
The HarSearch Similarity Map:
Visualising Search Result Sets Using a

Maximum Similarity Spanning Tree

Alexander Rodiga

The HarSearch Similarity Map:
Visualising Search Result Sets Using a

Maximum Similarity Spanning Tree

Master's Thesis

at

Graz University of Technology

submitted by

Alexander Rodiga

Institute for Information Processing and Computer Supported New Media
(IICM),

Graz University of Technology
A-8010 Graz, Austria

May 1997

c
 Copyright 1997 by Alexander Rodiga

Advisor: o.Univ.-Prof. Dr. Dr.h.c. Hermann Maurer

Supervisor: Univ.Ass. Dr. Keith Andrews

Die HarSearch Similarity Map:

Visualisierung von Suchergebnissen mittels eines

maximalen �Ahnlichkeitsspannbaumes

Diplomarbeit

an der

Technischen Universit�at Graz

vorgelegt von

Alexander Rodiga

Institut f�ur Informationsverarbeitung und Computergest�utzte neue Medien
(IICM),

Technische Universit�at Graz
A-8010 Graz

Mai 1997

c
 Copyright 1997, Alexander Rodiga

Diese Diplomarbeit ist in englischer Sprache verfa�t.

Begutachter: o.Univ.-Prof. Dr. Dr.h.c. Hermann Maurer

Betreuer: Univ.Ass. Dr. Keith Andrews

Abstract

As the size of an information space grows very large, �nding speci�c information
becomes increasingly di�cult and ever more matches are returned by search queries.
Numerous approaches have been proposed to make sense of search result sets.

This thesis describes HarSearch, an extension to the Hyperwave client Harmony,
which utilises the retrieval mechanisms of the Hyperwave server. HarSearch provides
a Similarity Map which takes an innovative approach by visualising search result
sets using a maximum similarity spanning tree. The Similarity Map allows users to
interactively explore search result sets, in terms of document similarities.

Kurzfassung

Mit der st�andig wachsenden Menge verf�ugbarer Information wird es zunehmend
schwieriger, relevante Information zu �nden. Suchabfragen f�uhren oft zu einer
un�uberschaubaren Anzahl gefundener Objekte. Verschiedenste Methoden wurden
bereits vorgeschlagen, um es den Anwendern zu erleichtern, die f�ur sie interessanten
Objekte in einem Suchergebnis zu �nden.

Diese Diplomarbeit beschreibt HarSearch, ein
exibles Suchwerkzeug, da� die
Suchfunktionalit�at des Hyperwave Clients Harmony erweitert. Die HarSearch Simi-
larity Map zeigt einen innovativen Ansatz wie Suchergebnisse mittels eines maxima-
len �Ahnlichkeitsspannbaumes visualisiert werden k�onnen. Mit Hilfe der Similarity
Map ist es Anwendern m�oglich, interaktiv Suchergebnisse zu betrachten und Bezie-
hungen zwischen den gefundenen Objekten herzustellen.

I hereby certify that the work presented in this thesis is my own and that work

performed by others is appropriately cited.

Ich versichere hiermit, diese Arbeit selbst�andig verfa�t, andere als die angegebenen

Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubten Hilfs-

mittel bedient zu haben.

Acknowledgments

I would like to thank my supervisor Keith Andrews for his help and advice
in writing and correcting this work. Bernhard Marschall, Michael Pichler, J�urgen
Schip
inger, and J�org Faschingbauer for their help in mastering the di�culties of
programming. All the people at the IICM and especially the Hyperwave team who
gave me the possibility to work in an ambitious team on a great idea.

My most heartfelt thanks go to my family, my parents and grand-parents, for
their support, love, and encouragement during the whole time of my studies. I
a�ectionately dedicate this work to them.

Danksagungen

In erster Linie m�ochte ich meinem Betreuer Keith Andrews f�ur den Rat und
die Hilfe beim Schreiben und Korrigieren dieser Arbeit danken. Weiters danke ich
Bernhard Marschall, Michael Pichler, J�urgen Schip
inger und J�org Faschingbauer, die
mir in allen programmiertechnischen Fragen hilfreich zur Seite gestanden sind, sowie
allen Mitarbeitern des IICM, die es mir erm�oglicht haben, in einem ambitionierten
Team an einer gro�artigen Idee mitzuarbeiten.

Ganz besonderer Dank gilt meiner Familie, vor allem meinen Eltern und Gro�-
eltern, denen ich diese Arbeit widme, f�ur ihre Unterst�utzung w�ahrend meiner Stu-
dienzeit.

viii

Contents

1 Introduction 1

2 Information Retrieval (IR) 3

2.1 Introduction to Information Retrieval 3

2.2 Indexing Documents . 4

2.2.1 Inverted Indexing . 5

2.3 Measuring Retrieval E�ectiveness . 7

2.4 Relevance, Ranking, and Similarity 7

2.4.1 Document Clustering . 10

3 Search Interfaces 13

3.1 What is a Search Interface ? . 13

3.2 Examples of Search Interfaces . 15

4 Visualising Search Result Sets 17

4.1 Visualising Information Spaces . 17

4.2 Scatter/Gather . 18

4.3 Bead . 20

4.4 VR-VIBE . 24

4.5 LyberWorld . 28

4.6 InfoCrystal . 31

4.7 TileBars . 34

4.8 Envision . 36

5 The Web, Hyperwave, and Harmony 39

5.1 The Internet . 39

5.1.1 Connections via the Internet 39

5.1.2 The World Wide Web . 40

5.2 Hyperwave . 42

5.2.1 Problems of First Generation Information Systems on the
WWW . 42

ix

x CONTENTS

5.2.2 The Hyperwave Server . 43

5.3 The Harmony Client . 45

5.3.1 Searching in Harmony . 46

6 The HarSearch Interface 51

6.1 The Features of the HarSearch Interface 51

6.2 The Interface of the HarSearch Similarity Map 53

7 The Design of the HarSearch Similarity Map 55

7.1 The Idea Behind the Similarity Map 55

7.2 The Maximum Similarity Spanning Tree 56

7.2.1 Prim's Algorithm to Grow a Maximum Spanning Tree 57

7.2.2 Clustering Using a Maximum Similarity Spanning Tree 59

7.3 Visualising the HarSearch Similarity Map 60

7.3.1 The vertical Tree Layout . 60

7.3.2 The two-sided Tree Layout . 61

7.3.3 The Polar Coordinates Layout 61

7.3.4 Determining the Horizontal Positions of the Vertices 63

8 The Architecture of HarSearch 65

8.1 The Connection to Harmony and Hyperwave 66

8.2 The API Search Tool . 66

8.3 The Interface Objects . 68

8.4 Graph and Node Objects . 68

8.5 The Similarity Manager . 69

9 Selected Details of the Implementation 71

9.1 class APISearchTool . 71

9.2 The Interface Classes . 72

9.3 Classes for the Tree Visualisation . 72

9.3.1 class APSNode . 72

9.3.2 class visAPSNode . 73

9.3.3 class APSGraph . 74

9.3.4 class APSSimilarityGraph . 74

9.4 class SimilarityManager . 76

10 Outlook and Future Work 79

11 Concluding Remarks 81

CONTENTS xi

A HarSearch User Guide 83

A.1 The HarSearch Search Interfaces . 83

A.1.1 Common Elements . 83

A.1.2 The Simple Query Interface 85

A.1.3 The Extended Query Interface 86

A.1.4 The Power Query Interface . 89

A.2 The Result Window . 90

A.3 The HarSearch Similarity Map . 91

A.4 XDefaults . 97

B The Test File Format 101

References 103

xii CONTENTS

List of Figures

2.1 Information Retrieval. 4

2.2 Recall-Precision graph. 8

2.3 Triangular inequality . 9

2.4 Five disjunctive clusters of objects. 10

3.1 The advanced query interface of AltaVista. 15

3.2 The HotBot search interface. 16

4.1 A Scatter/Gather example. 19

4.2 A Scatter/Gather application . 21

4.3 Bead: point cloud . 22

4.4 Bead: landscape . 23

4.5 Multiple users exploring a VR-VIBE document space 25

4.6 Labelled documents in VR-VIBE . 26

4.7 VR-VIBE: 3D-Relevance Scroll Bar 26

4.8 VR-VIBE: Web Browser . 27

4.9 A simple LyberTree . 28

4.10 A complex LyberTree structure . 29

4.11 LyberWorld: Relevance Sphere . 30

4.12 A Venn Diagram transformed into an InfoCrystal. 32

4.13 An InfoCrystal with four criteria. 33

4.14 TileBars: term distribution . 34

4.15 Search result list with TileBars . 35

4.16 Envision`s Query Window . 36

4.17 Envision: Search Result Window . 38

5.1 Linear text and hypertext. 41

5.2 Hyperwave collections seen through Netscape. 44

5.3 The Harmony session manager. 46

5.4 The Harmony Landscape. 47

5.5 The Harmony Local Map. 47

xiii

xiv LIST OF FIGURES

5.6 The search interface of Harmony. 48

7.1 Examples for maximum spanning trees. 56

7.2 Prim's algorithm . 57

7.3 Document clusters displayed in the HarSearch Similarity Map. 59

7.4 The vertical tree layout. 60

7.5 The two-sided vertical and horizontal tree layout. 61

7.6 The principle of the polar coordinate layout. 62

7.7 The HarSearch Similarity Map using polar coordinates layout. 62

7.8 The Priority Layout Method . 64

8.1 The architecture of HarSearch. 65

A.1 The simple query interface. 86

A.2 The extended query interface. 87

A.3 The attribute menu of the extended query interface 88

A.4 The power query interface. 89

A.5 The result window. 90

A.6 A HarSearch Similarity Map example 91

A.7 A list of all similarities to a previously selected document. 92

A.8 The options dialog for the HarSearch Similarity Map. 94

A.9 Similarity Map colour speci�cation. 95

A.10 Di�erent Similarity Map layout styles. 96

1

Introduction

Nowadays a vast amount of information is available to us via textual and multimedia
databases. Almost anything can be found even on-line on the Internet, but as the
quantity of data grows, and the information space becomes overwhelming, so the
retrieval of demanded information becomes more di�cult and complex.

Various systems have been developed to visualise information spaces, to help the
user to retrieve the desired information e�ciently, e�ectively and easily, and to over-
come the problem of being \lost in Hyperspace" by using the human's remarkable
capabilities of perception and recognition.

Hyperwave represents the next generation of multimedia information systems.
In cooperation with Harmony it is a powerful tool to provide, structure and grasp
the scope of the available information. It o�ers solutions to common problems of
existing information systems of the �rst generation.

This thesis describes an application, called HarSearch, which utilises Hyper-
wave's powerful information retrieval functionality. It o�ers an e�cient user inter-
face and makes sense of search result sets using a maximum similarity spanning tree
to visualise document similarities.

Chapter 2 introduces the main principles of information retrieval. Mechanisms
to index documents are described as well as document clustering, and measures to
determine retrieval e�ectiveness and document similarity.

Chapter 3 focuses on search interfaces, the interfaces between users and search
engines, and Chapter 4 discusses several systems which are directed to the visuali-
sation of information spaces and search result sets.

Chapter 5 describes the basic concepts of the Internet followed by a listing of
main problems of current �rst generation information systems. Solutions to these
problems, o�ered by the Hyperwave server, are described afterwards. Finally, the
Hyperwave client Harmony and its search interface is introduced.

The features of the new Hyperwave search tool HarSearch are the topic of Chap-
ter 6. Furthermore, the interface of the innovative HarSearch Similarity Map is pre-
sented. The Similarity Map allows users to �nd document clusters within a search
result set and facilitates the recognition of relations between similar documents.

1

2 1. INTRODUCTION

However, delays in the implementation of document similarity in the Hyperwave
server meant that only simulated similarity values could be used upto now in the
development of the HarSearch Similarity Map.

Chapter 7 is directed to the underlying concept of the HarSearch SimilarityMap.
The idea and the theory which �nally led to the visualisation of search result sets by
using a maximum similarity spanning tree are described as well as the algorithms
used for the actual layout of the Similarity Map.

HarSearch consists of several components. The overall architecture and the con-
nection to Harmony and the Hyperwave server are described in Chapter 8 while
Chapter 9 focuses on the actual implementation details. The most important C++
class declarations and source code parts are presented to o�er an orientation aid to
anyone who extends and maintains HarSearch.

Finally, Chapter 10 is an outlook on extensions of HarSearch which are not
yet implemented. Primarily, real document similarities from the Hyperwave server
should be integrated as soon as they are available, and usability evaluations can
provide feedback for further improvements.

A detailed user guide is provided in Appendix A. It should help users to start
searching with HarSearch and to �nd the requested information of interest in the
Hyperwave space.

2

Information Retrieval (IR)

In this chapter the term information retrieval is explained and techniques for storing,
structuring, and retrieving information are described.

2.1 Introduction to Information Retrieval

Techniques to store knowledge and to search for information are very old and can
be found in any library. The most common way to �nd a book is to look up a few
index terms such as the author, the title and some subject headings in an index.

Nowadays the traditional library index has often been replaced by a computer
system. These systems have changed the way of storing and searching for infor-
mation. The number of index terms is no longer limited to a few \hand-selected"
terms, but may be generated automatically for all the terms within a document or
even a document collection. An index which contains all or at least most of the
words of a document collection is called a full text index (see Section 2.2).

The sub�eld of computer science that deals with the automated storage and re-
trieval of documents is called information retrieval (IR). The retrieval itself could
be de�ned as the identi�cation and retrieval of particular matching (textual) docu-
ments from an information base in response to an information request (query). In
most cases information retrieval means text retrieval which is the retrieval of only
text documents, though it might be possible that IR systems deal with pictures and
other media as well.

The IR system matches the query terms with the terms in the documents and
retrieves a set of relevant documents (see Figure 2.1). Retrieval is a probabilistic
process which means that it is possible that some relevant documents are missed and
some non-relevant are retrieved in a search task. The result depends on the retrieval
technique and the combination of the index terms used to retrieve the documents
(see Section 2.3).

The documents of an IR system are stored in a database. Nevertheless, a
database management system (DBMS) should not be mixed up with an IR system.
Although DBMS also retrieve documents, the retrieval of a DBMS is deterministic.

3

4 2. INFORMATION RETRIEVAL (IR)

Queries
Similarity

computation Documents

Retrieval of
similar items

Figure 2.1: Information Retrieval.

The IR systems deal with largely unstructured text documents while the DBMS
systems use homogeneous records to retrieve the stored information.

Therefore, there is a distinction between two types of retrieval. The full text

retrieval of an IR system and the Boolean retrieval of a DBMS. In full text retrieval
the query consists of terms which are searched in the whole document (or the full
text index). The result is a list of ranked documents according to how close these
documents are to combinations of the query terms. If the query terms occur more
often in the document it is presumed that the document is more similar to the query
(see Section 2.4).

In Boolean retrieval a Boolean query is made up of conjunctions, disjunctions,
and negations of query terms. Documents are retrieved only if their attributes
(e.g. title, keywords...) or contents satisfy the conditions of the Boolean statement.
Boolean retrieval produces no ranking among the results because a document either
satis�es the Boolean conditions or does not.

However, since an IR system uses a database to store documents and attribute
�elds like the author, and the title of the documents it may also support Boolean
retrieval. Therefore, it is related to a DBMS and can be combined with a DBMS.
One combination would be to use the ranking mechanism of full text retrieval to
rank a set of documents retrieved by Boolean retrieval.

An IR system must support certain basic operations. There must be a way to
enter documents and delete documents from the database, to change documents and
to search for them. Finally, there must be a way to interact with the user and to
present the search result sets, but this will be discussed in later chapters.

2.2 Indexing Documents

There are two possible approaches to retrieve documents by means of terms con-
tained in these documents:

2.2. INDEXING DOCUMENTS 5

� Sequential scanning of the documents: this means scanning through every
document to �nd the particular query terms. It is obvious that this technique is
very time consuming and would not be feasible for large document collections.
However, it can be used for string searching within a single document.

� Indexed documents: an index is available, and can be used to speed up the
search. The index size is usually proportional to the document collection size
and the search time is sub-linear on the size of the collection since a binary
search strategy could be used.

Therefore, the index is the most important tool for IR. An index is a collection
of terms with pointers to places where information can be found. The terms can be
document titles, authors, or words within the documents.

Most people are familiar with the index of a book. It allows to �nd relevant
information without scanning through the actual pages. The more pages the book
has the more important is the index. The same can be done for document collections
which may contain millions of documents to search for terms in the documents and
to locate relevant documents.

2.2.1 Inverted Indexing

An index could be fashioned in many ways. The index as it is found in a book
would be very slow and inconvenient for document collections to search in. To �nd
a document, which contains a particular term, the system would have to go through
the index of each document to check if that term is contained in this document.
Therefore an inverted index is used.

An inverted index contains, for every term in the document database, an inverted
index entry that stores a list of pointers to all occurrences of that term in the various
documents in which that term appears.

An inverted index would look like as follows:

Term Documents

1 1,3
2 2,3,4
3 2,4
4 4

It is easy to see that Term 2 occurs in the documents 2, 3, and 4. The entries are
stored in order of increasing document number so that di�erent merging operations
can be performed in linear time to the length of the lists. For example an AND-
operation which is used to �nd documents containing the terms 2 AND 4 has as
result the documents 2 and 3 while an OR-operation (terms 2 OR 4) retrieves the
documents 2, 3, and 4.

6 2. INFORMATION RETRIEVAL (IR)

The granularity of an index is the accuracy to which it identi�es the location of
a term. A coarse grained index may only identify the document which contains the
term while a �ne grained index might return even the exact position of the term
within a sentence. However, adding precise location information increases the index
because more information has to be stored for a single entry.

To improve the inverted index method and to support ranked search results the
terms may be weighted for each document. A term-importance weight is assigned
to each term. The weight depends on the frequency of the term in the document
and the location of the term. This means that if the term occurs in a heading it is
weighted more than if it occurs within a simple paragraph. The advantage is that
the retrieved documents can be ranked in order of their relevance to the query but
query matching becomes more complicated.

An inverted index with additional information can consume considerable space,
and might occupy 50-100% of the space of the stored text itself. Therefore various
compression methods are used to reduce the size of the index.

Beside compression other considerations should be taken into account when
building an index:

Case Folding

The problem that queries fail because of a case insensitiveness of the index can be
avoided by using case-folding. That is the replacing of all uppercase characters in
a term with their equivalent lowercase characters. For example, \It", and \it" are
both folded to \it" and indexed accordingly. The query terms are also case-folded
before they are matched with the index terms. A case sensitive search could lead to
false matches, unless some post-processing is performed.

Stop Words

It is questionable if words such as it should be indexed at all. Since words like it,
the, to, and some others occur very frequently in almost every English document.
Words that are \stopped" and not indexed are called stop words and the set of stop
words is referred to as the stop list. In an uncompressed inverted index a stop list
can save a substantial amount of space which may range up to 40% of the index
size.

