcpa/issn/1941-0506
https://doi.org/10.1109/TVCG.2012.204
http://worldcatlibraries.org/wcpa/issn/0021-8499
https://doi.org/10.2501/JAR-51-1-013-026
https://libgit2.org/
http://amazon.co.uk/dp/076037516X/
http://worldcatlibraries.org/wcpa/issn/0164-1212
https://doi.org/10.1016/S0164-1212(99)00094-1
https://doi.org/10.1016/S0164-1212(99)00094-1
http://worldcatlibraries.org/wcpa/issn/0740-7459
https://doi.org/10.1109/MS.2006.114
http://worldcatlibraries.org/wcpa/issn/1472-586X
http://worldcatlibraries.org/wcpa/issn/1472-586X
https://doi.org/10.1080/1472586X.2011.548488
http://manovich.net/content/04-projects/064-what-is-visualization/61_article_2010.pdf
http://manovich.net/content/04-projects/064-what-is-visualization/61_article_2010.pdf
https://mantine.dev/
https://npmjs.com/package/@mantine/core
https://doi.org/10.1145/774833.774837
http://worldcatlibraries.org/wcpa/issn/1615-5289
https://doi.org/10.1007/s10209-023-01010-0
https://doi.org/10.1145/2994310.2994327
https://doi.org/10.1145/2994310.2994327
https://beyondtellerrand.com/events/dusseldorf-2022/speakers/manuel-matuzovic
https://beyondtellerrand.com/events/dusseldorf-2022/speakers/manuel-matuzovic

104 Bibliography

McGhee, Geoff [2010]. Journalism in the Age of Data. 07 Sep 2010. https://vimeo.com/14777910 (cited
on page 1).

MDN [2024a]. ARIA. MDN Web Docs, 10 Jun 2024. https://developer.mozilla.org/en-US/docs/Web/Ac
cessibility/ARIA (cited on page 14).

MDN [2024b]. Cascade Layers. MDN Web Docs, 10 Jun 2024. https://developer.mozilla.org/en-US/d
ocs/Learn/CSS/Building_blocks/Cascade_layers (cited on page 16).

MDN [2024c]. Client-side tooling overview. MDN Web Docs, 29 Jun 2024. https://developer.mozil
la.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Overview (cited on
page 24).

MDN [2024d]. Cross-Origin Resource Sharing (CORS). MDN Web Docs, 19 Nov 2024. https://develo
per.mozilla.org/en-US/docs/Web/HTTP/CORS (cited on page 95).

MDN [2024e]. CSS Masonry Layout. MDN Web Docs, 01 Dec 2024. https://developer.mozilla.org/e
n-US/docs/Web/CSS/CSS_grid_layout/Masonry_layout (cited on pages 55, 60).

MDN [2024f]. CSS Object Model (CSSOM). MDN Web Docs, 10 Jun 2024. https://developer.mozilla
.org/en-US/docs/Web/API/CSS_Object_Model (cited on page 17).

MDN [2024g]. CSS Syntax. MDN Web Docs, 10 Jun 2024. https://developer.mozilla.org/en-US/docs
/Web/CSS/Syntax (cited on page 14).

MDN [2024h]. Document Object Model (DOM). MDN Web Docs, 11 Jun 2024. https://developer.moz
illa.org/en-US/docs/Web/API/Document_Object_Model (cited on page 19).

MDN [2024i]. HTML Elements Reference. MDN Web Docs, 10 Jun 2024. https://developer.mozilla.o
rg/en-US/docs/Web/HTML/Element (cited on page 12).

MDN [2024j]. Intersection Observer API. MDN Web Docs, 13 Nov 2024. https://developer.mozilla.o
rg/en-US/docs/Web/API/Intersection_Observer_API (cited on page 60).

MDN [2024k]. Introducing the CSS Cascade. MDN Web Docs, 10 Jun 2024. https://developer.mozill
a.org/en-US/docs/Web/CSS/Cascade#origin_types (cited on page 14).

MDN [2024l]. JavaScript Modules. MDN Web Docs, 30 Jun 2024. https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Guide/Modules (cited on page 25).

MDN [2024m]. Progressive Enhancement. MDN Web Docs, 11 Jun 2024. https://developer.mozilla.o
rg/en-US/docs/Glossary/Progressive_Enhancement (cited on page 20).

MDN [2024n]. Semantic HTML. MDN Web Docs, 10 Jun 2024. https://developer.mozilla.org/en-US/c
urriculum/core/semantic-html/ (cited on page 12).