When the inverted index is compressed the bene�t from stop words is less clear.
The stop words are exactly the words which are compressed at the highest rate due
to their high frequency and therefore the amount of space which could be saved
becomes rather small in comparison to the remaining index size.

Furthermore, omitting words can cause problems if users are interested in �nding
exactly these words. Another problem with stop words is that some of the most
common words may have di�erent meanings. For example the removing of the word
may would also remove any reference to the month of May. Therefore, the generation
of an appropriate stop list is not as easy as it looks at �rst glance.

2.3. MEASURING RETRIEVAL EFFECTIVENESS 7

Stemming

Another process to reduce index size is stemming. Stemming involves stripping one
ore more su�xes o� a word to reduce it to the root form, converting it to a neutral
term that is devoid of tense and plurality. For example the words stemming and
stemmed are simply stored as stem. Since a single stem typically corresponds to
several full terms, using stemming can achieve a compression factor of over 50%.
However, reducing words to a root form and omitting su�xes can cause ambiguous
search results and the generation of stems requires a detailed knowledge about the
language of the documents which have to be indexed.

2.3 Measuring Retrieval E�ectiveness

Since the retrieval of an IR system is a probabilistic process, it retrieves relevant and
non-relevant documents and a measure is needed to estimate retrieval e�ectiveness.
Many di�erent measures have been proposed. The most common measures are
precision and recall.

Precision Pr for a certain cuto� point r is the ratio of the number of relevant
documents retrieved over the total number of documents retrieved:

Pr =
number retrieved that are relevant

total number retrieved

Recall Rr of a method at some value r is the fraction of relevant documents
retrieved for a given query over the number of relevant documents for that query in
the database:

Rr =
number relevant that are retrieved

total number relevant

Except for small test collections, this denominator is generally unknown and has
to be estimated by sampling or some other method. Both precision and recall take
a value between 0 and 1. The relation between precision and recall can be visualised
using a recall-precision graph (see Figure 2.2). It shows that recall and precision are
inversely related. That is, when recall goes up, precision typically goes down and
vice versa.

A combined measure of recall and precision, E, has been developed by van Rijs-
bergen (1979). The evaluation measure E is de�ned as:

E = 1 �
(1 � b2)PR

b2P +R

where P = precision, R = recall, and b is a measure of the relative importance, to
a user, of recall and precision [FBY92].

2.4 Relevance, Ranking, and Similarity

Since IR systems retrieve sets of documents which are relevant to queries a measure
for this relevance is required. The relevance could be considered as the similarity or

8 2. INFORMATION RETRIEVAL (IR)

Precision

0 1
0

1

Recall

Figure 2.2: Recall-Precision graph.

the distance of a particular document to the user's information request (the query).
If the document ful�ls the information request it is close to what the user is searching
for.

In everyday life we often refer to objects only as similar and dissimilar, which are
highly subjective terms. A stricter de�nition of similarity is needed for automated
calculations. The similarity between two objects oi and oj can be de�ned as a
function s = s(oi; oj) = sij which re
ects our imagination of similarity, that is a
greater value represents greater similarity. The function s is de�ned on the interval

s0 � s � s1

where sij = s1 means most similar and sij = s0 means least similar (usually s0 = 0
and s1 = 1). Function s satis�es the following conditions:

sij � s1

sij = sji

sii = s1

If also the conditions
sij = s1) oi = oj

jsij + sjkjsik � sijsjk

are satis�ed then the function s is called a metrical similarity function. Equally, the
dissimilarity or distance d can be de�ned as

d = d(oi; oj) = dij

with
dij � 0

dij = dji

dii = 0

2.4. RELEVANCE, RANKING, AND SIMILARITY 9

and with the additional conditions

dij = 0) oi = oj

dik � dij + djk (trinagular inequality, see Fig. 2.3)

it is called a metrical distance function.

oi

oj
o

k

Figure 2.3: Triangular inequality: d(oi; ok) � d(oi; oj) + d(oj ; ok).

Now a similarity measure has to be de�ned for documents and queries. Beside
probabilistic models and other attempts, the vector space model [FBY92, WMB94] is
often used to determine the similarity of a document to a query or another document.
In the vector space model each document Di is described by a vector of n terms
fai1; ai2; :::; aing. This vector is high dimensional because its length is equal to the
number of unique words contained in all the documents of the whole document space.
Each component of the vector re
ects the occurrence of the corresponding word in
the document. Using a binary scale the value is 1 if the particular word occurs in
the document and 0 otherwise. The value of each aik may also be the weighted
frequency of occurrence of each term k in the document Di (see Section 2.2.1). The
query is also represented as an n{dimensional vector Q. The similarity between a
query and any particular document can now be calculated by vector algebra. A
simple measure for similarity is, for example, the reciprocal Euclidean distance:

d(Q;Di) =
1qPn

j=1(aq;j � ad;j)2

Since the number of words contained in a document is usually much greater
than the number of query terms this measure discriminates against long documents.
Therefore the cosine of the angle between the two vectors (i.e. the di�erence in
direction) is taken as a similarity measure. The cosine of the angle � is

cos � =
X � Y

jXjjY j
=

Pn
i=1 xiyiq

(
Pn

i=1 x
2
i)
q
(
Pn

i=1 y
2
i)

where X � Y is the vector inner product. jXj =
q
(
Pn

i=1 x
2
i) is the Euclidean length

of X and jY j the Euclidean length of Y respectively. Hence, the cosine measure for

10 2. INFORMATION RETRIEVAL (IR)

similarity can be de�ned as:

cosine(Q;Di) =
Q �Di

jQjjDij
=

1

WqWi

nX
j=1

aq;jad;j

where Wi =
qPn

j=1 a
2
i;j is the weight of the document Di and Wq =

qPn
j=1 a

2
q;j is

the weight of the query. Instead of a query, another document may be taken to
compute the similarity between two documents.

Knowing the similarity of documents to a query and to other documents, the
ranking of these documents according to their relevance can easily be accomplished,
and the relations between n di�erent documents in an n � n similarity matrix can
be determined.

However, reducing distances in a multi-dimensional space to single representative
values always involves a loss of information. (see Section 4.7 and [WMB94])

2.4.1 Document Clustering

Cluster analysis or classi�cation is well-known in statistical mathematics and is used
in many scienti�c �elds, such as medicine, biology, or economics, to �nd groups of
similar objects out of an unordered set of objects with di�erent properties. Fig-
ure 2.4 shows 5 disjunctive clusters, though it might be possible that there is an
overlap of clusters if one object belongs to several groups, depending on the prob-
lem speci�cation.

Figure 2.4: Five disjunctive clusters of objects.

Computers made it possible to use these classi�cation methods also for many
�elds in computer science. Automated classi�cation is used, for example, in pattern
recognition and can also help to structure the information stored and retrieved by
IR systems.

A document clustering algorithm tries to �nd clusters of similar documents
within the document space using a similarity measure like the cosine measure de-
scribed in Section 2.4. In [Bot93] three characteristics of clustering algorithms are
given. First, the algorithm has to be stable, i.e., it should not be a�ected by changes
in details. Second, a \reasonable" number of clusters should be generated. Finally,
documents in a cluster should be highly related.

2.4. RELEVANCE, RANKING, AND SIMILARITY 11

In general there are two approaches to clustering. The agglomerative approach
at �rst considers every document as a single cluster. Then the most similar clusters
are merged to bigger clusters in a greedy manner until a speci�ed number of clusters
remains. A partitional strategy starts with one cluster that contains all documents
and splits this cluster, and the resulting clusters into smaller clusters until again a
speci�ed number of clusters is generated.

Clusters may be organised hierarchically. In this case a cluster is de�ned recur-
sively as either an individual document or as a cluster of clusters which are also
clustered hierarchically.

Many clustering methods are based on a pairwise coupling of the most similar
documents or clusters. If there are n documents the running time of global clustering
algorithms is O(n2), because every document pair has to be considered. Therefore,
clustering of large document collections can be very time intensive. For that reason
approximation algorithms have been developed in the recent years.

In [CKPT92] two algorithms are presented which achieve a considerable speedup.
Both algorithms are based on the hierarchical approach and have rectangular run-
ning time, i.e. O(kn) where k is the number of clusters. The algorithms are called
Buckshot and Fractionation (see Section 4.2). They are used to �nd the initial cen-
tres for the seed-based clustering of the document space. In seed-based clustering
a number of seeds is chosen from all documents according to the number of de-
sired clusters. Then each document is assigned to the closest seed document. After
some re�nement this strategy results in an approximate partition of the document
collection.

12 2. INFORMATION RETRIEVAL (IR)

3

Search Interfaces

This chapter is directed to the interface between an information system and the
user who wants to �nd information of interest. It is related to Chapter 4 which pays
more attention to the presentation of search result sets while in this chapter the
interaction with the user, which has to take place to search for documents, is in the
foreground.

3.1 What is a Search Interface ?

As mentioned in Section 2.1, one of the basic operations of an IR system is the
interaction with the user searching for documents. Therefore the IR system has to
provide a search interface of some kind.

The search interface of an information system, or a search engine on the Internet
(see Section 5.1) is important to �nd information of interest. There are di�erent ways
to search for information. One is following hyperlinks (see Section 5.1.2) between
particular documents or navigating through a hierarchical document structure with
collections and groups of documents. Another one is to issue a speci�c query, �ltering
the document space by means of query terms.

Browsing from link to link and the navigation through a document hierarchy are
both query free. Navigating through the document hierarchy can be compared to
the perusal of the table of contents while browsing from link to link is more like
following cross references within a text. Both strategies may be used to get an
overview of the available information. Finally, querying a system is similar to a look
up in the index of a book to �nd speci�c information.

However, the standard mechanism to retrieve information from an IR system
presumes a query speci�ed by the user. The query re
ects the user's information
need by means of di�erent query terms. The next step is to search in the document
space for documents which match this query. There may be situations where it is
not possible to formulate a query precisely. This often results in far too many found
documents or none at all. Users may not be able to describe the topic of interest
because they may not be looking for anything special, but rather want to get a
general overview of the available information. It is also possible that the user is not

13

14 3. SEARCH INTERFACES

familiar with the appropriate vocabulary to describe the topic or is interested in
several topics at once. Furthermore, the words used to describe a topic may not be
the words used in articles of interest, and therefore, the query may fail to retrieve
these articles. Even if some words are used in discussions a query may fail due to
the use of synonyms.

On the other hand displaying the whole information space becomes problematic
as its size increases. In this case a query may be more suitable, at least to �lter the
amount of data according to query terms. It also may not be possible to display the
whole information space at all.

Typically, the usual information retrieval task includes searching as well as brows-
ing. The �rst activity of the user is probably to explore the information space to
get an overview of the available topics. The next task is a search task where the
user tries to �nd articles and documents of interest. If appropriate documents have
been found, a further browsing task may be applied to �nd related information.

Queries and query languages are often very complex, and therefore, the task of
the search interface is to help the user to enter queries in a more understandable
way, without bothering the user with query syntax and the internal organisation of
the system. The user may enter simple text, select check boxes, or can choose from
items in a list and the search interface composes the actual query.

Since search interfaces are often command or form based, it is di�cult for the user
to judge the relevance of the di�erent query terms and it is not easy to change the
query appropriately if the result is not satisfying.Some systems try to overcome this
problem by o�ering ways to generate queries graphically and with more
exibility
(see Section 4.5 and Section 4.6).

The search interface also presents the search result set and supports further
search activities. The presentation of the search result set may be a simple list,
but can also be more sophisticated to convey more information about the retrieved
documents. A more detailed description of the visualisation of search result sets is
given in Chapter 4.

One point that is important to the design of every user interface is the user
pro�le. In general there are three types of users:

� Novice users

� Knowledgeable intermittent users

� Frequent users

Novice users need a much simpler interface than frequent users who know how to use
the particular interface. In the case of a search interface, it is reasonable to assume
that the users know about the information they are searching for but nothing about
the system itself. A four-phase frame work for the design of search interfaces is
introduced in [SBC97].

3.2. EXAMPLES OF SEARCH INTERFACES 15

3.2 Examples of Search Interfaces

All search interfaces of the big search engines on the Internet are form-based. Fig-
ure 3.1 shows the advanced query interface of the AltaVista search engine [ALV].
The user can choose between a simple query interface and an advanced query in-
terface. The result is presented as a ranked list. Since the underlying IR system
contains millions of World Wide Web pages (see Section 5.1.2), a simple query often
results in very many matches. For that reason, the advanced query interface is used
for more accurate query speci�cation.

Figure 3.1: The advanced query interface of AltaVista.

Another search interface of an Internet search engine is presented in Figure 3.2.
The HotBot [HBT] also indexes millions of WWW documents. Instead of two sep-
arate interfaces the user may open and close sections of the search interface dy-
namically. In the MODIFY section the user can specify single words which must
or should be contained in the retrieved documents. The DATE, LOCATION, and
MEDIA TYPE sections are further possibilities to extend the query interface.

The third search engine described is InfoSeek [IFS]. Its search interface is rather
simple. At the main page the user has the possibility to enter query terms in
a text �eld or to choose one of the o�ered document groups to browse through
the information base. Once a query has been issued the result is presented as a
ranked list. The remarkable feature is the possibility to search again in a previously
retrieved search result set, which allows users to separate relevant documents from
non-relevant documents by re�ning the query in several steps. The user can go back

16 3. SEARCH INTERFACES

one step and does not need to reformulate the whole query if the search result was
not satisfying.

Figure 3.2: The HotBot search interface.

4

Visualising Search Result Sets

How several information search systems visualise a search result set is discussed
in this chapter. Also the search interfaces of these systems are described, since in
most cases the search interface is hardly separable from the actual search result
visualisation.

4.1 Visualising Information Spaces

One goal of every information system is to present the information space to the
user as understandably as possible.The user must be able to navigate through the
abstract information space to access the presented documents.

In terms of the vector space model (see Section 2.4) every document can be
considered as a point in this space. Since this vector space is high dimensional, it
is not possible to display it directly and it is not easy to imagine either. It has to
be mapped into a lower dimensional space which is more familiar to the user. In
many cases this is our 3D world. The mapping procedure is called multidimensional
scaling (MDS) [CC92].

Furthermore, the information space is often visualised using spatial metaphors.
These metaphors are derived from objects of the real world and support the user
building up a mental model of the information space. They can be simple geometric
forms like spheres, cubes or more complex like trees, landscapes (see Section 4.3),
or even cities.

The cognitive load on the user is decreased while interacting with more familiar
objects or navigating through them. When visualising search result sets, spatial
distance often corresponds to the similarity of documents to query terms or to other
documents. Trees or acyclic graphs can be used to visualise document hierarchies.

Several other visual coding principles are used to convey information within
visualisations to improve usability. The most popular ones are:

� Proximity Coding: as already mentioned, spatial distance corresponds to the
similarity between documents or documents and query terms.

17

18 4. VISUALISING SEARCH RESULT SETS

� Size Coding: is used to visualise quantitative information like relevance or the
number of elements contained in an object. In three-dimensional visualisations
size coding may sometimes be ambiguous due to perspective e�ects.

� Brightness and Saturation Coding: another way to represent quantitative in-
formation is to increase and decrease the brightness and saturation of elements.

� Texture and Colour Coding: also indicates quantitative information or it rep-
resents a particular attribute of the object, e.g. the type of the object.

� Shape Coding: di�erent objects are displayed with di�erent shapes making
distinctions easier.

Of course the exact meaning of these principles depends on the actual use in the
various systems. The list above provides only a general overview.

4.2 Scatter/Gather

Scatter/Gather is more an information access tool than a search system. It proposes
a browsing paradigm for large document collections. Initially the whole document
space is scattered into small clusters which are then presented to the user with short
summaries. From these summaries the user selects topics of interest for further
studies. The selected groups are gathered together to form a sub-collection. That
sub-collection is then again scattered into a small number of document groups. With
each step the groups become smaller and more detailed. Finally, when the groups
become small enough the user reaches the document level and can access individual
documents.

A Scatter/Gather Example

Figure 4.1 shows a typical Scatter/Gather session over a text collection consisting
of articles posted to the New York Times News Service during August 1990. To
simplify the �gure only single-word labels are assigned to the cluster summaries.

It is supposed that the user wants to get a general overview of the news of this
month. The big stories are obvious from the initial scattering: Iraq invades Kuwait
and Germany considers reuni�cation. This leads the user to focus on international
issues: he selects `Iraq', `Germany' and `Oil'. These three clusters are gathered
together to a cluster of `International Stories'. The smaller cluster is then scattered
into eight new clusters containing a subset of the articles. The articles on the
Iraqi invasion and some of the `Oil' articles have now been separated into clusters
discussing the U.S. military deployment, the e�ect of the invasion upon the oil
market, and one which is about hostages in Kuwait.

The user feels his knowledge of these big events is adequate, but he wishes to
�nd out what happened in other corners of the world. He selects the cluster named
Africa and the `Pakistan' cluster, which also contains other foreign political articles.

4.2. SCATTER/GATHER 19

New York Times Service, August 1990

Scatter

Education LegalGermanyOilSportArtsIraqDomestic

Scatter

Scatter

Smaller International Stories

International Stories

PoliticsDeployment Africa Markets Oil Hostages

Gather

Pakistan Germany

Gather

Trinidad W. Africa S. Africa Security International Lebanon Pakistan Japan

Figure 4.1: A Scatter/Gather example.

This reveals a number of speci�c international situations as well as a small collection
of miscellaneous international articles. The user thus learns of a coup in Pakistan,
and about hostages being taken in Trinidad, stories otherwise lost among the major
stories of that month [CKPT92].

Requirements

Since the collections are clustered on the
y fast clustering algorithms are essential to
achieve tolerable interaction times. For very large document collections this cannot
be accomplished without preprocessing the data. Even this preprocessing step has
to be e�cient. To accelerate Scatter/Gather the developers suggest a �ne grained
clustering of the document collection and hypothesise that documents similar enough
to be clustered in a �ne-grained clustering will be clustered together in a coarse-
grained clustering. This is called the Cluster Re�nement Hypothesis [CKP93].

Clusters of this �ne grained clustering are considered as meta-documents, i.e.
nodes, in a cluster hierarchy. Each meta-document consists of a set of related doc-
uments and meta-documents. Every group of meta-documents represents the union
of all groups of documents contained in these meta-documents. Therefore the cluster
hierarchy can be recursively described as a tree in which a node either corresponds to
a single document, or a tree whose subtrees are cluster hierarchies. Since the meta-
documents form a condensed representation of the collection, a constant time bound
can by maintained using the cluster hierarchy during Scatter/Gather Browsing.

20 4. VISUALISING SEARCH RESULT SETS

In addition to fast clustering algorithms a method for automatically summarising
document groups is required. Such a technique, called cluster digest, is introduced
in [CKPT92]. The summary to describe a cluster is generated from the words which
appear most frequently in all the documents contained in this particular cluster.

Scatter/Gather Clustering

The actual clustering of Scatter/Gather is performed by three di�erent algorithms
on the base of seed-based partitional clustering. Seed-based partitional clustering
algorithms have three phases:

1. Find k centres.

2. Assign each document in the collection to a centre.

3. Re�ne the partition so constructed.

The result is a partition P of k disjoint document groups. The Buckshot and Frac-

tionation algorithms are both used to �nd the initial centres. Both algorithms
assume the existence of some algorithm which clusters well, but which may run
slowly. Group average agglomerative clustering is used for this subroutine. Buck-
shot applies the cluster subroutine locally to a small random sample to �nd centres.
Fractionation uses successive application of the cluster subroutine over �xed sized
groups to �nd centres. Since Buckshot is signi�cantly faster it is used for the clus-
tering during an interactive Scatter/Gather session. Fractionation can be used to
generate the initial partition of the whole document collection. In [CKPT92] the
algorithms are described in detail.

Discussion

Scatter/Gather shows that document clustering can be used as an e�ective informa-
tion access tool even for very large document collections. It is not intended to be
used to �nd particular documents but it could be helpful in situations in which it
is di�cult to specify a query. The Scatter/Gather browsing paradigm may also be
used to organise the results of word-based queries that retrieve too many documents
(Figure 4.2 shows a screen dump of such an application). Fast clustering algorithms
are essential to achieve a tolerable interaction time. Furthermore, preprocessing
the data is necessary for very large document collections. The computation of the
cluster hierarchy results in a linear storage overhead.

4.3 Bead

Bead is a prototype system for graphically-based exploration of information [CC92].
It is one of the early systems which visualise the whole information space using spa-
tial proximity to display document similarity. Similar documents are placed close

4.3. BEAD 21

Figure 4.2: Clusters displayed by a Scatter/Gather application. Extracted
from [SCB].

to one another and dissimilar ones further apart. The high-dimensional informa-
tion space is mapped into 3D-space using a concept based on a physical model in
which each document is associated with a particle in space. The aim is to retrieve
information more graphically by navigating through the information space without
knowledge of query languages and database material itself.

Underlying Model and Point Cloud Visualisation

The physical model which is taken for the documents' placement is the model of
a damped spring in order to generate forces of attraction and repulsion between
particles. When particles are too close, the spring pushes them apart. When they
are too far apart, they are drawn towards each other. In each case the spring
works to regain its `rest distance' which is used as a metaphor for the document dis-
tance. For n documents this can lead to n(n� 1) interactions. That n-body problem
is well-known in computational physics where interactions due to gravitational or
Coulombic �elds are often of exactly this O(n2) complexity. Approximate solutions
of lower orders of complexity have therefore been developed. These methods employ
the principle of superposition whereby a cluster of particles can be approximated
by a single `meta-particle'. These meta-particles are document clusters which are
organised hierarchically very similar to the meta-documents in Scatter/Gather (see
Section 4.2).

The particle or document placement is then calculated in order to minimise the
unbalanced force on each particle. The outcome of this process is a three dimensional

22 4. VISUALISING SEARCH RESULT SETS

point cloud constructed from all documents in the document space. Once the point
cloud is calculated it can be visualised and explored using a number of di�erent
tools.

In the �rst version of Bead only two dimensional visualisations were possible. The
grid viewer displayed three orthogonal plots (in XY, XZ and YZ) and a perspective
view of the scene. The di�erent documents were represented by there ID number.
After a search, matching the query terms were highlighted. Figure 4.3 shows an
example of such a point cloud. Since it is only a two dimensional visualisation the
documents lie very close together, although they may be quite far apart in 3D-space.

Figure 4.3: A point cloud displayed by Bead. Extracted from [Blu96].

Users could zoom in on a chosen document in order to see neighbouring, and there-
fore highly related, documents. To improve the 3D impression the user may adjust
a radius to de�ne a sphere of interest centred on the chosen document. The colours
of documents outside that sphere were slightly reduced.

Enhanced Visualisation

Nevertheless, it was often the case that the complexity of the 3D patterns led to a
cluttered display. The results of usability tests showed that users found it di�cult
to orient themselves and navigate within the space, and consequently did not build
up a useful mental model of the corpus. Instead they found occasional items of
interesting data, but had di�culties in assessing their relevance or signi�cance in
the wider context of the corpus [CC93].

To advance the design of Bead's information display the developers decided to
move away from strongly 3D structures towards a landscape-like (2.1D) structure.

4.3. BEAD 23

Of course, this meant a loss of exactitude of relative distances which can be gained
in full 3D but promised greater accessibility and familiarity for the user. Using the
landscape metaphor also implied a change of the modelling process.

Individual documents are displayed as coloured markers placed within the setting
of the landscape and they consequently produce collective patterns of density and
locality. A shore delimits the corpus and is usually made up of documents which
are less strongly associated with any central topic of the corpus.

User can move freely over the landscape and select the individual documents
with the mouse. They can zoom in or zoom out to get an overview of the entire set.
After a search for various query terms the according documents are highlighted (see
Figure 4.4).

Figure 4.4: Zoom in a Bead landscape. Extracted from [Blu96].

The modelling process of Bead sometimes generates peaks and valleys which
indicate areas where the system could not �nd a good 2D layout. A useful side e�ect
of these areas is that they serve as landmarks which are important for orientation
and navigation on the landscape.

Discussion

The design of Bead focuses on the approach to retrieve information in an exploratory
way. It supports the user in building up a mental model of the information space.
Furthermore, the model of a landscape provides overview and browsing, as well as
the possibility to locate documents which are related to the keywords of a query.
Therefore it o�ers an alternative to traditional search systems, although it might be
di�cult to visualise very large document collections.

24 4. VISUALISING SEARCH RESULT SETS

4.4 VR-VIBE

VR-VIBE is a search system which visualises search result sets in relation to queries.
It is a virtual reality extension of the VIBE System [OKS+93], and supports coop-
erative information retrieval. To implement the system a multi-user virtual reality
environment, called DIVE, was used. The essence of VR-VIBE [BSG+95] is that
multiple users can explore the results of applying several simultaneous queries to a
corpus of documents and can search for information of interest together.

Document Visualisation

The corpus is visualised in 3D and the spatial position of each document depends
on the relative attraction of this document to the di�erent queries. The relative
attraction derives from the relevance of the particular document to the query. The
more relevant the document is to the query the higher is the attraction. Users may
then arrange the queries within a spatial framework. A query with an associated
position is called a Point of Interest(POI). The system places the document objects
at their relative centre of attraction between these POIs. The relative centres of
attraction are given by the sum of vector positions of the POIs weighted by their
relative attractions to the documents. Thus, a document which is attracted by two
POIs is placed on a line between these POIs according to the relative attraction
of these POIs; a document which is relevant to 3 queries is placed in a triangle,
and so on. Such a placement leads to a problem in a two dimensional visualisation
because a document that is weakly attracted to each POI would be placed in the
same position as one that is highly attracted to each POI, and which is therefore of
greater relevance. Another problem is that an unambiguous placement in a three
dimensional representation is only possible up to four di�erent POIs (i.e. beyond
four POIs it is ambiguous which POIs in
uence a particular document position).

Nevertheless, users can de�ne as many POIs as they want. A query may consist of
a single or several keywords. To overcome the problem of ambiguity these POIs may
be moved around freely, to determine the e�ect of a single POI on the document
corpus. Users also can dynamically switch POIs on and o� or create new POIs.
Changes in the POI arrangement cause a redraw of the document space.

Two visualisation styles are available:

� The POIs are placed in a two dimensional plane so that the position of each
document shows the relative attraction to each POI. The third dimension is
used to present the overall relevance of the documents. The higher a document
is above the plane the more relevant it is.

� In the 3D-layout POIs are positioned freely in the three dimensional space and
the documents are placed according to the relative attraction to these POIs.
In this case the overall relevance is visualised using shade- and size coding.
Documents with a higher relevance score are displayed larger and brighter.

4.4. VR-VIBE 25

Figure 4.5: Multiple users exploring a VR-VIBE document space. Extracted
from [VRV].

Both styles show the overall signi�cance of each POI by varying its shade.

Figure 4.5 shows a visualisation using the 3D-layout style. Five POIs (displayed
as octahedrons labelled with their keywords) have been placed at the corners of a
pyramid. The size and the shade of the documents (represented as blocks) show
the overall relevance. On the left side close to the plane three users are visible
exploring the document space. For the embodiment of the users the standard DIVE
embodiments, called blockies, are used. The arrangement of an oval, rectangle and
triangle in the middle of the screen is also a DIVE feature for standard mouse
navigation.

User Interaction

Users may freely navigate in the presented document space. They can select objects
or may drag POIs around and thereby change the structure of the corpus. When an
object is selected its title appears in the display as a text label and the colour of the
document icon changes (see Figure 4.6). User can also mark documents by attaching
labels for later reference or for other users. Furthermore, the users communicatewith
each other over a live audio channel. A three dimensional scrollbar shown in Figure
4.7 allows the users to specify a relevance threshold to �lter the search result set by
means of overall relevance.

26 4. VISUALISING SEARCH RESULT SETS

Figure 4.6: Labelled documents in VR-VIBE. Extracted from [VRV].

Figure 4.7: 3D-scroll bar to specify document relevance. Extracted from [VRV].

4.4. VR-VIBE 27

Once an interesting document has been found the user can view the whole doc-
ument invoking an appropriate viewer. VR-VIBE is capable of invoking a World
Wide Web browser to access documents that are available via the WWW [BSG+95].
Figure 4.8 shows an example of the NCSA Mosaic browser being used to inspect a
web page.

Finally, instead of browsing through the document corpus, and selecting objects
which look interesting, users may also input traditional key queries to �nd documents
within the corpus which match the speci�ed keywords. The matching documents
are highlighted.

Figure 4.8: Using a web browser to view documents in the virtual reality. Extracted
from [VRV].

Discussion

VR-VIBE presents a
exible way to visualise search result sets. Although it is in-
tended to be used in cooperation with other users, it can serve as a single user
application as well. Since it depends on the speci�cation of queries and particular
query terms the selection of suitable keywords may be as di�cult as it is for tra-
ditional text based search systems. However, it supports the user in judging the
signi�cance of query terms which is a powerful aid to browsing.

In cooperative situations the problem of subjectivity versus objectivity has to be
considered. VR-VIBE presents an objective world view to the users; i.e. every user
sees the same objects in the same places displayed in the same way. For example,
if one user selects a document it is highlighted in the views of all the other users

28 4. VISUALISING SEARCH RESULT SETS

too. Text labels are problematic because users do not want their display cluttered
if another user selects an object, as well as the marking of objects for other reasons
than communication. That means that, for example, notes attached by one user
for better orientation may not be necessarily useful for other users. The relevance
�ltering is another subjective issue since users may wish to set their own relevance
threshold.

It is not clear if the bene�ts gained from cooperative information retrieval are
worth the e�orts which have to be made to provide this additional possibility.

4.5 LyberWorld

Based on an already existing probabilistic IR system a research team at the Ger-
man National Research Center for Computer Science developed a prototype IR user
interface called LyberWorld [Hem93, HKW94]. It is another approach to visualise
the multi dimensional relations between documents and query terms. Two di�erent
tools support the user �nding information of interest.

LyberTrees

In the LyberWorld an explicit query no longer exists. Instead of a query users
specify their interests by browsing through the document space along a content

oriented search path. The visualisation of the document space is accomplished using
three dimensional cone trees called LyberTrees. The user starts at the root of the
LyberTree and navigates through the document space by unfolding branches of these
trees. An already known document or a speci�ed keyword serves as an initial starting
point.

Figure 4.9: A simple LyberTree with two levels. Extracted from [LYW].

4.5. LYBERWORLD 29

If the user types in a keyword the initial LyberTree consist of all the documents
which contain that very keyword and if the user selects a document the cone tree is
made up of all the terms contained in that document. Therefore two di�erent levels
are distinguished within a LyberTree; a word or term level, and a document level.
They are displayed in di�erent colours. For further descriptions it is assumed that
the user has speci�ed a keyword to start from.

The user may now rotate the initial cone tree and inspect the titles of the pre-
sented documents until one found document seems interesting. By selecting this
document a branch is unfolded, going out from the document, which consists of all
the words contained in that document (see Figure 4.9). The words are ordered ac-
cording to their relevance to the document. Then again a branch of the LyberTree
made up of documents may be opened and so on. The user browses through this tree
structure and can move from level to level or the user may unfold several branches
from the same level. If the user feels that the unfolded structure becomes to com-
plicated the user can close already opened subtrees.

The so called current view is the tree level that is actually visited. If the user
reaches a word or a document which already occurred in a previous level an anima-
tion moves the point of view back to the �rst occurrence of that item. This avoids
search loops and provides a compacter visualisation. A more complex LyberTree
structure is shown in Figure 4.10. The radius of a single cone tree depends on the
number of contained items. If there are too many items the tree may also be un-
folded as a spiral tree in order to save place. Furthermore, it is possible to zoom in
and out to get an overview of the generated tree structure.

Figure 4.10: An example of a complex LyberTree structure. Extracted from [LYW].

To decide if a found document is relevant the user either can inspect the words
contained in the subtree of that document or the user can view the document it-
self. To view the entire document the user leaves the tree structure and enters the
LyberRoom which is a 3D visualisation of a room in which the current document
is projected onto one of the walls. The room can be left through two doors. One

30 4. VISUALISING SEARCH RESULT SETS

leads to the next document, and through the other one the user returns to the point
where the user has come from.

The Relevance Sphere

At the point where users feel that they cannot �nd adequate documents of inter-
est anymore, by moving around in the LyberTree structure, the users can use the
Relevance Sphere. In association with the LyberTrees it is called LyberWorld. The
system automatically generates a query out of the content oriented search path in
the tree structure.

Figure 4.11: Relevance Sphere with 100 documents and �ve points of interest. Ex-
tracted from [LYW].

The retrieved documents are placed in the sphere and the search terms are placed
on the surface of the sphere. The spatial position of the individual documents is
de�ned by their relative attraction to the di�erent terms. The mechanism is very
similar to the one used by VR-VIBE (see Section 4.4). Again, each search term can
be considered as a point of interest (POI). The radius of the sphere is computed
with respect to the distances between documents and POIs or other documents.
The users can change the position of these POIs on the surface to overcome the
problem of ambiguous placement as described before. Furthermore, the Relevance
Sphere provides a mechanism to decrease the document density in the sphere and it
is possible to increase or decrease the relative attraction of every single POI. This
enables users to �nd out easily which documents are related to a particular POI and

4.6. INFOCRYSTAL 31

which are not. An example of a LyberWorld with 100 documents and �ve POIs is
shown in Figure 4.11.

A additional partitioning mechanism for a LyberWorld document set is intro-
duced in [HKW94]. It enables the user to specify a scaling factor. If there are
clusters of documents close to the surface of the sphere and other groups of docu-
ments are more concentrated in the inner regions it is possible to divide the sphere
in two disjunctive spheres. If all POIs are positioned on one side of the sphere it is
possible to separate the more relevant documents from less relevant documents by
using the scaling factor because in this case the most relevant objects are closest to
the surface.

The users may immerse into the sphere and inspect single documents. They can
rotate the sphere and watch how the movement of POIs in
uences the document
set.

Discussion

LyberWorld is a sophisticated IR user interface which uses a wide range of visualisa-
tion techniques nowadays available. The approach to specify interests by browsing
through the information space seems to be very intuitive. The necessity of a de�nite
starting point restricts the possibility to get a general overview of the available in-
formation. Since the concept of the Relevance Sphere is similar to the visualisation
approach of VR-VIBE it leads to the same problems of ambiguity. Therefore, it
may be di�cult to judge the overall relevance of individual documents which can
only be deduced from an appropriate arrangement of the POIs. However, due to
additional features, like the possibility to change the attraction of a single POI, it is
easier to determine the relations between documents and query terms. Since docu-
ments, which are similarly attracted by POIs, are close by means of spatial position
a natural clustering of the search result set is supported as well.

It has to be mentioned that all the tools described above can be used in com-
bination. User may enter the LyberRoom whenever they want to view a single
document and they can switch between the LyberWorld and the LyberTrees at any
time. Hence, the LyberTrees serve also as a query history tool.

4.6 InfoCrystal

The approach of the InfoCrystal to visualise abstract information, such as document
spaces, without explicit spatial properties, is di�erent to the previous systems. The
InfoCrystal visualises all the possible relationships of documents to N concepts using
a smart extension of the Venn diagram [Spo93]. It enables the user to retrieve and
explore information in an interactive way.

32 4. VISUALISING SEARCH RESULT SETS

Using the Venn Diagram to Visualise Relationships

Figure 4.12 shows how to transform a Venn diagram into an InfoCrystal. The interior
icons have the following Boolean meanings: 1=(A and (not (B or C))), 2=(A and C
and (not B)), 3=(A and B and C), 4=(A and B and (not C)), 5=(C and (not(A or
B))), 6=(B and C and (not A)), 7=(B and (not (A or C))). A, B, and C represent
the query terms to which the retrieved documents are related. These icons are called
criterion icons.

Various visual coding principles are used to set the position and the appearance
of the icons:

� Shape Coding: indicates the number of criteria the interior icon is associated
with; 1� > circle, 2� > rectangle, 3� > triangle, 4� > square, and so on.

� Proximity Coding: The closer an interior icon is placed to a criterion the more
related are the contained documents of that particular icon.

� Rank Coding: icons with the same shape are placed on invisible concentric
circles. The smaller the radius the more criteria are satis�ed by the interior
icons on that circle.

� Colour and Texture Coding: is used to indicate to which criteria an interior
icon is related to.

� Orientation Coding: the icons are oriented so that their sides face the criteria
they satisfy.

� Size or Brightness & Saturation Coding: shows quantitative information like
the number of documents represented by an icon.

Figure 4.12: A Venn Diagram transformed into an InfoCrystal.

Furthermore, the number of contained documents is written into the corresponding
icon. Figure 4.13 shows an example for an InfoCrystal with four criteria.

In addition to this rank layout, that places the interior icons which correspond
to a higher number of criteria towards the centre of the InfoCrystal, a second layout
style, called the bull's-eye layout exists. A polar transform is used to place more

4.6. INFOCRYSTAL 33

Figure 4.13: An InfoCrystal with four criteria.

relevant interior icons or documents closer to the centre. This approach is similar
to the method used by the VIBE System (see Section 4.4). Thus, an interior icon is
placed closer to related criterion icons than to not related ones.