Merino, Leonel, Mohammad Ghafari, Craig Anslow, and Oscar Nierstrasz [2018]. A Systematic Litera-
ture Review of Software Visualization Evaluation. Journal of Systems and Software 144 (Oct 2018),
pages 165–180. ISSN 0164-1212. doi:10.1016/j.jss.2018.06.027 (cited on page 5).

Merino, Leonel, Mohammad Ghafari, and Oscar Nierstrasz [2016]. Towards Actionable Visualisation
in Software Development. Proc. 4th IEEE Working Conference on Software Visualization (VISSOFT
2016) (Raleigh, North Carolina, USA). 03 Oct 2016, pages 61–70. doi:10.1109/VISSOFT.2016.10 (cited
on page 7).

Meta [2024a]. Meta. Meta Platforms, 11 Jun 2024. https://about.meta.com/ (cited on page 22).

Meta [2024b]. React. Meta Platforms, 19 Nov 2024. https://npmjs.com/package/react (cited on page 96).

Meta [2024c]. React Design Principles. Meta Platforms, 27 Jun 2024. https://legacy.reactjs.org/docs
/design-principles.html (cited on page 22).

https://vimeo.com/14777910
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_layers
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Cascade_layers
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Overview
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Overview
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout/Masonry_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout/Masonry_layout
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/CSS_Object_Model
https://developer.mozilla.org/en-US/docs/Web/CSS/Syntax
https://developer.mozilla.org/en-US/docs/Web/CSS/Syntax
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/API/Intersection_Observer_API
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade#origin_types
https://developer.mozilla.org/en-US/docs/Web/CSS/Cascade#origin_types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement
https://developer.mozilla.org/en-US/docs/Glossary/Progressive_Enhancement
https://developer.mozilla.org/en-US/curriculum/core/semantic-html/
https://developer.mozilla.org/en-US/curriculum/core/semantic-html/
http://worldcatlibraries.org/wcpa/issn/0164-1212
https://doi.org/10.1016/j.jss.2018.06.027
https://doi.org/10.1109/VISSOFT.2016.10
https://about.meta.com/
https://npmjs.com/package/react
https://legacy.reactjs.org/docs/design-principles.html
https://legacy.reactjs.org/docs/design-principles.html

105

Meta [2024d]. Reconciliation. Meta Platforms, 13 Jun 2024. https://legacy.reactjs.org/docs/reconcil
iation.html (cited on page 22).

Meta [2024e]. Virtual DOM and Internals. Meta Platforms, 13 Jun 2024. https://legacy.reactjs.org/d
ocs/faq-internals.html (cited on page 22).

Meta [2024f]. Why did we build React? Meta Platforms, 13 Jun 2024. https://legacy.reactjs.org/blog
/2013/06/05/why-react.html (cited on page 22).

Microsoft [2024a]. Monaco Editor. 29 Oct 2024. https://microsoft.github.io/monaco-editor/ (cited on
page 76).

Microsoft [2024b]. TypeScript. 11 Jun 2024. https://typescriptlang.org/ (cited on page 20).

MobX [2024]. MobX: Simple, Scalable State Management. MobX Contributors, 28 Jun 2024. https://m
obx.js.org/ (cited on pages 24, 34, 36, 96).

Müller, Jonas, Lea Rieger, Ilhan Aslan, Christoph Anneser, Malte Sandstede, Felix Schwarzmeier, Björn
Petrak, and Elisabeth André [2019]. Mouse, Touch, or Fich: Comparing Traditional Input Modalities
to a Novel Pre-Touch Technique. Proc. 18th International Conference on Mobile and Ubiquitous Mul-
timedia (MUM 2019) (Pisa, Italy). ACM, 27 Nov 2019, pages 1–7. doi:10.1145/3365610.3365622 (cited
on page 26).

Munsell, Albert Henry [1919]. A Color Notation. Munsell Color Company, 1919. https://gutenberg.or
g/files/26054/26054-h/26054-h.htm (cited on page 63).

npm [2024]. npm - A JavaScript Package Manager. 11 Jun 2024. https://npmjs.com/package/npm (cited
on pages 21, 25).

OpenJS [2024a]. Express - Node.js Web Application Framework. OpenJS Foundation, 19 Nov 2024.
https://expressjs.com/ (cited on page 95).

OpenJS [2024b]. Node. OpenJS Foundation, 19 Nov 2024. https://nodejs.org/ (cited on page 95).