Visual Queries

Since each interior icon represents a distinct Boolean relationship they may be used
to specify Boolean queries. The user can easily formulate queries graphically by se-
lecting sets of interior icons. Moreover, InfoCrystals may be combined and organised
in a hierarchical structure to create complex queries. The output of an InfoCrystal
(i.e. the document set represented by selected interior icons) is used as input for
the InfoCrystal at the next hierarchy level. The user can ask \what-if" questions by
changing the selection of icons in one InfoCrystal and observing the change of the
content of the icons in the InfoCrystals which are higher up in the hierarchy.

In the case of full text retrieval the user may adjust the relevance of an individual
criterion by a slider with a range from 1 to -1. Negative weights indicate that the user
is more interested in documents which do not contain the concept at the particular
input and a -1 is equal to a logical NOT. A threshold slider provides the possibility
to �lter out less relevant documents. If an interior icon contains only documents
which are less relevant than the speci�ed relevance threshold it is not possible to
select it.

Discussion

Although the InfoCrystal does not visualise the search result set in three dimen-
sions it shows an excellent way to display multiple relations between documents and
query terms. Furthermore, graphical composition of Boolean and full text queries
is supported, but complex queries might need too much screen space to be e�ective,
even if a hierarchical structure of InfoCrystals is generated.

34 4. VISUALISING SEARCH RESULT SETS

A

B

A B

A

B

A B

(a)

(c)

(b)

(d)

a)

b)

c)

d)

Figure 4.14: Possible term distributions and their corresponding TileBar represen-
tations.

4.7 TileBars

The concept of TileBars addresses the problem of query term distribution in text
documents. Using only an overall relevance to rank search result lists may be prob-
lematic or even wrong especially if individual text documents are reasonably long.

To address this, the TileBars paradigm provides a compact and informative
representation of the documents' contents with respect to the query terms [Hea95].

Document Structure and Representation

For a set of short documents it is reasonable to assume that documents in which
the query terms occur more frequently are more relevant. However, there are many
ways in which a long text can be similar to a query. A long text often consist of
many di�erent subsections with di�erent subtopics. These topics may be related or
not and therefore the query terms may occur in the same context or not. For that
reason the TileBars representation simultaneously displays:

1. The relative length of the document.

2. The frequency of the term sets in the document.

3. The distribution of term sets with respect to the document and to each other.

Figure 4.14 shows four possible term distributions within a text document and
the corresponding TileBar representations. In case a) the distribution is disjoint
and in case b) both query terms are discussed locally. If term A occurs in the whole
text term B may be discussed locally (c) or may also occur globally throughout the
text (d).

4.7. TILEBARS 35

To determine the internal structure of a text document an algorithm, called
TextTiling, has been developed. It detects subtopic boundaries by analysing the
term repetition patterns within the text.

The relative length of documents is indicated by the length of the corresponding
TileBar representation. Since the TileBars are left aligned it is easy to compare the
length of one document to the length of other documents. The term distribution is
presented by the non-overlapping squares, or Text Tiles, within the document icon.
The darker a Text Tile is the more frequent occurs the query term in the particular
section. Actually it may not be a single query term but a query term set, in which
the terms are combined with a logical OR. Between two query term sets there is an
implicit AND. Figure 4.15 shows a screen shot of an application using TileBars to
present a search result.

Figure 4.15: Search result list with TileBars. Extracted from [UCB].

Discussion

The TileBars paradigm is directed towards a di�erent aspect of visualising search
result sets than the other described search systems described in this chapter. Tile-
Bars help the user to estimate the relevance of documents before viewing them. If
interesting documents are found the user is enabled to go directly to the relevant
sections within the documents.

On the other hand, there are disadvantages which are common to all search
systems which present the search result only as a ranked list. The user neither

36 4. VISUALISING SEARCH RESULT SETS

gets a general overview of the available information, nor is the �nding of related
documents supported. Furthermore, because it is query based, all advantages and
disadvantages of query composition are involved.

4.8 Envision

Envision visualises search results by graphically presenting various document char-
acteristics in addition to ranked query document similarity. It is an application
developed for searching in digital libraries. The search result is displayed as a ma-
trix of icons with layout semantics under user control [NFH+96]. It addresses typical
user tasks, determined through user interviews, including:

� Identify trends in the literature, spotting emerging topics of research, as well
as identifying peaks and valleys of research interest in topics.

� Locate highly in
uential works which have been frequently cited by others.

� Identify relationships among research topics that were not apparent.

� Discover communities of discourse in which authors regularly cite and respond
to another`s work to form an ongoing conversation in print.

Envision supports full text retrieval and relevance feedback.

Figure 4.16: Envision`s Query Window. Extracted from [EEL].

4.8. ENVISION 37

User Interface and Search Result Visualisation

The user interface comprises three di�erent windows. The Item Summary Window

displays a text description of documents whose icons are selected or marked as useful
in the Graphic View Window. Selected icons are indicated by bold icon labels and
marked icons are indicated by surrounding boxes. A double-click on an icon or a
line in the Item Summary Window invokes XMosaic to access that document entry
in the Envision database.

The Query Window is used to compose queries by entering query terms into the
appropriate �elds. It is possible to search for authors, titles and for content words.
It also provides a Query History (see Figure 4.16).

The search result set is displayed in the Graphic View Window (see Figure 4.17).
The users can adapt the visualisation to their needs. They control size, colour, shape
and labels of the document icons as well as the semantics of the x-axis and the y-
axis. Each axis may indicate estimated document relevance (i.e. overall relevance),
author names, index terms, document types, and publication year. The document
icons are placed accordingly to the semantics of the two axes. The icon attributes
may be chosen as follows:

� Size: may be uniform or may indicate document relevance.

� Colour: may be uniform or indicates document relevance or the document
type.

� Shape: shows the document type or the document relevance or may be uni-
form.

� Label: the icon label either shows the relevance rank or an unique Envision
document identi�er.

If icons cannot be displayed non-overlapping they are represented by an elliptical
cluster icon. The number of contained documents is shown within the icon and
the label presents the ranks or the identi�ers of the two most relevant documents.
The colour of the cluster icon corresponds to the relevance of the highest ranked
document in that \cluster".

Discussion

The user interface of Envision is very
exible and the visualisation of the search
result set is clearly arranged. The specialisation in dealing with digital libraries
facilitates the visualisation of search results because the documents and objects in
the database are structured similarly. As discussed in the section about the TileBars
paradigm (see 4.7) the estimated relevance could be problematic for books and other
large documents which are probably contained in a digital library. There exist cluster
icons, but that name may be misleading in terms of document clustering, since two
documents from the same author published in the same year may not necessarily

38 4. VISUALISING SEARCH RESULT SETS

Figure 4.17: A search result in the Graphic View Window. Extracted from [EEL].

deal with the same topic and therefore may not be related. Moreover, relationships
between documents are actually not visualised apart from attribute similarities.

Another major limitation of Envision is that it currently visualises only index
terms or keywords that have been assigned by authors or editors, especially since
the underlying system supports full text retrieval. In addition, Envision currently
displays document icons only in relation to one index term and one author although
a single document may correspond to several index terms or may be written by
two or more authors. It is an issue of future work how multiple relations can be
visualised without cluttering the display and irritating the user. Some attributes
like the \frequency of citation", as demanded in the speci�cation, and other useful
ones like document size, are not yet implemented.

5

The Web, Hyperwave, and

Harmony

This chapter focuses on the main concepts of the Internet and introduces Hyperwave,
the next generation Web solution, and its client Harmony.

5.1 The Internet

One of the reasons that so much information is available to search for is the In-
ternet, the worldwide computer network with millions of users. It started as a
research project of the US Department of Defense's Advanced Research Projects

Agency (ARPA) and grew to this huge network it is today. The estimated growth
rate is between 10 to 15% per month or around 100% per year. The recent popu-
larity of the World Wide Web on the Internet introduced the term The Web as a
synonym for all the services available on the Internet.

5.1.1 Connections via the Internet

To connect di�erent computers with di�erent operating systems there has to be a
standardised protocol which is common to all connected systems. In case of the
Internet these protocols are the TCP (Transmission Control Protocol) and the IP
(Internet Protocol) which serve also as base for several other protocols.

The Internet is a packet switched network, that is data packages are sent from one
computer to another until they reach their destination without a direct connection
between the sender and the recipient. For that reason every computer on the Internet
has a unique address (or IP-number). These addresses are 32-bit numbers, in four
8-bit parts, for example 129.27.2.3. The IP provides these packages which contain
the address of the sender and the receiver. The computers in between know where
a packet came from and where to send it. They are also called routers since they
send the packages on routes through the Internet. The routes are not necessarily
the same for all packages because they are chosen dynamically by the routers.

39

40 5. THE WEB, HYPERWAVE, AND HARMONY

The TCP builds up a virtual connection. It breaks messages into packages, which
are then send via IP, and collects the packages on the receiving side. Since the pack-
ages may be send on di�erent routes they may arrive out of order or some packages
may even be lost. These problems are covered by the TCP and are transparent to
the computer applications using these virtual connections.

The IP addresses are rather long and therefore hard to remember. For that
reason a hierarchical naming scheme, the Domain Name Service (DNS), is available
as an alternatively way to address computers on the Internet. Each level is called a
domain. The name of a computer is put together from the domain hierarchy. For
example the computer with the name �icmal03.tu-graz.ac.at is an Alpha workstation
in the domain tu-graz which is in the domain ac which itself is a subdomain of the
domain at. Every domain has a name-server which resolves the names (several
names may refer to the same computer) into the unique IP-number.

Most Internet services use the client-server concept. Client programs are started
by the users on their local machines. The client establishes a connection to a server
on the remote machine. If the server is not running no connection can be made.

What kind of data is transmitted if a connection is established depends again
on a protocol which is usually based on TCP/IP. The most common used protocols
are the Telnet protocol which allows a remote login into another computer on the
Internet. The FTP (File Transfer Protocol) allows, as the name says, the transfer
of �les from one machine to another. The SMTP (Simple Mail Transfer Protocol)
is used to send emails and the NNTP (Network News Transfer Protocol) is needed
to provide network news. News are discussion groups in which the Internet users
can contribute to discussion of many di�erent topics. Last but not least the HTTP
(HyperText Transfer Protocol) is used for WWW connections (see Section 5.1.2).
To distinguish between the di�erent services a speci�ed port number for each service
is used in addition to the IP-address.

5.1.2 The World Wide Web

The World Wide Web (WWW or W3) brought together the concept of hypertext
and multimedia on the Internet. It is a distributed, heterogeneous, hypermedia in-

formation system and is based on three key speci�cations: HTML, HTTP, and
URL [Mau96].

HTML (HyperText Markup Language) de�nes how documents look like on the
WWW. It is an SGML-conformant mark up language; the �nal presentation of the
document depends on the individual WWW client. HTTP is WWW's stateless
client-server protocol. The URL (Uniform Resource Locator) speci�es the location
of a resource. Web pages and various other Internet services can be addressed via a
URL.

5.1. THE INTERNET 41

Hypertext and Hypermedia

Hypertext is text which is not constrained to be linear. Instead of reading page
by page in a sequential order the reader can follow hyperlinks within the current
document. Words, sentences, or paragraphs may be linked to any other part of
the same document or to any other document in the document base. The term
hypertext was coined by Ted Nelson around 1965. Figure 5.1 shows the di�erence
between linear text and hypertext.

Hypertext

Linear Text

Figure 5.1: Linear text and hypertext.

Hypermedia is the generalisation of hypertext to include other kinds of media:
images, audio clips and video clips are typically supported in addition to text. Indi-
vidual chunks of information are usually referred to as documents or nodes, and the
connections between them as links or hyperlinks { the so-called node-link hyperme-

dia model. The entire set of nodes and links form a graph network. A distinct set of
nodes and links which constitutes a logical entity or work is called a hyperdocument ;
a distinct subset of hyperlinks is often called a hyperweb [Mau96].

In the WWW a URL is used to de�ne a hyperlink. The URL can be attached
to a word or a part of an image which represents afterwards the starting point of a
hyperlink. This starting point is marked as a link and the user can usually follow
this link with a mouse-click and access information all over the world. Following
these links is often called Web sur�ng.

42 5. THE WEB, HYPERWAVE, AND HARMONY

5.2 Hyperwave

Hyperwave, formerly called Hyper-G [Mau96], is a hypermedia document manage-
ment system and provides a next generation Web solution. It is developed at the
Institute for Information Processing and Computer Supported New Media at Graz
University of Technology. It is called a next generation hypermedia systems since it
overcomes several problems which arise from the nowadays large scale of the Internet
and the weaknesses in the system architecture of �rst-generation systems.

5.2.1 Problems of First Generation Information Systems on

the WWW

The di�erent problems nowadays on the WWW can roughly be divided into three
groups: those that are faced by the consumers of information (the users), those
that involve the information provider (the authors), and general weaknesses of the
system architecture. The main problems are:

� Getting lost in Hyperspace; following links is easy, but to �nd the way back
to the starting point and to keep the orientation can be very di�cult without
additional navigation and orientation aids. Another reason for that is, that the
hyperlinks only point in one direction, and therefore going back to a previous
document is impossible if there is no explicit link back or if the browser has
not saved the document where the user has come from. With �rst-generation
systems going back is more like starting again at the beginning.

� Link consistency; due to the fact that links are embedded into the documents
and that the URL statically addresses a certain object it often happens that
the URLs point to nowhere (dangling links) or even worse point to another
object. In case that a document is transfered to another place all documents
which contain links to that particular document have to be updated. This is
a serious problem for providers who want to reorganise their Web server.

� There is no feedback about how much information `hides' behind a link.

� A version control is missing. It is sometimes unclear what information has
already been seen. Although, most Web browsers mark already followed links
to avoid that the user follows a link again and again, there is no mechanism
which unmarks a link if the information behind has been changed.

� It is often di�cult to separate new information from old information. The
user usually has the problem to �nd the new information while it is even a
greater problem for a provider to select the documents, which is not up to date
anymore, for deletion. If there is no support from the information system this
has to be done `by hand'.

� There are no practical access control mechanisms. It is hardly possible to
provide information only for certain users or user groups. Especially if multiple

5.2. HYPERWAVE 43

authors edit the same documents they should have access rights while normal
users should not. Therefore, the information system should provide a kind of
user identi�cation.

� Multiple languages are not supported. If an author wants to provide informa-
tion in multiple languages separate documents and links are required.

� Full text search mechanisms are not supported on a usual Web server or have
to be implemented by the provider. There exist huge search engines but these
engines have to contact every server worldwide to �nd new information. This
increases the load on the Web considerably.

� The HTTP is connectionless and therefore also stateless, which means that the
client establishes a connection and sends a request. The server handles the
request and returns the requested information. Afterwards the connection is
closed. This is easier to implement than a stateful connection, but on one side
very costly, by means of network load, and slow because a new connection has
to be established for every request. On the other side all information about a
previous request is lost or has to be retransmitted.

� Scalability; if many users address the same URL at the same time they are
also addressing the same server and it is di�cult to distribute this request
among several servers.

5.2.2 The Hyperwave Server

The Hyperwave server architecture is directed to a multi-user concept to provide
and manage large scale hypermedia information bases. Hyperwave o�ers gateways
to existing information systems like the WWW or Gopher. However, the most users
will access a Hyperwave server using a Web browser like Netscape or the Microsoft
Internet Explorer. In this case the Hyperwave server behaves like a \standard" Web
server with some additional functionality. Figure 5.2 shows Hyperwave collections
seen through Netscape via the WWW gateway. The additional buttons at the top
of the Web page are inserted by the Hyperwave server to access the additional
functions.

Information providers will typically use a Hyperwave client, which is also an
authoring tool, to maintain the server content and structure. For Hyperwave clients
the server provides the HG-CSP (Hyper-G Client-Server Protocol [Mau96]). The
main properties of Hyperwave can be summarised as follows:

� Every hypermedia document is stored in an object-oriented database. In ad-
dition, the documents are inserted into the full text index to support later full
text retrieval.

� The documents are structured in a collection hierarchy. Every document must
be the member of a collection which could also be a member of one or more
parent collections. At top level there is the server's root collection. The

44 5. THE WEB, HYPERWAVE, AND HARMONY

Figure 5.2: Hyperwave collections seen through Netscape.

collection hierarchy is a directed acyclic graph (DAG). It provides continuous
orientation and navigation aids.

� Document attributes are stored separately. This support quick attribute search
activities.

� The search scope can be limited to a number of collections or the local server
which allows more speci�c searching.

� Links are separate objects and stored in a separate link database. Therefore,
links are bi-directional and the link consistency is maintained by the system.

� Links may refer from and to any document type, that is there are not only
links from and to texts or images but also to and from video and audio clips,
postscript documents, or 3D scenes.

� Hyperwave clients may insert links interactively.

� There exists an access control mechanismwhich allows to attach access permis-
sions to every document. Certain documents may only be read by identi�ed
users with appropriate access right. The users may be members of di�erent
user groups which also may have di�erent access rights.

� Documents can be grouped together to clusters. Clusters are subtypes of
collections and are used to create compound documents. For example an
image and the additional description are presented at once when accessing the

5.3. THE HARMONY CLIENT 45

cluster. Furthermore, if there are several images of di�erent image formats the
appropriate image is selected according to the display capabilities.

� Clusters support multiple languages. One cluster may contain the same text
in di�erent languages. If users access that cluster they only see the document
in one language depending on the language settings.

� Collections may also be transformed into a sequence collection. The members
of that collection are then presented in a sequential order without the necessity
of additional links.

� Hyperwave uses a connection-oriented protocol which results in a more e�-
cient connection but requires a more complex server architecture. The already
transmitted data is not lost during a session.

� Hyperwave uses the \proxy" architecture, which means, that a client only
connects to one Hyperwave server, the local server, during a whole session. If
documents from a remote servers are required the local server connects to the
remote server instead of the client. This o�ers various advantages, such as a
reduction of network load, which are described in detail in [Mau96].

Additional information about Hyperwave can be found in [DH96] and on the Internet
at http://www.iicm.edu.

5.3 The Harmony Client

Harmony is the Unix client and authoring tool for Hyperwave. The main window
of Harmony, the session manager, presents the hierarchical Hyperwave collection
structure in the form of a tree (see Figure 5.3).

Furthermore, two other visualisations of the collection structure are available.
The Harmony Information Landscape (see Figure 5.5) presents a three-dimensional
landscape view of the collection structure and the Harmony Local Map (see Fig-
ure 5.4) is a dynamic, two-dimensional structure map which visualises the local
relationships of a particular collection or document (for a detailed description see
[And96]).

The user can browse through the Hyperwave space to �nd information of interest.
A single mouse click selects the object and causes the drawing of a frame around
that object. A double-click opens a collection or starts an appropriate viewer for the
particular document. Icons of already viewed documents are marked with a tick. A
selected collection may be activated for focused searching. This means it is added
to the set of active collections.