Pacione, Michael J., Marc Roper, and Murray Wood [2004]. A Novel Software Visualisation Model
to Support Software Comprehension. Proc. 11th IEEE Working Conference on Reverse Engineering
(WCRE 2004) (Delft, The Netherlands). 08 Nov 2004, pages 70–79. doi:10.1109/WCRE.2004.7 (cited on
page 9).

Parcel [2024]. Parcel. 30 Jun 2024. https://parceljs.org/ (cited on page 24).

Peeters, Guido [1991]. Evaluative Inference in Social Cognition: The Roles of Direct Versus Indirect
Evaluation and Positive-Negative Asymmetry. European Journal of Social Psychology 21.2 (Mar 1991),
pages 131–146. doi:10.1002/ejsp.2420210204 (cited on page 43).

Peeters, Guido and Janusz Czapinski [1990]. Positive-Negative Asymmetry in Evaluations: The Distinction
Between Affective and Informational Negativity Effects. European Review of Social Psychology 1.1
(Jan 1990), pages 33–60. ISSN 1046-3283. doi:10.1080/14792779108401856 (cited on page 43).

Pereyra, Irene [2023]. Universal Principles of UX. Rockport, 07 Mar 2023. 224 pages. ISBN 0760378045
(cited on page 43).

Petre, Marian and Ed de Quincey [2006]. A Gentle Overview of Software Visualisation. PPIG Newsletter.
01 Sep 2006. 10 pages. https://web.archive.org/web/20061011012412/http://www.ppig.org/newslette
rs/2006-09/1-overview-swviz.pdf (cited on page 5).

Pickering, Heydon [2016]. Inclusive Design Patterns: Coding Accessibility Into Web Design. Smashing
Magazine, 01 Jan 2016. 312 pages. ISBN 3945749433 (cited on page 14).

https://legacy.reactjs.org/docs/reconciliation.html
https://legacy.reactjs.org/docs/reconciliation.html
https://legacy.reactjs.org/docs/faq-internals.html
https://legacy.reactjs.org/docs/faq-internals.html
https://legacy.reactjs.org/blog/2013/06/05/why-react.html
https://legacy.reactjs.org/blog/2013/06/05/why-react.html
https://microsoft.github.io/monaco-editor/
https://typescriptlang.org/
https://mobx.js.org/
https://mobx.js.org/
https://doi.org/10.1145/3365610.3365622
https://gutenberg.org/files/26054/26054-h/26054-h.htm
https://gutenberg.org/files/26054/26054-h/26054-h.htm
https://npmjs.com/package/npm
https://expressjs.com/
https://nodejs.org/
https://doi.org/10.1109/WCRE.2004.7
https://parceljs.org/
https://doi.org/10.1002/ejsp.2420210204
http://worldcatlibraries.org/wcpa/issn/1046-3283
https://doi.org/10.1080/14792779108401856
http://amazon.co.uk/dp/0760378045/
https://web.archive.org/web/20061011012412/http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
https://web.archive.org/web/20061011012412/http://www.ppig.org/newsletters/2006-09/1-overview-swviz.pdf
http://amazon.co.uk/dp/3945749433/

106 Bibliography

Pinheiro de Souza, Thomas, Stefan Schintler, and Andreas Steinkellner [2023]. Gizual - Repository
Visualization for Git. 706.041 Information Architecture and Web Usability WS 2022 Project Report.
Graz University of Technology, 08 Feb 2023. https://gizual.com/resources/gizual-paper-ws2022.pdf
(cited on pages 51–52).

pnpm Contributors [2024]. pnpm. 11 Jun 2024. https://pnpm.io/ (cited on page 21).

Potter, John [2024]. npm Trends - Parcel vs Rollup vs Vite vs Webpack. npm trends, 29 Jun 2024.
https://npmtrends.com/parcel-vs-rollup-vs-vite-vs-webpack (cited on pages xiii, 24–25).

Price, Blaine A., Ian S. Small, and Ronald M. Baecker [1992]. A Taxonomy of Software Visualization.
Proc. 25th IEEE Hawaii International Conference on System Sciences (HICSS 1992) (Kauai, Hawaii,
USA). Volume 2. 06 Aug 1992, pages 597–606. doi:10.1109/HICSS.1992.183311 (cited on page 5).

Procaccino, J. Drew, June M. Verner, Scott P. Overmyer, and Marvin E. Darter [2022]. Case Study:
Factors for Early Prediction of Software Development Success. Information and Software Technology
44.1 (15 Jan 2022), pages 53–62. ISSN 0950-5849. doi:10.1016/S0950-5849(01)00217-8 (cited on page 3).