The user gets an immediate feedback for every action in the other views. For
example, if a document is selected in the collection browser then it is also framed in
the Harmony Local Map and vice versa. Furthermore, the collection browser shows
the location of a document which has been selected in one of the other views. This
orientation mechanism is called location feedback.

46 5. THE WEB, HYPERWAVE, AND HARMONY

Figure 5.3: The Harmony session manager.

Harmony is not only a browser but also an authoring tool. It can be used to
organise and maintain the document structure, to insert documents, to edit docu-
ments and documents attributes, to move and copy documents, to assign rights to
documents and much more. Harmony is the Hyperwave client that supports most
of the features provided by the Hyperwave server. Furthermore, the functionality of
Harmony can be extended via an Application Program Interface (see Section 8.1).

5.3.1 Searching in Harmony

Beside browsing through the collection hierarchy the user can search for speci�c
documents. For that reason, Harmony provides a separate search interface. It can
be opened and closed via the pull-down menu or by clicking on the button with the
binoculars symbol.

5.3. THE HARMONY CLIENT 47

Figure 5.4: The Harmony Landscape.

Figure 5.5: The Harmony Local Map.

48 5. THE WEB, HYPERWAVE, AND HARMONY

The search interface is made up of several check-boxes and a few �elds in which
the users may type in the search terms to specify the documents they are searching
for (see Figure 5.6).

Figure 5.6: The search interface of Harmony.

The check boxes at the top are used to choose where the Hyperwave system
should search for documents. It is possible to search in the local server, the cur-
rently selected collection, previously activated collections, and in an already re-
trieved search result set. Searching in the result set excludes an additional search in
any collection or the local server, while otherwise every combination can be used.

Under the check boxes which specify the search location is the actual query
�eld. The user may enter several query terms which can be combined with the
Boolean operators AND, OR, and ANDNOT. The use of a simple blank to separate
the di�erent terms implies a logical AND. Parenthesis may be used to enter more
complex queries. The `Language' button beside the query �eld opens a dialogue to
select the search languages. Since the Hyperwave system is multi-lingual a document
may have several titles in di�erent languages.

5.3. THE HARMONY CLIENT 49

Hyperwave supports Boolean attribute retrieval and full text retrieval (see also
Section 8.2). To use these capabilities in Harmony the appropriate check-boxes in
the search interface have to be selected or the query terms have to be �lled into the
di�erent text �elds

To apply an attribute search the user can choose from �ve document attributes.
These are Title, Keyword, Name,Author, and TimeModi�ed. The appropriate
check-box has to be selected to search in the titles, the keywords and the name
of the documents. The author can be entered into the author �eld in the Extended
Search Options section of the interface. Another extended search option is the mod-
i�cation time. It has to be entered in the Hyperwave date format (e.g. 90/01/31
or 95/12/31 12:34:05). It is possible to search for objects which are modi�ed before
a certain time, after a certain time, and in a de�ned time interval. The Extended
Search Options section can be opened or closed dynamically by clicking on the
Extended Search Options check-box.

A full text search can be performed by selecting the Content check-box. Cur-
rently, only text documents are full text indexed and hence retrievable through
content search. In the future, Microsoft Word and PDF documents may also be
indexed.

Clicking the SSearch"button initiates the actual search task. The search result
set is presented as a ranked list in the search result window at the bottom of the
search interface. The �rst 100 highest ranked documents are displayed. Since the
document attributes either satisfy the Boolean query or not the documents found
by an attribute or Boolean search are always ranked with 100% relevance. The
documents found by a full text search are ranked according to the relevance to the
query terms.

It has to be mentioned that a full text search is only useful to �nd text documents
while an attribute search can be applied to retrieve any type of document (texts,
images, movies, audio etc.) and collections and link objects.

All check-boxes can be toggled via keyboard short cuts to speed up user inter-
action.

50 5. THE WEB, HYPERWAVE, AND HARMONY

6

The HarSearch Interface

HarSearch is a new search tool for Hyperwave. It extends the search capabilities of
Harmony and introduces an innovative approach to make sense of search result sets.
The interface to HarSearch and its Similarity Map is the topic of this chapter.

6.1 The Features of the HarSearch Interface

HarSearch cooperates with Harmony in retrieving and presenting the search result
set. For reasons of consistency, the appearance of the HarSearch interface is similar
to the search interface of Harmony. However, HarSearch employs more functionality
of the Hyperwave server and o�ers a more
exible way to search in the Hyperspace.
A detailed user guide can be found in Appendix A. The features of HarSearch are:

� HarSearch provides three di�erent interfaces tailored for the di�erent user
types (novice, skilled searcher, power user) and di�erent search activities:

{ The simple query interface: for simple queries and users unfamiliar with
HarSearch,Hyperwave, and Harmony. The simple query interface is easy
to use but hides a lot of Hyperwave functionality.

{ The extended query interface: for extended attribute and full text re-
trieval. Every indexed attribute may be used to retrieve speci�c docu-
ments, and each additional document attribute can be taken for further
�ltering of the search result set.

{ The power query interface: o�ers power users the opportunity to enter
plain Hyperwave queries for full text and attribute retrieval as well as for
document �ltering via object queries (see Section 8.2).

� Controlled scope of searches: search activities may be restricted to regions in
the Hyperwave collection hierarchy. Users can search for documents residing
on the local server, within the current collection, and also within the active
collections.

51

52 6. THE HARSEARCH INTERFACE

� HarSearch is multilingual. The interface language corresponds to the language
selection in Harmony. English and German are supported at the moment.

� Every language supported by Hyperwave can be used as a search language in
HarSearch and is selected in a separate dialog.

� The maximum number of matching documents to display can be con�gured.
All documents of the result set may be inspected but they are presented in
subsets of documents with a user de�ned number of documents.

� Document type selection: a particular document type may be retrieved (e.g.
if the user wants to �nd only images).

� Every query is stored in the query history. This allows the reuse of previ-
ous queries and helps the user modifying queries if the search result was not
satisfying. The query history shows the query number, the number of found
documents, the type of the query (i.e. simple-, extended-, or power-query), and
a short description of the query. This allows the judgement of the e�ectivity
of particular queries.

� In addition to the attributes which are already supported by the Harmony
search interface (i.e. Title, Keyword, Author, Name, and TimeModi�ed)
HarSearch enables the user to search for the document attributes TimeCre-
ated, DocAuthor, DocDate, and UserAtts.

� Special date editors allows the easy input of dates and times.

� The search result set can be �ltered by any other document attribute using
the query extension �eld if the particular attribute is not directly supported
by HarSearch

� The list with the search result set is displayed in an extra window. The whole
document set can be inspected by going through the list using previous and
next buttons. The result list shows the document type, the overall relevance
of the particular document and the title of the document.

� The result list supports location feedback (see Section 5.3). Documents se-
lected in the result list are also selected in the Harmony collection browser
and vice versa. Of course, selected documents in Harmony can only be shown
in the result list if the selected document is contained in the search result set.

� The sort order of the result list can be speci�ed. It is possible to sort the
retrieved documents by score, by title, by author, by creation time, and by
document type.

� Keyboard short cuts are supported to speed up user interactions.

6.2. THE INTERFACE OF THE HARSEARCH SIMILARITY MAP 53

6.2 The Interface of the HarSearch SimilarityMap

The HarSearch Similarity Map visualises the mutual similarity relations between
documents of the search result set. The similarities between documents are visu-
alised in form of a tree in which the documents are displayed as icons and the
relations between the documents are displayed as lines.

The SimilarityMap interface allows the adjustment and setting of various layout
parameters to adapt the layout to the user's preference. The features of the interface
are listed below:

� The user may select between four di�erent layout types. The distances between
icons are adjustable.

� To represent the documents four di�erent icon styles are available. The icons
may be simple, scaled according to the overall relevance of the particular doc-
ument, coloured according to the overall relevance, and scaled and coloured.
The icon colours may be speci�ed by the user using a separate colour dialog.

� The similarities between documents are indicated by lines. The user can choose
from four di�erent line styles. Similar to the icon styles the four line styles
range from simple lines, width coded lines, colour coded lines, and width and
colour coded lines. If the simple line style is chosen every similarity value
is indicated by a thin line. Colour coded lines have three di�erent colours
according to the degree of similarity. Width coded means that high similarity
values are indicated by thick lines, medium similarity values by thin lines, and
low similarity values by dotted lines. The width and colour coding combines
the last two mechanisms.

� The HarSearch SimilarityMap shows clusters of documents in the search result
set. The connectivity threshold may be chosen dynamically using a slider.

� Users can de�ne whether documents not belonging to a document cluster, due
to a high connectivity threshold, are either displayed or not.

� Another option of the SimilarityMap is to show only levels of documents which
are maximally related to a selected document. This allows a local exploration
around a certain document.

� All similarities of documents, contained in the Similarity Map, to a selected
document can be presented as a list in a separate window.

� The HarSearch Similarity Map and also the presentation of the similarities to
a certain document support the location feedback mechanism (described in
Section 5.3).

� As part of HarSearch the interface of the SimilarityMap also supports di�erent
interface languages.

54 6. THE HARSEARCH INTERFACE

� Similarities are currently simulated, since document similarity is not yet sup-
ported by the Hyperwave server.

Furthermore, the interface allows the speci�cation of the number of documents
which are �nally displayed in the Similarity Map. Since a query may retrieve thou-
sands of documents the Similarity Map is restricted to this given number of the �rst
documents in the search result set. The underlying concept of the Similarity Map,
and how it visualises search result sets is discussed in Chapter 7.

7

The Design of the HarSearch

Similarity Map

The HarSearch Similarity Map uses a maximum similarity spanning tree for docu-
ment clustering and to visualise relations between similar documents in search result
sets. This chapter describes the basic concept of the HarSearch Similarity Map, the
idea, the theory, and �nally the algorithms used for the visualisation.

7.1 The Idea Behind the Similarity Map

Many approaches have been proposed to visualise search result sets using similarities
between documents, and documents and query terms (see Section 4). Studying these
systems it can be noticed that all systems assist the user in:

1. Finding the most relevant documents which satisfy the user's information re-
quest.

2. Finding groups of documents which deal with the same subject.

3. Finding similar documents if a document of interest has already been found.

These are exactly the points satis�ed by the HarSearch Similarity Map. An
inexact query often retrieves several highly relevant documents dealing with very
di�erent subjects. Therefore, not every highly ranked document is necessarily rele-
vant to the user. For example, searching for the term `mouse' will very likely retrieve
documents about computer mice and also about �eld-mice. There will be no di�er-
ence in the overall relevance although the subjects are totally di�erent. Therefore,
the user may be more interested in a document with lower overall relevance but
about the same subject as the one already found.

This led to the idea to visualise exactly the relation, based on document similar-
ity, of one particular document to its most similar document in the search result set.
To do so, the pairwise similarities between all documents of the search result set must

55

56 7. THE DESIGN OF THE HARSEARCH SIMILARITY MAP

be known. A triangular similarity matrix is used to store all mutual relations. The
association to a complete graph, with documents as vertices and pairwise relations
between all vertices as edges, is obvious. Since only relations of high similarity are
of interest a subgraph of this complete similarity graph is generally su�cient. This
subgraph is the maximum similarity spanning tree that represents the HarSearch
Similarity Map.

7.2 The Maximum Similarity Spanning Tree

Taking the documents as vertices and the similarities between the documents as
edges, the con�guration can be modelled as a graph G = (V;E) where V is the
search result set, and E is the set of possible interconnections between pairs of
documents. For each edge (u; v) 2 E, the weight w(u; v) is speci�ed by the similarity
between document u and document v. The graph is undirected because the similarity
measure is symmetric. Furthermore, every document must be connected to the
document it is most similar to, and all documents of the search result set have to
be connected. The problem is to �nd an acyclic subset T � E that connects all of
the vertices and whose total weight

w(T) =
X

(u;v)2T

w(u; v)

is maximised. Since T is acyclic and connects all vertices, it must form a tree, which
is called a spanning tree since it \spans" the graph G. Furthermore, the total weight
w(T) is maximised and the tree is therefore a maximum spanning tree(MST).

This problem is equivalent to the well known minimum spanning tree prob-

lem. Since, instead of the similarity as weight for the edges the reciprocal of the
similarity can be used which implies a minimisation of the total weight w(T) to yield
the same subgraph.

The proof that all documents are connected to the most similar ones is trivial.
Since the maximum spanning tree T connects all vertices and the total weight w(T)
has to be maximised, every vertex is connected to the tree with the edge with
the maximum weight, which is the maximum similarity. If a vertex would not
be connected with the maximum similarity the maximum spanning tree de�nition
would be violated and T would not be a maximum spanning tree (see [CLR92]).

0.8

0.8

c

ba

0.8 0.8

0.8

c

ba

0.8 0.8

0.8

c

ba

0.8 0.8

0.8

c

ba

0.7

a) b) c) d)

Figure 7.1: a) { c) valid maximum spanning trees. d) edge (b,c) violates the MST
de�nition.

7.2. THE MAXIMUM SIMILARITY SPANNING TREE 57

In case of equal similarity values the MST is not unique. Figure 7.1 illustrates
the three possible maximum similarity spanning tree of a simple graph with three
vertices a, b, and c. The similarity between all three vertices is obviously 0.8. Case
d) is also a spanning tree but not a maximum spanning tree since the vertex c has
to be connected to vertex a to form a MST.

7.2.1 Prim's Algorithm to Grow a Maximum Spanning Tree

HarSearch uses Prim's algorithm [CLR92] to generate the maximumsimilarity span-
ning tree. The algorithm uses a greedy strategy to grow the MST one edge at a
time. It manages a set A that is always a subset of some MST. At each step, an
edge (u,v) is determined that can be added to A without violating this invariant,
in the sense that A [(u; v) is also a subset of a MST. Such an edge is called a safe

edge for A, since it can be safely added to A without destroying the invariant.

a

b

c

de

0.8 0.7
0.3

0.4

0.3

0.2

0.4 0.6

0.8

a

b

c

de

0.8 0.7
0.3

0.4

0.3

0.2

0.4 0.6

0.8

a

b

c

de

0.8 0.7
0.3

0.4

0.3

0.2

0.4 0.6

0.8

a

b

c

de

0.8 0.7
0.3

0.4

0.3

0.2

0.4 0.6

0.8

a) b)

c) d)

Figure 7.2: The execution of Prim's algorithm on a complete similarity graph with
�ve vertices.

Prim's algorithm is illustrated in Figure 7.2. Starting with vertex a the algorithm
adds at each step a maximum edge which connects a vertex `outside' the MST with
a vertex `inside' the MST. In the second step the algorithm has a choice of adding
either edge (a; b) or edge (e; d) since both represent the same similarity value. It
has to be noticed that there are two groups of vertices which are among themselves
more similar. These are the groups fa,eg and fb,c,dg. They are connected via an
edge with a relatively low similarity value.

58 7. THE DESIGN OF THE HARSEARCH SIMILARITY MAP

The key to implementing Prim's algorithm e�ciently is to make it easy to select
a new edge to be added to the tree formed by the edges in A. In the pseudocode
below, the connected graph G and the root r (start vertex) of the maximumspanning
tree to be grown are inputs to the algorithm. During execution of the algorithm, all
nodes that are not in the tree reside in a priority queue Q based on a key �eld. For
each vertex v, key[v] is the maximum weight of any edge connecting v to a vertex
in the tree; by convention, key[v] = 0 if there is no such edge. The �eld p[v] names
the parent of v in the tree. During the algorithm the set A is kept implicitly as

A = f(v; p[v]) : v 2 V � frg �Qg:

When the algorithm terminates, the priority queue Q is empty; the maximum span-
ning tree A for G is thus

A = f(v; p[v]) : v 2 V � frgg:

MST-Prim(G;w; r)
1 Q V [G]
2 for each u 2 Q
3 do key[u] 0
4 key[r] 1
5 p[r] NIL

6 while Q 6= 0
7 do u EXTRACT �MAX(Q)
8 for each v 2 Adj[u]
9 do if v 2 Q and w(u; v) > key[v]
10 then p[v] u

11 key[v] w(u; v)

Prim's algorithm works as shown in Figure 7.2. Lines 1{4 initialise the priority
queue Q to contain all the vertices and set the key of each vertex to 0, except for the
root r, whose key is set to 1. Line 5 initialises p[r] to NIL, since the root has no
parent. Throughout the algorithm, the set V � Q contains the vertices in the tree
being grown. Line 7 identi�es a vertex u 2 Q incident on a maximum edge crossing
the cut (V �Q;Q) (with exception of the �rst iteration, in which u = r due to line
4). Removing u from the set Q adds it to the set V �Q of vertices in the tree. Lines
8{11 update the key and p �eld of every vertex v adjacent to u but not in the tree.
The updating maintains the invariant that key[v] = w(v; p[v]) and that (v; p[v]) is a
maximum edge connecting v to some vertex in the tree [CLR92].

The performance of Prim's algorithm depends on the implementation of the
priority queue Q. Since the similarity graph is complete each vertex in Q is adjacent
to the current maximum u and must be inspected. Therefore, it is su�cient to
implement the priority queue as a list.

7.2. THE MAXIMUM SIMILARITY SPANNING TREE 59

7.2.2 Clustering Using aMaximum Similarity Spanning Tree

Maximum similarity spanning trees can be used for document clustering. Consid-
ering the complete similarity graph G and a similarity threshold s, the removal of
all edges with weight w(u; v) < s yields a subgraph G(s) of G. For two thresholds
s1 < s2 the subgraph G(s2) obviously results from a removal of some edges from
subgraph G(s1). In subgraph G(s) remain groups of documents which are connected
by similarities greater than the similarity threshold s.

Since, the maximum similarity spanning tree is a subgraph that connects all
nodes with edges of maximumweight, the removal of edges with a weight w(u; v) < s

exactly results in these connected groups of documents with a similarity greater s.
For that reason, clusters of documents can be found by simply removing edges from
the tree with increasing similarity threshold s.

For example, removing all edges with a weight w(u; v) < 0:5 from the similarity
graph in Figure 7.2 results in two clusters of documents fa,eg and fb,c,dg. Increasing
the threshold to 0.8 produces three clusters fa,eg, fb,dg, and fcg.

Figure 7.3: Document clusters displayed in the HarSearch Similarity Map.

Within a connected group every document is at least connected to one document
to which it is more similar than the speci�ed similarity threshold. The maximum
similarity spanning tree contains no explicit information about the similarity be-
tween two documents which are not directly connected, though it is not possible
that they are more similar to each other than to the documents they are connected
to. For example, the information how similar the documents b and c are in the graph
in Figure 7.2 is missing. The user of the Similarity Map can generally assume that
they are more similar to each other then to the documents a and e since both are
more similar to document d. Figure 7.3 shows clusters of documents of the Simi-
larity Map implementation. The similarity threshold may be dynamically adjusted
with the slider in the top right corner of the window.