Punchoojit, Lumpapun and Nuttanont Hongwarittorrn [2017]. Usability Studies on Mobile User Interface
Design Patterns: A Systematic Literature Review. Advances in Human-Computer Interaction 2017 (Nov
2017), pages 1–22. ISSN 1687-5893. doi:10.1155/2017/6787504 (cited on page 26).

Rainer, Austen [2010]. Representing the Behaviour of Software Projects using Multi-Dimensional Time-
lines. Information and Software Technology 52.11 (Nov 2010), pages 1217–1228. ISSN 0950-5849.
doi:10.1016/j.infsof.2010.06.004 (cited on page 5).

Raval, Nihar [2024]. React vs Angular: Which JS Framework to Choose for Front-end Development?
Radix, 01 Apr 2024. https://radixweb.com/blog/react-vs-angular (cited on page 23).

React [2024a]. React. Meta Platforms, 11 Jun 2024. https://reactjs.org (cited on pages 21–22).

React [2024b]. React 19 RC. Meta Platforms, 25 Apr 2024. https://react.dev/blog/2024/04/25/react-19
(cited on page 24).

React [2024c]. React Compiler. Meta Platforms, 01 Jul 2024. https://react.dev/learn/react-compiler
(cited on page 24).

Reddy, Nishaanth H., Junghun Kim, Vijay Krishna Palepu, and James A. Jones [2015]. Spider Sense:
Software-Engineering, Networked, System Evaluation. Proc. 3rd IEEE Working Conference on Software
Visualization (VISSOFT 2015) (Bremen, Germany). 27 Sep 2015, pages 205–209. doi:10.1109/VISSO
FT.2015.7332438. https://vijaykrishna.github.io/publications/vissoft15_reddy_etal.pdf (cited on
pages xiii, 5, 7–8, 84).

Reel, John S. [1999]. Critical Success Factors in Software Projects. IEEE Software 16.3 (May 1999),
pages 18–23. ISSN 0740-7459. doi:10.1109/52.765782 (cited on page 3).

Reid, Brittany, Christoph Treude, and Markus Wagner [2023]. Using the TypeScript Compiler to Fix
Erroneous Node.js Snippets. Proc. 23rd International Working Conference on Source Code Analysis
and Manipulation (SCAM 2023) (Bogotá, Colombia). IEEE, 02 Oct 2023, pages 220–230. doi:10.110
9/SCAM59687.2023.00031 (cited on page 20).

ResponsivelyApp [2024]. GitHub - ResponsivelyApp. ResponsivelyApp Contributors, 30 Jun 2024. http
s://github.com/responsively-org/responsively-app (cited on page 27).

RF [2024]. Rust Programming Language. Rust Foundation. https://rust-lang.org/ (cited on pages 95–
96).

Rhyne, Theresa-Marie [2021]. Color in a Perceptual Uniform Way. Medium, 20 Mar 2021. https://nig
htingaledvs.com/color-in-a-perceptual-uniform-way/ (cited on page 63).

https://gizual.com/resources/gizual-paper-ws2022.pdf
https://pnpm.io/
https://npmtrends.com/parcel-vs-rollup-vs-vite-vs-webpack
https://doi.org/10.1109/HICSS.1992.183311
http://worldcatlibraries.org/wcpa/issn/0950-5849
https://doi.org/10.1016/S0950-5849(01)00217-8
http://worldcatlibraries.org/wcpa/issn/1687-5893
https://doi.org/10.1155/2017/6787504
http://worldcatlibraries.org/wcpa/issn/0950-5849
https://doi.org/10.1016/j.infsof.2010.06.004
https://radixweb.com/blog/react-vs-angular
https://reactjs.org
https://react.dev/blog/2024/04/25/react-19
https://react.dev/learn/react-compiler
https://doi.org/10.1109/VISSOFT.2015.7332438
https://doi.org/10.1109/VISSOFT.2015.7332438
https://vijaykrishna.github.io/publications/vissoft15_reddy_etal.pdf
http://worldcatlibraries.org/wcpa/issn/0740-7459
https://doi.org/10.1109/52.765782
https://doi.org/10.1109/SCAM59687.2023.00031
https://doi.org/10.1109/SCAM59687.2023.00031
https://github.com/responsively-org/responsively-app
https://github.com/responsively-org/responsively-app
https://rust-lang.org/
https://nightingaledvs.com/color-in-a-perceptual-uniform-way/
https://nightingaledvs.com/color-in-a-perceptual-uniform-way/

107

Rollup [2024]. Rollup. 30 Jun 2024. https://rollupjs.org/ (cited on page 24).