Clustering methods using minimumspanning trees are related to single linkage meth-
ods and were already used in the year 1964 [Boc74].

60 7. THE DESIGN OF THE HARSEARCH SIMILARITY MAP

7.3 Visualising the HarSearch Similarity Map

The maximum similarity spanning tree of the HarSearch Similarity Map is a so
called free tree since it does not represent any hierarchical relationship. The edges
only display the similarities between the documents no matter what spatial position
the documents �nally have.

To draw a free tree the algorithm has to select one vertex to start from. This ver-
tex is called the root of the tree and the tree itself becomes a rooted tree. HarSearch
takes the vertex at the centre of the tree as root vertex. The centre is found by
counting for each vertex with a degree d(v) > 1 the number of vertices in the sub-
trees emerging from that vertex. Then the vertex is taken as root which has the
minimum di�erence of the two maximum numbers of vertices in the subtrees. For
the graph in Figure 7.2 the root is vertex d.

After �nding the root HarSearch layouts the vertices on a grid, that means each
vertex can only be placed on crossings of this grid. The grid is then transformed
to the actual (x,y) coordinates to display the tree on the screen. Therefore, the
visualisation of the tree is done in four steps:

1. Find the root of the maximum similarity spanning tree.

2. Set each vertex on a vertical position of the layout grid.

3. Optimise the horizontal positions of each vertex on the grid.

4. Transform the vertex positions to displayable (x,y) coordinates.

7.3.1 The vertical Tree Layout

The \simplest" layout that is provided by HarSearch for the Similarity Map is the
vertical tree layout. It is the tree layout which is very common in computer science.
The root (parent) is placed at the top level of the tree and the children (adjacent
vertices) are positioned in the level below. The children of the children are again
placed in the next level and so on. This results in a level drawing as illustrated in
Figure 7.4.

Figure 7.4: The vertical tree layout.

7.3. VISUALISING THE HARSEARCH SIMILARITY MAP 61

7.3.2 The two-sided Tree Layout

The disadvantage of the vertical tree layout is that the root is very exposed at the
top of the tree. This could confuse the user of the Similarity Map, since the root
document may appear more relevant then the other documents, although the only
special property of the root is the centric position within the maximum similarity
spanning tree.

The two-sided tree layout avoids this by splitting the tree into two parts and
placing the �rst half of the vertices above the root and the second half below the
root level. This is called the two-sided vertical tree layout. The subtrees are layouted
equally to the vertical tree layout. Furthermore, the two-sided vertical tree layout
can be rotated to yield the two-sided horizontal tree layout (see Figure 7.5).

root

root

a) b)

Figure 7.5: The two-sided vertical and horizontal tree layout of the tree in Figure 7.4.

7.3.3 The Polar Coordinates Layout

Another possibility to draw a free tree without exposing the root is the polar co-
ordinates layout. This is achieved by transforming the vertical tree layout using a
geometric transformation (cartesian) polar) to obtain a radial level drawing of the
tree [CT94]. Figure 7.6 illustrates the principle of the polar coordinate layout and
Figure 7.7 shows how it looks in HarSearch.

To achieve better results the tree layout which is later transformed into the
radial representation is slightly di�erent from the layout used for the actual tree
visualisation. This is because a greater horizontal distance on the inner levels of the
grid only results in a greater angular distance in the actual visualisation. Therefore
it is necessary to spread the vertices in the levels near the root level, and to place
the children closer to the horizontal position of their parents in the outer levels.

62 7. THE DESIGN OF THE HARSEARCH SIMILARITY MAP

Figure 7.6: The principle of the polar coordinate layout.

Figure 7.7: The HarSearch Similarity Map using polar coordinates layout.

7.3. VISUALISING THE HARSEARCH SIMILARITY MAP 63

7.3.4 Determining the Horizontal Positions of the Vertices

The horizontal position is of major importance for the readability of the tree layout.
To attain readability some general criteria can be identi�ed:

� No crossings of edges between the particular tree layers.

� Short edges; connected vertices should be drawn close to each other. This also
involves short distances between documents of the same cluster, although the
Similarity Map does not explicitely use the spatial positions of documents to
display similarities.

� A balanced layout; a balanced position for every vertex between its parent and
its children is desired.

� No overlap of document icons.

Methods for drawing hierarchical digraphs are used in HarSearch to achieve the
criteria above. Although the maximumsimilarity spanning tree is a free tree, assign-
ing a level to each vertex produces a hierarchical structure and can be considered
as a special case of a hierarchical digraph.

Barycentric Method

To avoid crossings of edges between the tree levels the heuristic Barycentric method
is used [ES90, STT81].

The idea of the Barycentric method is to choose an order of level L1. Then for
i = 2; 3:::n, the ordering of levelLi is kept �xed while level Li+1 is reordered to reduce
crossings between level Li+1 and level Li. This is called a DOWN-phase because the
algorithm goes down the levels from level L1 to level Ln. A phase starting with a
�xed order of level Ln and going up to level L1 while reordering levels Li�1 is called
an UP-phase. During one step the vertices in one level are reordered according to
their Barycenters. The Barycenter of one vertex v 2 Li+1 simply is the average
of the horizontal positions of the vertices u 2 Li which are adjacent to v. If the
Barycenter is calculated from the positions of the vertices in the lower (upper) level
it is called lower (upper) Barycenter.

Minimising crossings between levels of a hierarchical digraph requires several
UP- and DOWN-phases to calculate an approximate solution, since the minimise
crossings problem is NP-complete.

To order the vertices in the tree levels only one DOWN-phase is needed. Since
the children in a lower level only have one parent it is su�cient to order the children
by the order of their parents. Starting with the root level this is accomplished with
a single DOWN-phase. For the two-sided tree layout the vertices below are ordered
by a DOWN-phase and the levels above the root level are ordered by an UP-phase.

64 7. THE DESIGN OF THE HARSEARCH SIMILARITY MAP

Priority Layout Method

While the Barycentricmethod only reorders the tree levels to avoid crossings without
assigning a precise horizontal position to each vertex, the Priority Layout Method

was developed to compute horizontal positions of vertices that realize a readable
layout of a given n-level hierarchy [STT81].

However, the method is similar to the Barycentric method. Instead of reordering
the tree levels an improvement of the horizontal positions is determined according
to \priority numbers" given to the vertices.

The principle to improve the position of a vertex is to minimise the di�erence
between the present position of the vertex and the upper or lower Barycenter of the
vertex in a DOWN or UP-phase. The positions of vertices are determined one by
one according to their priority number. The number of adjacent vertices serves as
priority number. That means that vertices with more children are positioned �rst.
The vertex position has to satisfy several conditions:

� Only positions on the layout grid are allowed and vertices cannot be at the
same position.

� The order of the vertices of each level has to be preserved.

� Only positions of vertices with priorities less than the priority of the vertex,
whose position is determined, can be changed. If the position of a vertex has
to be changed the distance displaced should be minimised.

In HarSearch several DOWN and UP phases are executed to optimise the tree
layout. The positions of the vertices are improved in the order of levels 2; � � � ; n; n�
1; � � � ; 1; t; � � � ; n with t = 2; 3; � � � ; n. In addition, to get a more balanced layout
the vertices in the levels t = 2; � � � ; n=3 are placed according to the average of their
upper and lower Barycenters. The levels of the two-sided tree layout are equally
treated in reverse order. Figure 7.8 illustrates the improvement of the positions of
the vertices using the priority layout method. Case a) shows the tree after the level
ordering by the Barycentric method and b) shows the �nal tree layout.

a) b)

Figure 7.8: Using the Priority Layout Method to optimise the horizontal positions
of the vertices.

8

The Architecture of HarSearch

HarSearch consists of several components (objects) which work together to retrieve
documents from the Hyperwave server, and to present the search result set. This
chapter describes the overall architecture and the interaction between particular
HarSearch objects. Figure 8.1 shows an overview of the various objects with arrows
representing the interactions and connections between them.

Hyperwave Server

Harmony Result
List Graph

Document Title

List Node

Similarity Map

Tree Node

Similarities

Similarity
Manager

Tree Graph

API Search Tool

Graz AND HyperWave

searching

Search Interface

Figure 8.1: The architecture of HarSearch.

65

66 8. THE ARCHITECTURE OF HARSEARCH

8.1 The Connection to Harmony and Hyperwave

Harmony provides an Application Program Interface (API) for additional tools and
applications which are not directly implemented. HarSearch is such an API tool.

Harmony has a special API port to which an API tool can connect. The API
tool may send and receive various messages to and from Harmony via this API
connection.

Every interaction between Harmony and the API tool is accomplished over the
API connection. The API tool can send a request that Harmony starts an appropri-
ate viewer for a certain document. It can �nd out the currently selected collection,
the active collections, the language preferences and it is noti�ed if several events
happen within Harmony (e.g. change of the current object, user identi�cation, and
so on).

After an API connection is established the API tool may also get information
about the current database connection of Harmony and can use this information to
build up its own database connection to the Hyperwave server. After establishing a
database connection, the API tool becomes a Hyperwave client and can use all the
features provided by the Hyperwave server (see Section 5.2).

8.2 The API Search Tool

The API Search Tool is the central object of HarSearch. It controls and synchronises
the other components of HarSearch. It establishes the API connection and the
database connection. The API Search Tool object communicates with Harmony
and does the actual searching.

To retrieve documents the API Search Tool composes the Hyperwave queries
according to the user input in the text �elds and the check-boxes selections in the
search interface. Hyperwave supports three di�erent types of queries:

� The key query; for Boolean attribute queries to retrieve documents according
to indexed document attributes.

The formal syntax of the key query is:

keyquery = "(" keyquery ")"

| keyquery "||" keyquery ; or

| keyquery "&&" keyquery ; and

| keyquery "&!" keyquery ; and not

| keyfield "=" values

| keyfield ">" simplevalue "<" simplevalue ; range

keyfield = "Title" | "Keyword" | "TimeCreated"

| "Author" | "Name" | "UName"

| "UGroup" | "Host" | "Group" | ...

8.2. THE API SEARCH TOOL 67

values = value

| value whitespace values ; same as "and"-operator

value = simplevalue ; normal word

| simplevalue "*" ; words with prefix simplevalue

| simplevalue "^" ; all words >= simplevalue

� The full text query; for full text retrieval.

The formal syntax of the full text query is:

expr = term 1*(orop term)

term = factor 1*(andop factor)

factor = node ["{" float "}"]

node = word 1*word | "(" expr ")"

andop = "&&" [optionlist]

orop = "||"

optionlist = "[" options "]"

options = option 1*("," option)

word = any word composed of validchars

option = "F" | "f"

validchars = any of

ab...xyzABC...XYZ0123456789-/

� The object query; to �lter search result set by documents attributes which are
not indexed.

The formal syntax of the object query is:

objquery = "(" objquery ")"

| "!" objquery ; not

| objquery "||" objquery ; or

| objquery "&&" objquery ; and

| attribute operator value

attribute = "Title" | "Rights" | ... ; any attribute name

operator = ">" ; less than (strings)

| ">" ; greater than (strings)

| "~" ; regular expression matching

| "=" ; equal

68 8. THE ARCHITECTURE OF HARSEARCH

The API Search Tool object combines the di�erent queries for searching. In the
case that the user selects full text retrieval as well as Boolean retrieval and enters
additional attributes or selects a particular document type, four search tasks are
executed. One for the Boolean retrieval, the second for full text retrieval and then
each result set is �ltered by an object query. Both results are merged together
into one search result set. This search result set is then passed to the the di�erent
interface objects for the actual visualisation.

8.3 The Interface Objects

The Search Interface object represents the three di�erent search interfaces of
HarSearch (see Chapter 6). It is the main user interface of HarSearch to enter
queries. The API Search Tool objects is noti�ed if a new search task should be
executed.

The Result object manages the presentation of the search result as a ranked
list. Changes of the sort order are reported to the API Search Tool object.

The Similarity Map object is the interface to the HarSearch Similarity Map
(see Section 6.2). After the API Search Tool object has passed the search result
set to the Similarity Map object the documents to display are passed the the Tree
Graph object. Furthermore, it generates the Similarities object and controls the
presentation of all similarities to a selected document.

The Similarities object displays all similarities to a certain document in a list
ordered by descending similarity values. It is very similar to the Result object. The
API Search Tool objects is noti�ed if a document has been selected.

8.4 Graph and Node Objects

The graph objects (List Graph, Tree Graph) do the actual visualisation of the
search result set which is displayed on the screen. They layout the documents, which
are passed to them by the interface objects, as list or maximum similarity spanning
tree respectively.

A node object (List Node, Tree Node) represents a single document displayed
in the list or the tree. They separate the appearance from the document represen-
tation from the layout structure determined by the graph objects. They inform the
graph object when they have been selected. The graph objects then directly notify
the API Search Tool object to synchronise these document selections among all the
other visualisations. This is necessary since any particular document is often present
simultaneously in the ranked list, the Similarity Map, and also in Harmony.

Since the Tree Graph object generates the maximumsimilarity spanning tree (see
Chapter 7), it contacts the Similarity Manager to determine the similarity values
between the particular documents.

8.5. THE SIMILARITY MANAGER 69

8.5 The Similarity Manager

The Similarity Manager is the interface between the Hyperwave server and the
HarSearch Similarity Map whenever similarity values are required. It retrieves the
similarities from the Hyperwave server and stores them in its similarity cache to
avoid that the similarity between two particular documents is requested from the
Hyperwave server more than once.

The current implementation of HarSearch uses the Similarity Manager only to
store and provide similarities speci�ed in a test �le. Any other document similarities
are simulated using random values, since the Hyperwave server does not support
document similarities at the moment.

70 8. THE ARCHITECTURE OF HARSEARCH

9

Selected Details of the

Implementation

HarSearch is programmed in C++. Several C++ classes have been implemented
which correspond in the main to the various objects described in Chapter 8. This
chapters deals with the actual implementation and is intended to be an orientation
aid through the source code for anyone who maintains or extends HarSearch.

The iicmviews class library was used to build the interfaces and an API tool
base class as well as a database connection class were taken as a base for HarSearch.
The iicmviews class library extends the free InterViews class library which was
developed at the Stanford University (see [K�u93, LCI+92]). In addition, several
existing C++ classes from IICM, for example the DLList (Double Linked List),
were used extensively. In the following Sections the most important classes and
functions are explained. The notation \[...]" is used as a placeholder for lines not
described in the source code.

9.1 class APISearchTool

class APISearchTool: public ToolAPIServer{

public:

[...]

virtual void notify(Notify::NotifyEnum);

void search();

private:

[...]

ObjIdArray seenObjects_;

DBObjectList resultol_;

}

71

72 9. SELECTED DETAILS OF THE IMPLEMENTATION

The most important class of HarSearch is the class APISearchTool. It corre-
sponds to the API Search Tool object in Chapter 8. HarSearch is noti�ed about
the actions in Harmony via the API function notify. The member function search

does the query composition and the searching.

Beside pointers to the interfaces it contains an ObjIdArray seenObjects which
stores all documents that are already seen by the user during a HarSearch session.
Furthermore, it contains the last search result in the DBObjectList resultol ;

which is referenced by all other classes which access the search result set.

9.2 The Interface Classes

There are four interface classes implemented in HarSearch:

� class SearchInterface

� class ListResultInterface

� class GraphResultInterface

� class CurrentSimilarityInterface

All interfaces have two important member functions in common. The member
function CreateInterface builds the particular interface and the member func-
tion setInterfaceLanguage is called if the language is changed in Harmony. Each
interface keeps a reference to the APISearchTool.

The class SearchInterface is distinct from the other interfaces because it does not
display documents. For that reason, the other three interfaces have in addition:

1. a pointer graph to the graph object that displays the documents within the
interface.

2. a function setDBObjects([...]) which generates node objects which are
then passed to the graph object to be displayed.

9.3 Classes for the Tree Visualisation

9.3.1 class APSNode

class APSNode{

protected:

long id_; // id of the corresponding Hyperwave document

float x_; // x coordinate

float y_; // y coordinate

9.3. CLASSES FOR THE TREE VISUALISATION 73

private:

int gid_; // index in the similarity matrix

float key_; // for MST

int parent_; // for MST and pushup and placement

int priority_; // for placement

int layer_; // layer of node in the graph visualisation

int layerpos_; // horiz. position of the node

float barycenter_; // barycenters for placement

visAPSNodeList pnodelist_; // parent nodes

visAPSNodeList cnodelist_; // child nodes

}

The APSNode is the base class for every node object in HarSearch that represents
a retrieved Hyperwave object. It is only used for inheritance. The variable id stores
the corresponding Hyperwave object id. The members x and y are used to store
the position where the node is �nally drawn.

The other private members are declared for various purposes during the tree
layout. Since the similarities between the documents are stored in a similarity
matrix the node has a member gid which corresponds to the document's index
in the similarity matrix. The variables key and parent are needed for Prim's
algorithm (see below and Section 7.2.1). For the optimisation of the horizontal node
positions the member variable priority is used in the priority layout method as
well as the member variable barycenter (see Section 7.3.4).

Since the nodes are positioned on a grid each node stores its grid position in the
member variables layer and layerpos which correspond to the tree level and the
horizontal position within this level.

To build a tree with the APSNodes a data structure is used which may also
represent a multilevel directed graph (a hierarchy). Therefore each node stores its
parent nodes, the nodes in levels above the node, in the adjacency list pnodelist

and its children in the adjacency list cnodelist .

9.3.2 class visAPSNode

class visAPSNode : public APSNode, public MultiButton {

public:

// typical InterViews functions

virtual void allocate(Canvas*, const Allocation&, Extension&);

virtual void reallocate();

virtual void draw(Canvas*, const Allocation&)const;

virtual void redraw() const;

virtual void pick(Canvas*, const Allocation&, int , Hit&);

virtual void drawBorder(Canvas*,const Color*,Brush*);

74 9. SELECTED DETAILS OF THE IMPLEMENTATION

virtual void damageBorder(Canvas*);

[...]

}

While the APSNode is used for the layout and to build the tree the derived
class visAPSNode (visual APSNode) provides all the functionality which is required
to draw the nodes with iicmviews. It is also only used for inheritance because it
provides only the functionality but no iconic document representation. For every
di�erent document type an extra class is derived from the visAPSNode. The derived
classes, for example the class APSTextNode, use the functions of the visAPSNode
and provide additional icons for the documents.