Ryan, Marie-Laure [2003]. Narrative as Virtual Reality: Immersion and Interactivity in Literature and
Electronic Media. Johns Hopkins University Press, 03 Oct 2003. ISBN 0801877539 (cited on page 53).

Schintler, Stefan [2024]. Gizual Data Layer: Enabling Browser-Based Exploration of Git Repositories.
Master’s Thesis. Graz University of Technology, Austria, 09 Dec 2024. https://ftp.isds.tugraz.at/p
ub/theses/sschintler-2024-msc.pdf (cited on page 1).

Schintler, Stefan and Andreas Steinkellner [2024]. Gizual. 18 Nov 2024. https://github.com/gizual/giz
ual (cited on pages 1, 85, 87, 95).

Setlur, Vidya and Bridget Cogley [2022]. Functional Aesthetics for Data Visualization. Wiley, 08 Aug
2022. 336 pages. ISBN 1119810086 (cited on page 43).

Shneiderman, Ben, Catherine Plaisant, Maxine Cohen, Steven Jacobs, Niklas Elmqvist, and Nicholas Di-
akopoulos [2017]. Designing the User Interface: Strategies for Effective Human-Computer Interaction.
6th Edition. Pearson, 20 Jun 2017. 624 pages. ISBN 1292153911 (cited on page 43).

Small, Hugh [2013]. Florence Nightingale - Avenging Angel. 2nd Edition. Knowledge Leak, 31 May 2013.
248 pages. ISBN 095727971X (cited on page 3).

Sourcegraph [2024]. Sourcegraph. 30 Jun 2024. https://sourcegraph.com/ (cited on pages 7, 76).

SQLite [2024]. SQLite. 10 Aug 2024. https://sqlite.org/ (cited on page 34).

Stack Overflow [2024a]. Stack Overflow. 11 Jun 2024. https://stackoverflow.com (cited on page 21).

Stack Overflow [2024b]. Stack Overflow Trends. 11 Jun 2024. https://insights.stackoverflow.com/tre
nds?tags=reactjs,vue.js,angular,svelte,angularjs,vuejs3 (cited on pages xiii, 21).

Staiano, Fabio [2023]. Designing and Prototyping Interfaces with Figma. 2nd Edition. Packt Publishing,
29 Dec 2023. ISBN 1835464602 (cited on page 44).

StatCounter [2024]. Browser Market Share Worldwide. 10 Jun 2024. https://gs.statcounter.com/brows
er-market-share (cited on page 11).

Steinkellner, Andreas [2024]. Gizual User Interface: Browser-Based Visualisation for Git Repositories.
Master’s Thesis. Graz University of Technology, Austria, 09 Dec 2024. https://ftp.isds.tugraz.at/p
ub/theses/asteinkellner-2024-msc.pdf (cited on page 1).

Surma, Das [2019]. Use Web Workers to Run JavaScript Off the Browser’s Main Thread. web.dev, 05 Dec
2019. https://web.dev/articles/off-main-thread (cited on page 31).

Svelte [2024]. Svelte. Svelte Contributors, 11 Jun 2024. https://svelte.dev/ (cited on pages 21, 23).

Tauri [2024]. Tauri. 09 Dec 2024. https://tauri.app/ (cited on page 84).

Todorovic, Dejan [2008]. Gestalt Principles. Scholarpedia 3.12 (21 Dec 2008), page 5345. https://pdfs
.semanticscholar.org/49fb/87e3f0a70160c6c6089c7127e85ef7e3ac04.pdf (cited on page 43).

Tominski, Christian and Heidrun Schuhmann [2020]. Interactive Visual Data Analysis. CRC Press, 30 Apr
2020. 346 pages. ISBN 0367898756 (cited on page 1).

Turner, Jonathan [2014]. Announcing TypeScript 1.0. 01 Apr 2014. https://devblogs.microsoft.com/typ
escript/announcing-typescript-1-0/ (cited on page 20).

Ubl, Malte [2015]. Introducing Incremental DOM. Medium, 09 Jul 2015. https://medium.com/google-de
velopers/introducing-incremental-dom-e98f79ce2c5f (cited on page 23).

https://rollupjs.org/
http://amazon.co.uk/dp/0801877539/
https://ftp.isds.tugraz.at/pub/theses/sschintler-2024-msc.pdf
https://ftp.isds.tugraz.at/pub/theses/sschintler-2024-msc.pdf
https://github.com/gizual/gizual
https://github.com/gizual/gizual
http://amazon.co.uk/dp/1119810086/
http://amazon.co.uk/dp/1292153911/
http://amazon.co.uk/dp/095727971X/
https://sourcegraph.com/
https://sqlite.org/
https://stackoverflow.com
https://insights.stackoverflow.com/trends?tags=reactjs,vue.js,angular,svelte,angularjs,vuejs3
https://insights.stackoverflow.com/trends?tags=reactjs,vue.js,angular,svelte,angularjs,vuejs3
http://amazon.co.uk/dp/1835464602/
https://gs.statcounter.com/browser-market-share
https://gs.statcounter.com/browser-market-share
https://ftp.isds.tugraz.at/pub/theses/asteinkellner-2024-msc.pdf
https://ftp.isds.tugraz.at/pub/theses/asteinkellner-2024-msc.pdf
https://web.dev/articles/off-main-thread
https://svelte.dev/
https://tauri.app/
https://pdfs.semanticscholar.org/49fb/87e3f0a70160c6c6089c7127e85ef7e3ac04.pdf
https://pdfs.semanticscholar.org/49fb/87e3f0a70160c6c6089c7127e85ef7e3ac04.pdf
http://amazon.co.uk/dp/0367898756/
https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://devblogs.microsoft.com/typescript/announcing-typescript-1-0/
https://medium.com/google-developers/introducing-incremental-dom-e98f79ce2c5f
https://medium.com/google-developers/introducing-incremental-dom-e98f79ce2c5f

108 Bibliography

Unwin, Antony [2020]. Why Is Data Visualization Important? What Is Important in Data Visualization?
Harvard Data Science Review 2.1 (31 Jan 2020). doi:10.1162/99608f92.8ae4d525. https://hdsr.mitpress
.mit.edu/pub/zok97i7p (cited on page 4).

Vaish, Amrisha, Tobias Grossmann, and Amanda Woodward [2008]. Not all Emotions are Created
Equal: The Negativity Bias in Social-Emotional Development. Psychological Bulletin 134.3 (May
2008), pages 383–403. ISSN 1939-1455. doi:10.1037/0033-2909.134.3.383 (cited on page 43).

Vite [2024a]. Vite. 30 Jun 2024. https://vitejs.dev/ (cited on page 24).

Vite [2024b]. Vite. 19 Nov 2024. https://npmjs.com/package/vite (cited on page 96).

Vue [2024a]. Vue. VueJS Contributors, 11 Jun 2024. https://vuejs.org/ (cited on pages 21, 23).

Vue [2024b]. Vue Rendering Mechanism. VueJS Contributors, 29 Jun 2024. https://vuejs.org/guide/e
xtras/rendering-mechanism (cited on page 23).

W3C [2011]. Grid Layout. World Wide Web Consortium, 07 Apr 2011. https://w3.org/TR/2011/WD-css
3-grid-layout-20110407/ (cited on page 18).

W3C [2018]. CSS Flexible Box Layout Module Level 1. World Wide Web Consortium, 19 Nov 2018.
https://w3.org/TR/css-flexbox-1/ (cited on page 18).

W3C [2024a]. ARIA in HTML. World Wide Web Consortium, 07 May 2024. https://w3.org/TR/html-ar
ia/ (cited on page 14).

W3C [2024b]. Largest Contentful Paint. World Wide Web Consortium, 15 Jan 2024. https://w3c.githu
b.io/largest-contentful-paint/ (cited on page 20).

W3C [2024c]. W3C. World Wide Web Consortium, 10 Jun 2024. https://w3.org/ (cited on pages 11–12,
19).

W3C [2024d]. WebAssembly. 10 Jun 2024. https://webassembly.org/ (cited on pages 1, 11).

W3C [2024e]. What is the Document Object Model? 11 Jun 2024. https://w3.org/TR/WD-DOM/introduct
ion.html (cited on page 19).

WACG [2024]. WebAssembly. WebAssembly Community Group, 30 Aug 2024. https://webassembly.or
g/ (cited on page 34).

Ware, Colin [2021]. Visual Thinking for Information Design. 2nd Edition. Morgan Kaufmann, 14 Jul
2021. 224 pages. ISBN 0128235675 (cited on page 1).

WaSP [2024]. Web Standard Project - Mission. Web Standard Project, 10 Jun 2024. https://webstandar
ds.org/about/mission/ (cited on page 11).

Webpack [2024]. Webpack. 30 Jun 2024. https://webpack.js.org/ (cited on page 24).