9.3.3 class APSGraph

class APSGraph : public InputHandler {

public:

[...]

enum Sortorder {GID,LAYER,LAYERPOS,BARYCENTER,

PRIORITY,DEGREE,SCORE,Default = GID};

virtual void addNode(visAPSNode*);

protected:

[...]

visAPSNodeList nodelist_;

visAPSNode *currentnode_;

}

Similar to the APSNode the class APSGraph is the base class for all graph ob-
jects in HarSearch. As base class the APSGraph provides the node management
without any layout functionality. For every document that has to be displayed a
visAPSNode* is added to the node list nodelist . This is done using the member
function addNode which is called from the member function setDBObjects of the
interface classes.

In case of a document selection the selected node becomes the \current node" of
the APSGraph which holds a reference to that visAPSNode in the member variable
currentnode . The current node requires special treatment since a border has to
be drawn around it in the visualisation.

9.3.4 class APSSimilarityGraph

class APSSimilarityGraph : public APSGraph {

private:

[...]

9.3. CLASSES FOR THE TREE VISUALISATION 75

// functions

void fillMatrixwithSimilarities();

void PrimMST();

void Matrix2Graph();

void findRoot();

void layerTree();

void organizeLayerArcs();

void orderTreeLayers();

void optimizeNodePositions();

void setNodesXYPosition();

[...]

// variables

UGraphMatrix *graphmatrix_;

}

The class APSSimilarityGraph layouts the HarSearch Similarity Map. The
similarities are stored using an instance of the UGraphMatrix object. The UGraph-
Matrix implements a lower triangular adjacency matrix for the representation of an
undirected complete graph.

After the nodes have been added to the node list the graph uses the functions
above to layout the Similarity Map. Each function represents one step of the layout
algorithm:

1. fillMatrixwithSimilarities(); at �rst the similaritymatrix has to be �lled
with the document similarities. This is done by contacting the similarity
manager requesting all pairwise similarity values.

2. PrimMST(); the similaritymatrix is used to grow the maximumsimilarity span-
ning tree using Prim's algorithm. Edges of the maximum similarity spanning
tree are simply marked by adding 2.0 to the similarity value. The implemen-
tation of Prim's algorithm is presented in Table 9.1.

3. Matrix2Graph(); the marked edges in the similarity matrix are used to gen-
erate an adjacency-list representation of the tree. Adjacent nodes are added
to the adjacency-lists pnodelist and cnodelist of every node contained in
the nodelist according to the marked edges in the similarity matrix.

4. findRoot(); the root node within the tree is located.

5. layerTree(); starting with the root node a tree layer (level) is recursively
assigned to each node. The root layer depends on the layout style (see Sec-
tion 7.3).

6. organizeLayerArcs(); since the tree is represented like a hierarchy the edges
are organised in a way that all edges are directed downwards. That is all edges
directed from a higher level to a lower level.

7. orderTreeLayers(); the nodes within a layer are ordered to avoid crossings.

76 9. SELECTED DETAILS OF THE IMPLEMENTATION

8. optimizeNodePositions(); the horizontal node positions are optimised using
the priority layout method (see Section 7.3.4).

9. setNodesXYPosition(); �nally the (x,y) coordinates are determined for each
node.

9.4 class SimilarityManager

class SimilarityManager {

public:

float getSimilarity(RString& goid1,RString& goid2);

[...]

}

The similarity manager caches the similarities between the di�erent documents
and contacts the Hyperwave server if a certain similarity relation is not in the cache.
The implementation of the similarity manager is rather simple. Nevertheless, the
function getSimilarity should be mentioned because it has to be extended when
the document similarities are supported by the Hyperwave server.

9.4. CLASS SIMILARITYMANAGER 77

void APSSimilarityGraph::PrimMST(){

visAPSNodeList q; // waiting queue

visAPSListNode *u,*v,*max;

float tmpkey;

// put all nodes in the queue

for(u = nodelist_.getFirst();u;u=nodelist_.getNext(u))

q.addTail(new visAPSListNode(u->getNode()));

for(u = q.getFirst();u;u=q.getNext(u))

u->getNode()->key_=0;

u = q.getFirst();

u->getNode()->parent_=u->getNode()->gid_;

max = u; // first maximum to remove

while (q.count() > 0){

u = max;

q.remove(max);

graphmatrix_->increase(u->getNode()->gid_,

u->getNode()->parent_,2.0);

max = q.getFirst();

for(v=q.getFirst();v;v=q.getNext(v)){ //find new maximum

tmpkey = graphmatrix_->get(u->getNode()->gid_,

v->getNode()->gid_);

if(tmpkey > v->getNode()->key_){

v->getNode()->key_ = tmpkey;

v->getNode()->parent_= u->getNode()->gid_;

}

if(v->getNode()->key_ > max->getNode()->key_)

max = v;

}

}

Table 9.1: The implementation of Prim's algorithm: Prim's algorithm is ex-
plained in Section 7.2.1. The visAPSNodeList is a derived from the class DLList.
Therefore, it does not contain pointers to visAPSNodes but pointers of the type
visAPSListNode*. This is because the DLList only manages nodes of a type de-
rived from the DLListNode. For that reason, the visAPSListNode is a simple class,
derived from the DLListNode, which only stores a pointer to a visAPSNode. Every
visAPSListNode has a member function getNode() to access the stored visAP-
SNode*. This explains the frequently usage of the member function getNode()

since the tree representation is based on DLLists.

78 9. SELECTED DETAILS OF THE IMPLEMENTATION

10

Outlook and Future Work

The visualisation of document similarities introduced by HarSearch seems to be very
intuitive and can be generated within a reasonable time for user interactions. The
major problem of HarSearch is that it was never tested with real similarity values,
except for small search result sets, due to delays in the implementation of document
similarities in the Hyperwave server. The only possibility was to test it with hand-
made test �les and for larger search result sets with random similarities. Therefore,
the most important step will be to extend the partly implemented similarity man-
ager to request the document similarities from the Hyperwave server when they are
available. This will hopefully be the case in the near future. Meanwhile random
similarities can be generated by the Random Similarity Generator which produces
a user de�ned number of random document clusters. The number of clusters can be
set in the options dialog of the Similarity Map.

Since HarSearch is a client and the document similarities have to be computed
via the server's full text index, another aspect will be to determine how much load
is put on the server and the network since the number of similarities is O(n2) for
n retrieved documents. This might in
uence the interaction time considerably for
larger search result sets.

When the real similarities are available usability evaluations will be necessary
to �nd out how e�cient and helpful the Similarity Map really is to locate the most
relevant documents for the user within large search result sets.

An interesting issue would also be to explore how the polar coordinate layout
can be improved. The current layout highly depends on the tree structure being
displayed. Especially for large search result sets and dense trees it is problematic to
achieve a non-overlapping layout, particularly for the inner tree levels.

Since the development of Hyperwave clients is nowadays more directed to Java
applications and to the integration into standard Web browsers an implementation
of the Similarity Map in Java is imaginable if usability evaluations indicate high
user acceptance.

The implementation of relevance feedback would probably be a tremendous im-
provement in the retrieval of most relevant documents. This means that it would not

79

80 10. OUTLOOK AND FUTURE WORK

only be possible to show document relations between the documents in the search
result set but also to �nd documents, similar to one or several retrieved documents,
which are not in the search result set. However, this is more a matter of the server
implementation than of HarSearch.

11

Concluding Remarks

HarSearch provides a
exible search interface which extends the search capabilities
of Harmony and utilises the Hyperwave document retrieval facilities.

With the HarSearch similaritymap an innovative approach to the visualisation of
similarities between documents in search result sets has been introduced. The clearly
arranged layout of the maximum similarity spanning tree stresses the connection of
two documents by their similarity. In addition, it suggests a path for exploration
through the search result set.

Nevertheless, there are still two open questions; �rst, the consequences that result
from the usage of real similarity values for large search result sets, and second the
usability of the similarity map.

It seems reasonable to assume that there should not be a major di�erence in
the layout and the behaviour of the similarity map if real similarity values are
used. However, the actual similarity structure of large search result sets and the
implications to the visualisation remain unclear.

Usability evaluations will show if the abstract tree layout does not lead to mis-
interpretation of the spatial position of the documents since the similarity is only
expressed by the connecting edges and not by the spatial distance of the document
icons.

81

82 11. CONCLUDING REMARKS

Appendix A

HarSearch User Guide

The user guide should help users to enter queries and to search for documents with
HarSearch. First the elements common to all three query interfaces are explained
and then each interface is described in detail. The result window and the Similarity
Map are explained afterwards. At the end, a description of the XDefaults is included.

Starting HarSearch: the tool can be started from the command line with:

harsearch -apihost <host> -apiport <port> [-file <filename>]

where <host> is the computer system on which Harmony is running and <port> is
the API port of Harmony. Harmony can be started with the parameter \-api" to
�nd out its API port or Harmony displays the API port if the appropriate variable is
set in the XDefaults (see Section A.4). Since the Hyperwave server does not support
document similarities at the moment, HarSearch may be started with an optional
parameter -file followed by the name of the test �le. The format of the test �le is
described in Appendix B.

Moreover, it is possible to integrate HarSearch into Harmony and to start it
right from the Harmony Tools menu. This can also be accomplished by editing the
XDefaults for Harmony (see Section A.4).

A.1 The HarSearch Search Interfaces

HarSearch provides three di�erent search interfaces for simple, extended and power
queries. They are described in the following sections.

A.1.1 Common Elements

Menu: at the top of each interface there is a pull-down menu which is made up
of four sub-menus:

� The Program menu contains only one item to exit HarSearch.

83

84 APPENDIX A. HARSEARCH USER GUIDE

� The QueryType menu allows to choose between the three search interfaces to
enter a simple query, an extended query, or a power query. The interface
type changes immediately according to the query type. The query type is also
displayed in the window title.

� Several options are set via the Options sub-menu. The �rst item is used to
select the search languages. The selected search languages are then used to
compose the queries to search for titles and document words in the di�erent
languages. The menu item Similarity Map may be used to open and close the
HarSearch Similarity Map (see Section A.3). The other items of the Options
sub-menu are only selectable in the extended search interface. If Time Input

is chosen dates may be entered with an exact time (e.g. 95/12/31 12:03:56).
Otherwise it is only possible to enter the day (e.g. 95/12/31). The Doc-
uments Attributes item opens another sub-menu to select the attributes
which are part of the extended query interface (see Figure A.3).

� The Help sub-menu provides help and some information about HarSearch.

Display Section: the display section allows to specify how many found documents
are presented at the same time by clicking on the appropriate radio button. The
users may select 25, 50, and 100 or they can enter an arbitrary number in the �eld
on the right side of the display section. To enter the value the radio button beside
the input �eld must be clicked �rst.

Buttons: two buttons are part of every search interface. One is the Search button.
Pressing this button initiates a search. The Clear button clears the interface which
means that all entries in the di�erent input �elds are deleted.

Query History: the query history is an important tool to rebuild and adapt
queries. Every issued query is represented by a line in the query history scroll box.
The query history shows the query number, the found documents with the particular
query, the query type, and a short description of the query (see Figure A.2).

The query description is made up of the entry in the main query �eld (i.e. the
�rst input �eld from the top) and the entries in the di�erent attribute �elds. The
attributes are indicated by a pre�x and separated by a semi colon. The pre�xes are:

� A: for author.

� TC: for the creation time.

� TM: for the modi�cation time.

� N: for name.

� DA: for the DocAuthor.

� DD: for the DocDate.

A.1. THE HARSEARCH SEARCH INTERFACES 85

� UA: for UserAtts.

In addition, dates are displayed in combination with the symbols >, <, and �
to show the time interval after, before, and between.

If the query history scroll box has the focus the user can browse through the
queries using the cursor keys or the mouse to scroll the list up and down. The
selection of one query resets the search interface to the state of the particular query.
All check-boxes and the input �elds are set. The users may change the selection of
the check-boxes or the entries in the input �elds and then they can search again.

The query history can be opened and closed dynamically by clicking on the
Query History check box. The query entries are inserted in any case.

Progress Indicator: the progress indicator shows the progress during a search
task or any other task which takes a longer time. If the tasks take too long they
can be interrupted by pressing the stop button. The progress indicator also shows
the current state of HarSearch which is usually the ready state (see Figure A.2).

User Display: the user is displayed at the bottom of every search interface. Since
the HarSearch has its own database connection the user identi�ed in Harmony is
not necessarily the user as who the HarSearch is identi�ed. This could be the case
if HarSearch runs on a di�erent computer and has not been started directly by
Harmony . If the user displayed by HarSearch is not the same as the user identi�ed
in Harmony another identi�cation procedure in Harmony solves this problem.

Short Cuts: to accelerate the user interaction several keyboard short cuts are
supported. In general these short cuts are displayed beside the menu items or are
indicated by the labels of the check boxes. A particular check box may be toggled
using the Meta key in combination with the underlined letter of the text label (e.g.
to toggle the local server selection typeM-l). To exit HarSearch Ctrl-x may be used.
For help press F1.

A.1.2 The Simple Query Interface

The simple query interface is made for simple queries and users unfamiliar with
Harmony and Hyperwave. Figure A.1 shows the simple query interface during a
search for the search term \Hyperwave" in the local server. The search term has to
be contained in the titles or the content of the documents.

The check boxes at the top of the simple query interface are used to select where
the system should search for documents. The text labels are self-explanatory. The
local server is the local Hyperwave server and the selected collection is the currently
selected collection in Harmony.

Under these check-boxes is the query �eld. The user may enter single search
terms separated by a blank or a more complex query with logical operators and
parenthesis. (e.g. \Graz AND Uni* AND (informatics OR electronics)") Valid

86 APPENDIX A. HARSEARCH USER GUIDE

Figure A.1: The simple query interface.

logical operators are AND, OR, and ANDNOT. Instead of the operators the symbols
&&, jj , and &! may be used. The query is case insensitive. The operator *" may
be used to represent any su�x of a query term.

On the right side of the query �eld the users can select a speci�c document
type if they only want to �nd text documents, images, movies and so on. If All is
selected, every document which satis�es the query is presented. The check-boxes
under the query �eld de�ne whether the system searches in the titles, the keywords,
or the contents of the documents. Documents whose titles or keywords match the
query are ranked with a 100% relevance score in the result window. Lower relevance
score results from a search in the content. The other elements of the simple query
interface are described in Section A.1.1.

A.1.3 The Extended Query Interface

The extended query interface extends the simple query interface and the Harmony
search interface and can be used for a more speci�c search. It allows to search for
various document attributes.

The top section is similar to the simple query interface. The only di�erence is
the Active Collections check box which causes the system to search for documents
in the active collections of Harmony (see Figure A.2).

The real extension is the Document Attributes section of the extended query
interface. Several Hyperwave document attributes may be used for searching. These

A.1. THE HARSEARCH SEARCH INTERFACES 87

Figure A.2: The extended query interface.

attributes are:

� Author (indexed)

� TimeCreated (indexed)

� TimeModi�ed (indexed)

� Name (indexed)

� DocAuthor

� DocDate

� UserAtts

If the attributes are indexed they can be used directly to retrieve documents.
This means that it is not necessary to enter a query if, for example, an author is
given. The other attributes can only be used to �lter a search result set by a par-
ticular attribute. The attribute �eld may also contain a more complex speci�cation
with logical operators like in the query �eld. To use a particular attribute it has to

88 APPENDIX A. HARSEARCH USER GUIDE

be selected in the Document Attributes sub menu in the Options menu. Selected
attributes are marked with a tick (see Figure A.3).

Figure A.3: Several document attributes may be selected in the attribute menu of
the extended query interface.

Dates are entered using date editors. The time interval can be selected via the
\selection button". The time interval may be after a certain time up to now, before
a certain time, and between two speci�ed dates. If an accurate time input is required
the Time Input option in the Options menu must be selected. The date and the
time may be entered directly in the appropriate �eld or may be adjusted with the
two small buttons beside the date �elds.

A.1. THE HARSEARCH SEARCH INTERFACES 89

The Query Extension may be used to �lter the search result by additional
document attributes which are not supported by the Document Attributes section.
Any attribute may be entered and complex speci�cations are possible. Several at-
tributes must be separated by a semicolon. (e.g. attribute1= term1 AND term1

; attribute2= term3 OR term4 AND term5 ...)

The other elements of the extended query interface are common to all query inter-
faces and described in A.1.1.

A.1.4 The Power Query Interface

The main parts of the power query interface are two input �elds. The �eld at the
top is the query �eld. The user may enter either a key query or a full text query in
this �eld. The query syntax is described in Section 8.2. The type of the query must
be speci�ed via the radio buttons under the query �eld. The second �eld may be
used to input a plain Hyperwave object query.

The check boxes at the top are again to specify where the system has to search for
documents (see A.1.2). Figure A.4 shows a screen shot of the power query interface.
The other elements are described in Section A.1.1.

Figure A.4: The power query interface.

90 APPENDIX A. HARSEARCH USER GUIDE

A.2 The Result Window

Every search result is presented in the result window. The number of documents
which are displayed at the same time is speci�ed in the Display section of the query
interfaces and changes dynamically. The document icons are placed in an area which
can be scrolled via the horizontal and vertical scrollbars (see Figure A.5).

Figure A.5: The result window displaying the result of the search for the word
hyperwave.

If the number of found documents is greater than the speci�ed number in the
interface the user can view all documents using the Next and Previous button. At
the beginning only the �rst documents are presented. The sort order can be de�ned
via the sort order selection button in the right corner of the result window. The
possible sort orders appear after a mouse click with the left mouse button on the
selection button. If the user moves the mouse pointer on a particular document the
title of that document is displayed at the bottom of the result window.

A single-click selects a document and a frame is drawn around this document.
It is also shown in Harmony and the other visualisations of HarSearch. This mech-
anism is called location feedback. A single-click with the right mouse button causes
Harmony to display the document attributes. To view a particular document the
user has to double-click on that document. This causes Harmony to show the doc-
ument with an appropriate viewer. The document icons show the document type.
Already viewed documents are marked with a tick. Furthermore, the user may open
the HarSearch Similarity Map by pressing the Similarity Map button. Pressing the
Close button closes the result window.

A.3. THE HARSEARCH SIMILARITY MAP 91

A.3 The HarSearch Similarity Map

The HarSearch Similarity Map visualises the similarity relations between retrieved
documents in form of a tree. It can be opened via the options menu of the search
interface or by clicking the Similarity Map button in the Result Window.

Figure A.6: One possible visualisation of 30 documents in the HarSearch Similarity
Map.

In the Similarity Map each document is represented by an icon and connected
with a line to the document it is most similar to. The line is called an edge. Fig-
ure A.6 shows an example how the visualisation of 30 text documents may look like
in the Similarity Map.

Thick edges represent high similarity, thin edges medium similarity and dotted
edges show a lower similarity relation between two particular documents. The overall
relevance is indicated by the icon size of the documents. Bigger icons display higher

92 APPENDIX A. HARSEARCH USER GUIDE

relevance. As in the result window the documents are placed in a scrollable area.
The user may scroll the visible area by using the scroll bars at the bottom and on
the right side of the scrollable area.