Wettel, Richard and Michele Lanza [2007]. Visualizing Software Systems as Cities. Proc. 4th IEEE
International Workshop on Visualizing Software for Understanding and Analysis (VISSOFT 2007)
(Banff, Alberta, Canada). 24 Jun 2007, pages 92–99. doi:10.1109/VISSOF.2007.4290706 (cited on page 5).

WHATWG [2024a]. HTML Living Standard. Web Hypertext Application Technology Working Group,
10 Jun 2024. https://html.spec.whatwg.org/multipage/ (cited on page 12).

WHATWG [2024b]. Web Hypertext Application Technology Working Group. Web Hypertext Application
Technology Working Group, 10 Jun 2024. https://whatwg.org/ (cited on page 12).

WHATWG [2024c]. Web Workers. Chapter 10 of HTML Living Standard. Web Hypertext Application
Technology Working Group, 29 Aug 2024. https://html.spec.whatwg.org/#toc-workers (cited on
page 31).

https://doi.org/10.1162/99608f92.8ae4d525
https://hdsr.mitpress.mit.edu/pub/zok97i7p
https://hdsr.mitpress.mit.edu/pub/zok97i7p
http://worldcatlibraries.org/wcpa/issn/1939-1455
https://doi.org/10.1037/0033-2909.134.3.383
https://vitejs.dev/
https://npmjs.com/package/vite
https://vuejs.org/
https://vuejs.org/guide/extras/rendering-mechanism
https://vuejs.org/guide/extras/rendering-mechanism
https://w3.org/TR/2011/WD-css3-grid-layout-20110407/
https://w3.org/TR/2011/WD-css3-grid-layout-20110407/
https://w3.org/TR/css-flexbox-1/
https://w3.org/TR/html-aria/
https://w3.org/TR/html-aria/
https://w3c.github.io/largest-contentful-paint/
https://w3c.github.io/largest-contentful-paint/
https://w3.org/
https://webassembly.org/
https://w3.org/TR/WD-DOM/introduction.html
https://w3.org/TR/WD-DOM/introduction.html
https://webassembly.org/
https://webassembly.org/
http://amazon.co.uk/dp/0128235675/
https://webstandards.org/about/mission/
https://webstandards.org/about/mission/
https://webpack.js.org/
https://doi.org/10.1109/VISSOF.2007.4290706
https://html.spec.whatwg.org/multipage/
https://whatwg.org/
https://html.spec.whatwg.org/#toc-workers

109

Whitworth, Greg [2018]. Braces to Pixels. A List Apart, 15 Nov 2018. https://alistapart.com/article
/braces-to-pixels/ (cited on pages 16–17).

Wirfs-Brock, Allen and Brendan Eich [2020]. JavaScript: the first 20 years. Proceedings of the ACM
on Programming Languages 4 (Jun 2020), pages 1–189. ISSN 2475-1421. doi:10.1145/3386327 (cited on
page 19).

Wojciech, Maj [2023]. Package Manager Wars. The Real Picture. 22 Oct 2023. https://dev.to/wojtekm
aj/package-manager-wars-the-real-picture-e9p (cited on page 25).

yarn [2024a]. Yarn. 11 Jun 2024. https://yarnpkg.com/ (cited on pages 21, 25, 95).

yarn [2024b]. Yarn Workspaces. 29 Jun 2024. https://classic.yarnpkg.com/lang/en/docs/workspaces/
(cited on page 25).

yarn [2024c]. Yarn Workspaces. 19 Nov 2024. https://yarnpkg.com/features/workspaces (cited on
page 95).

You, Evan [2014]. First Week of Launching Vue.js. 11 Feb 2014. https://blog.evanyou.me/2014/02/11/f
irst-week-of-launching-an-oss-project/ (cited on page 23).

Zeileis, Achim, Kurt Hornik, and Paul Murrell [2009]. Escaping RGBland: Selecting Colors for Statistical
Graphics. Computational Statistics & Data Analysis 53.9 (Jul 2009), pages 3259–3270. ISSN 0167-9473.
doi:10.1016/j.csda.2008.11.033 (cited on page 63).

https://alistapart.com/article/braces-to-pixels/
https://alistapart.com/article/braces-to-pixels/
http://worldcatlibraries.org/wcpa/issn/2475-1421
https://doi.org/10.1145/3386327
https://dev.to/wojtekmaj/package-manager-wars-the-real-picture-e9p
https://dev.to/wojtekmaj/package-manager-wars-the-real-picture-e9p
https://yarnpkg.com/
https://classic.yarnpkg.com/lang/en/docs/workspaces/
https://yarnpkg.com/features/workspaces
https://blog.evanyou.me/2014/02/11/first-week-of-launching-an-oss-project/
https://blog.evanyou.me/2014/02/11/first-week-of-launching-an-oss-project/
http://worldcatlibraries.org/wcpa/issn/0167-9473
https://doi.org/10.1016/j.csda.2008.11.033

	Contents
	List of Figures
	List of Tables
	List of Listings
	Acknowledgements
	Credits
	1 Introduction
	2 Visualising Software
	2.1 Information Visualisation
	2.2 Software Visualisation
	2.3 Visualising Software Repositories

	3 Frontend Web Design
	3.1 The Modern Web Browser
	3.2 HTML
	3.2.1 Semantic Markup
	3.2.2 ARIA

	3.3 CSS
	3.3.1 CSS Syntax
	3.3.2 CSS Origin Types

	3.4 The Rendering Pipeline
	3.4.1 Parsing and Tokenisation
	3.4.2 Value Computation
	3.4.3 Cascade
	3.4.4 CSS Object Model (CSSOM)
	3.4.5 Layouting
	3.4.6 Painting
	3.4.7 Composition

	3.5 JavaScript
	3.6 TypeScript
	3.7 Frontend Frameworks
	3.7.1 React
	3.7.2 Angular
	3.7.3 Vue
	3.7.4 Svelte
	3.7.5 Choosing React

	3.8 Building Web Applications
	3.8.1 Build Tools and Bundlers
	3.8.2 Package Managers

	3.9 Responsive Web Design

	4 Gizual Architecture
	4.1 Architectural Requirements
	4.1.1 Non-Blocking
	4.1.2 Asynchronicity
	4.1.3 Parallel Execution
	4.1.4 Separation of Concerns

	4.2 Architectural Overview
	4.2.1 Explorer Pool
	4.2.2 Renderer Pool
	4.2.3 SQLite Database
	4.2.4 UI Controllers
	4.2.5 UI Components
	4.2.6 Maestro

	4.3 State Management
	4.3.1 Introduction to MobX
	4.3.2 State Management in React
	4.3.3 Advanced Reactivity Within MobX
	4.3.4 MobX Usage in Gizual

	4.4 Query Interface
	4.4.1 Scope commit-range
	4.4.2 Scope files
	4.4.3 Scope visualisation

	5 Gizual User Interface
	5.1 Design Principles
	5.2 Design Tooling
	5.2.1 Figma
	5.2.2 User Interface Component Libraries

	5.3 User Interface Components in Gizual
	5.4 Previous Design Iterations
	5.5 Current User Interface
	5.6 Designing for Interactivity

	6 Gizual Canvas
	6.1 File Tiles
	6.2 Masonry Canvas
	6.2.1 Canvas Interactivity
	6.2.2 Canvas Minimap
	6.2.3 Canvas Legend
	6.2.4 Author Panel

	7 Visual Encoding in Gizual
	7.1 Colour Spaces
	7.2 Gizual Colour Manager

	8 Query Bar
	8.1 Query Modules
	8.1.1 The Time Module
	8.1.2 The File Module
	8.1.3 The Vis Module

	8.2 Implementation Details
	8.2.1 Query Editor
	8.2.2 Query Assistant

	8.3 Previous Iterations and Concepts
	8.3.1 QB1: Single Input Field
	8.3.2 QB2: Advanced Query Editor
	8.3.3 QB3: Hybrid Combination of Modules and JSON Input

	9 Selected Details of the Implementation
	9.1 Interactive SVG Timeline
	9.1.1 Commit Timeline
	9.1.2 Time Ruler
	9.1.3 Range Selector

	9.2 File Tree

	10 Outlook and Future Work
	11 Concluding Remarks
	A User Guide
	A.1 Opening a Repository
	A.2 Navigating the User Interface
	A.3 Modifying the Query
	A.3.1 Customising the Commit Range
	A.3.2 Customising Selected Files
	A.3.3 Customising the Visualisation

	A.4 Canvas Navigation
	A.5 Inspecting Individual Files
	A.6 Export

	B Developer Guide
	B.1 Development Stack
	B.2 Project Structure
	B.2.1 Gizual API
	B.2.2 Gizual App
	B.2.3 Maestro
	B.2.4 Explorer
	B.2.5 Renderer

	B.3 Data Flow
	B.4 Build and Deploy

	Bibliography