Moving the mouse over a document immediately shows the title of the document
at the bottom of the Similarity Map window. A single-click with the left mouse
button selects the particular document and a double-click opens an appropriate
viewer. As in the result window a single-click with the right mouse buttons shows
the document attributes. As the result window the SimilarityMap provides location
feedback.

Below the button row the status line is situated showing how many documents
are in the Similarity Map. The Similarity Map only displays the documents of a
search result up to a user de�ned number. It does not show all documents as in
the result window. Therefore, it may happen that the Similarity Map cannot show
a document which has been selected in the result list. If no number is speci�ed
the Similarity Map shows as many documents as selected in the search interface.
The Similarity Map displays only text documents since the similarity can only be
determined between text documents.

Figure A.7: A list of all similarities to a previously selected document.

The similarity slider in the right top corner allows to set a similarity threshold.
Only similarities greater or equal this similarity threshold are presented. This can be
used to �nd cluster of similar documents by simply increasing the similarity thresh-
old. The Similarity Map removes the edges dynamically. Furthermore, the user

A.3. THE HARSEARCH SIMILARITY MAP 93

may de�ne that documents which are no longer connected to any other document
are removed.

The Documents similar to ... button is only enabled if a document is selected.
If it is pressed a window is opened which presents the exact similarity values for
all other documents in the Similarity Map to the currently selected document (see
Figure A.7). The documents are presented in a list showing the similarity in percent
and the document title. The list is ordered by descending similarity values.

The location feedback mechanism is also provided by the similarity window.
While the window is open it shows the similarities to the document which was
selected when then button was pressed. This allows the user to select documents in
that window and to see where these documents are located in the Similarity Map.
To get the similarities to another document the window must be closed and opened
again.

The HarSearch Similarity Map o�ers various layout styles and has numerous
options which can be set in the options dialog (see Figure A.8). To open the dialog
an Options button can be found in the button row of the Similarity Map.

In the middle section of the dialog the user may specify the style of the document
icons and of the connecting edges. In each case four di�erent styles are available.
The icon styles may be:

� Simple; documents are presented by small icons as the icons in the result
window but without title.

� Scaled; a frame is drawn around the simple document icons according to the
overall relevance. Therefore higher overall relevance results in larger icons.

� Coloured; instead of a scaled frame a coloured frame may be used to show
overall relevance. In this case the frames around the document icons have
equal size.

� Scaled&Coloured; this icon style is the combination of scaled and coloured
icons.

Equally the edge style can be speci�ed as:

� Simple; to use only thin lines of one colour to represent similarity relations.
The colour of these \simple" lines may be set by XDefaults (see Section A.4).

� Width Coded; as in the example in Figure A.6 the edges are drawn thick, thin,
and dotted if the width coded edge style is selected. The used colour is the
one of the simple lines.

� Colour Coded; also the edge colour may be used to present di�erent levels of
similarity.

� Width&Colour Coded; to combine the last two styles.

94 APPENDIX A. HARSEARCH USER GUIDE

Figure A.8: The options dialog for the HarSearch Similarity Map.

A.3. THE HARSEARCH SIMILARITY MAP 95

Figure A.9: Similarity Map colour speci�cation.

The thresholds which are set below the selection buttons for the icon and edge
styles allow the user to specify ranges when to use a speci�ed colour or edge style.
For example, if the similarity thresholds for the edges are set to 70% and 35%
then edges which represent a similarity >70% are drawn as thick lines, edges which
represent a similarity between 70% and 36% are drawn as thin lines, and the edges
below 36% are drawn as dotted lines. The colours for the icons and edges are used
accordingly. If the user does not want to set the thresholds it is possible to use
automatic thresholds. The automatic thresholds are used if the appropriate check-
boxes in the General Options sections of the dialog are selected. HarSearch tries to
�nd an automatic threshold so that always a third of the edges or icons is displayed
in one colour. The user can specify the colours in the separate colour dialog (see
Figure A.9).

The other check-boxes in the General Options section may be selected to show
only documents with edges to other documents, to display a di�erent number of
documents in the Similarity Map as speci�ed in the search interface, and to show
levels of maximally related documents around the currently selected document.

The layout of the similarity tree can be changed in the bottom section of the
options dialog. The user can choose between a radial (polar coordinate) tree layout,
a vertical tree layout, a two-sided vertical tree layout, and a two-sided horizontal
tree layout. Furthermore, it is possible to adjust the radial, vertical, and horizontal
separations between the tree levels. The vertical tree layout the layout used in
Figure A.6. Examples for the other three layouts are shown in Figure A.10.

96 APPENDIX A. HARSEARCH USER GUIDE

(a) Polar coordinate layout. (b) Two-sided vertical tree layout.

(c) Two-sided horizontal tree layout.

Figure A.10: Di�erent Similarity Map layout styles.

A.4. XDEFAULTS 97

A.4 XDefaults

Since HarSearch has been developed for the X Window System several options may
be set via XDefaults.

The general colour of the background and of
at objects can be set with:

HarSearch*background: #CCCCCC

HarSearch*flat: #CCCCCC

The
at objects are objects of the interviews class library which has been used to
implement the interface (see Chapter 9).

The fonts used in the interface in general and for the button labels are also set
via XDefaults:

HarSearch.font: FONT-SPEC

HarSearch.Button.font: FONT-SPEC

The standard X Windows font speci�cation has to be used. For example, a medium,
Helvetica font is de�ned as follows:

-*-helvetica-medium-r-*-*-*-140-*-*-*-*-iso8859-*

To keep it simple and avoid long lines the string for the font speci�cation is replaced
by FONT-SPEC.

To avoid
ickering the double-bu�ering has to be switched on:

HarSearch*double_buffered: on

The search interface starts with one of the three possible interfaces. The initial
interface is set by:

HarSearch.querytype: Simple

The option Simple can be replaced by Extended or Power which means that the
extended query interface or the power query interface should be used instead of the
simple query interface.

The states of the di�erent check-boxes are set by the following XDefaults. The value
on means open in the case of the query history:

HarSearch.searchinlocal: on

HarSearch.searchinselected: off

HarSearch.searchinactive: off

HarSearch.searchtitle: on

HarSearch.searchkeywords: on

HarSearch.searchcontent: off

HarSearch.queryhistory: on

98 APPENDIX A. HARSEARCH USER GUIDE

The attribute �elds in the extended query interface may be selected via pull-down
menu or set via XDefaults. A particular attribute �eld is part of the extended query
interface if the appropriate default value is set to on:

HarSearch.author: on

HarSearch.timecreated: on

HarSearch.timemodified: off

HarSearch.docname: off

HarSearch.docauthor: off

HarSearch.docdate: off

HarSearch.useratts: off

To set the appearance of the progress indicator the next default values are used:

HarSearch*Progress.background: blue

HarSearch*Progress.foreground: red

HarSearch*ProgressLabel.foreground: white

HarSearch*ProgressLabel.font: FONT-SPEC

The size of scrollbars and sliders can be set with:

HarSearch*sliderSize: 15

HarSearch*moverSize: 15

The colour and the size of the scrollable area of the result window may be speci�ed
with the following XDefaults:

HarSearch*ResultList.background: #033b68

HarSearch*ResultList.foreground: cyan

HarSearch*ResultList.ScrollAreaWidth: 500

HarSearch*ResultList.ScrollAreaHeight: 300

The foreground colour is used for the document labels, if no special label colour is
de�ned, and for the display of the document count above the scrollable area. If the
users want to set their own document label colour they have to use the XDefault
HarSearch*DocumentLabels.foreground. Furthermore, it is possible to set the
colour of the frame around the currently selected document and the colour of the
background of the currently viewed document:

HarSearch*DocumentLabels.foreground: white

HarSearch*currentdocbordercolor: yellow

HarSearch*currentdoccolor: FireBrick

A.4. XDEFAULTS 99

By default the Similarity Map is not opened immediately after a search. If the user
wants to use it from the start the following default value has to be set to on:

HarSearch.SimilarityMap: on

The general foreground and background colour as well as the size of the scrollable
area is set with:

HarSearch*SimilarityMap.foreground: cyan

HarSearch*SimilarityMap.background: #033b68

HarSearch*SimilarityMap.ScrollAreaWidth: 700

HarSearch*SimilarityMap.ScrollAreaHeight: 250

The numerous options of the Similarity Map may also be set to on or off:

HarSearch*SimilarityMap.AutomaticSimilarityThresholds: off

HarSearch*SimilarityMap.AutomaticRelevanceThresholds: off

HarSearch*SimilarityMap.ShowOnlyDocumentsWithEdges: on

HarSearch*SimilarityMap.DisplayDifferentDocumentNumber: on

HarSearch*SimilarityMap.OnlyMaximallyRelatedDocuments: off

The number of document to display and the levels of maximally related documents
are set with:

HarSearch*SimilarityMap.DocumentNumber: 50

HarSearch*SimilarityMap.DocumentLevels: 1

The default tree layout style may be:

TreeVertical, TwoSidedHorizontal, TwoSidedVertical, PolarCoordinate:

To set a tree layout the following default has to be set:

HarSearch*SimilarityMap.LayoutStyle: polarcoordinate

The possible default values for the icon style are:

simple,scaled,coloured,ScaledAndColoured:

The style can be set with:

HarSearch*SimilarityMap.DocumentIconStyle: Scaled

Using simple, widthcoded, colourcoded, WidthAndColourCoded the edge style can
be set:

HarSearch*SimilarityMap.EdgeStyle: widthcoded

100 APPENDIX A. HARSEARCH USER GUIDE

Also the thresholds can be de�ned:

HarSearch*SimilarityMap.maxRelevanceThreshold: 70

HarSearch*SimilarityMap.medRelevanceThreshold: 30

HarSearch*SimilarityMap.maxSimilarityThreshold: 85

HarSearch*SimilarityMap.medSimilarityThreshold: 45

The separations between the tree levels can be set as follows:

HarSearch*SimilarityMap.HorizontalSeparation: 30

HarSearch*SimilarityMap.VerticalSeparation: 40

HarSearch*SimilarityMap.LayerDistance: 20

These are the default colours used in the Similarity Map:

HarSearch*SimilarityMap.maxRelevanceColour: #ff0000

HarSearch*SimilarityMap.medRelevanceColour: #00ff00

HarSearch*SimilarityMap.minRelevanceColour: #0000ff

HarSearch*SimilarityMap.maxSimilarityColour: #ffff00

HarSearch*SimilarityMap.medSimilarityColour: #00ffff

HarSearch*SimilarityMap.minSimilarityColour: #ff00ff

If no edge colour coding is speci�ed the normalEdgeColour is used to draw the
edges:

HarSearch*SimilarityMap.normalEdgeColour: white

The general options of the window that displays the similarities to a certain
document are set with:

HarSearch*SimilaritiesToDocument.background: #033b68

HarSearch*SimilaritiesToDocument.foreground: cyan

HarSearch*SimilaritiesToDocument.ScrollAreaWidth: 300

HarSearch*SimilaritiesToDocument.ScrollAreaHeight: 150

To start HarSearch directly via the Harmony pull-down menu the following two lines
have to be inserted into the XDefaults �le for Harmony:

Harmony.Session.Collection.Tools.search.commandline:

harsearch -apihost $localhost -apiport $apiport

Harmony.Session.Collection.Tools.search.menuentry: HarSearch

Harmony displays its API port at the start-up if the next variable is set to on:

Harmony.Session.displayapi: on

Appendix B

The Test File Format

The test �le to simulate search results with document similarities has the following
format:

<number of documents>

<global object id 1>;[<relevance score of object 1>]

<global object id 2>;[<relevance score of object 2>]

[...]

<global object id n>;<relevance score of object n>

<similarity values>

The relevance score is optional. If it is not speci�ed it is generated randomly.
The number of global object ids (GoIDs) must be equal to the speci�ed document
number. The similarity values have to be in the form of the lower triangular similar-
ity matrix. Each line represents the similarities of one particular document to the
documents de�ned before. For example, the �rst line with similarity values contains
only the similarity between document 2 and document 1. The second line contains
the similarities of document 3 to document 1 and document 2 and so on. The single
values must be separated by semicolons. HarSearch also allows comment lines in
the test �le which have to begin with either `!' or `#'. A test �le for 30 Hyperwave
objects may therefore look as follows:

!number of objects

30

GoIDs of the objects and score

0x811b9908 0x000ee197;1.0

0x811b9908 0x00067bcc;1.0

0x811b9908 0x000680ba;0.92

0x811b9908 0x000680c9;0.87

[...]

0x811b9908 0x0014c18e;0.2

0x811b9908 0x003728d1;0.17

101

102 APPENDIX B. THE TEST FILE FORMAT

0x811b9908 0x0033cd50;0.05

! Similarities between 30 documents

0.38;

0.18;0.13;

0.15;0.11;0.27;

0.8;0.19;0.12;0.46;

0.49;0.67;0.44;0.2;0.25;

0.43;0.49;0.83;0.37;0.26;0.26;

0.38;0.55;0.11;0.67;0.14;0.31;0.45;

[...]

Bibliography

[ALV] Altavista, search engine. http://altavista.digital.com.

[And96] Keith Andrews. Browsing, Building, and Beholding Cyberspace: New

Approaches to the Navigation, Construction, and Visualisation of Hy-

permedia on the Internet. PhD thesis, Graz University of Technology,
September 1996. http://www.iicm.edu/keith-phd.

[Blu96] Oliver Blumert. Seminarvortrag: Information visualisation I, 1996.
http://www-cui.darmstadt.gmd.de/~blumert/.

[Boc74] Hans Hermann Bock. Automatische Klassi�kation. Vandenhoek &
Ruprecht, G�ottingen, 1974.

[Bot93] Rodrigo A. Botafogo. Cluster analysis for hypertext systems. Proceedings
of SIGIR'93, pages 116{124, June 1993.

[BSG+95] Steve Benford, Dave Snowdon, Chris Greenhalgh, Rob Ingram, Ian Knox,
and Chris Brown. VR{VIBE: A virtual environment for co-operative
information retrieval. EUROGRAPHICS '95, 14(3), 1995.

[CC92] Matthew Chalmers and Paul Chitson. Bead: Explorations in information
visualization. Proceedings of SIGIR'92, pages 330{337, June 1992.

[CC93] Matthew Chalmers and Paul Chitson. Using a Landscape Methaphor

to Represent a corpus of Documents, pages 377{390. Proc. European
Conference on Spatial Information Theory, COSIT '93. Springer Verlag,
Elba Island, Italy, September 1993. Andrew U. Frank and Irene Campari.

[CKP93] Douglass R. Cutting, David R. Karger, and Jan O. Pedersen. Constant
interaction-time Scatter/Gather browsing of very large document collec-
tions. Proceedings of SIGIR'93, pages 126{134, June 1993.

[CKPT92] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W.
Tukey. Scatter/Gather: A cluster-based approach to browsing large doc-
ument collections. Proceedings of SIGIR'92, pages 318{329, June 1992.

[CLR92] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Into-
duction to ALGORITHMS. The MIT Press, 1992.

103

104 BIBLIOGRAPHY

[CT94] Isabel F. Cruz and Roberto Tamassia. How to Visualize a Graph: Spec-

i�cation and Algorithms. Tufts University Brown University, 1994.

[DH96] Wolfgang Dalitz and Gernot Heyer. HYPERWAVE; The new genera-

tion Internet Information System based on Hyper-G Technology. dpunkt,
Heidelberg, 1996.

[EEL] Electronic libraries, intelligent network agents, and information cata-
logues. http://fox.cs.vt.edu/talks/KY95/.

[ES90] Peter Eades and Kozo Sugiyama. How to draw a directed graph. Journal
of Information Processing, 13(4), 1990.

[FBY92] WilliamB. Frakes and Ricardo Baeza-Yates. Information Retrieval; Data
Structures and Algorithms. Prentice Hall, 1992.

[HBT] HotBot, search engine. http://www.hotbot.com.

[Hea95] Marti A. Hearst. TileBars: Visualisation of term distributed infor-
mation in full text information access. Proceedings of CHI'95, pages
59{66, May 1995. http://www.acm.org/sigchi/chi95/Electronic/

documnts/papers/mah bdy.htm.

[Hem93] Matthias Hemmje. LyberWorld{ Eine 3D{basierte Benutzerschnittstelle
f�ur die computerunterst�utzte Informationssuche in Dokumentmengen.
Der GMD{Spiegel 1'93, January 1993.

[HKW94] Matthias Hemmje, Clemens Kunkel, and Alexander Willet. LyberWorld{
a visualization user interface supporting fulltext retrieval. Proceedings of
SIGIR'94, pages 249{259, July 1994.

[IFS] InfoSeek, search engine. http://guide-p.infoseek.com.

[K�u93] Thomas K�urten. INVITING; InterViews Tutorial Introduction Guide for

beginners. Technische Universit�at M�unchen, 1993.

[LCI+92] Mark A. Linton, Paul R. Calder, John A. Interrante, Steven Tang, and
John M. Vlissides. InterViews Reference Manual 3.1. The Board of
Trustees of the Leland Stanford Junior University, 1992.

[LYW] The LyberWorld Homepage. http://www-cui.darmstadt.gmd.de:80/

visit/Activities/Lyberworld/.

[Mau96] Hermann Maurer. Hyper-G now Hyperwave; The Next Generation Web

Solution. Addison Wesley, 1996.

[NFH+96] Lucy T. Novell, Robert K. France, Deborah Hix, Lenwood S. Heath,
and Edward A. Fox. Visualization Search Results: Some alternatives
to query-document similarity. Proceedings of SIGIR'96, August 1996.
http://ei.cs.vt.edu/papers/ENVreport/final.html.

BIBLIOGRAPHY 105

[OKS+93] K. A. Olsen, R. R. Korfhage, K. M. Sochats, M. B. Spring, and J.G.
Williams. Visualisation of a document collection:The VIBE System. In-
formation Processing and Management, 29(1):69{81, 1993.

[SBC97] Ben Shneiderman, Don Byrd, and W. Bruce Croft. Clarify search: A
user-interface framework for text searches. D-Lib Magazine, January
1997. http://www.dlib.org/dlib/january97/01contents.html.

[SCB] Scatter/gather browsing communicates the topic structure of a very
large text collection. http://www.soe.berkeley.edu/~schank/parc/

pp txt.htm.

[Spo93] Anselm Spoerri. InfoCrystal: A visual tool for information retrieval.
Proceedings of Visualisation '93, pages 150{157, October 1993.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for vi-
sual understanding of hierarchical system structures. Man and Cybernet-

ics SMC-11, 2:109{125, 1981.

[UCB] UC Berkeley digital library project. http://elip.cs.berkeley.edu/

tilebars.html.

[VRV] VR-VIBE screen shots. http://www.crg.cs.nott.ac.uk/crg/

Research/pits/vrvibe/.

[WMB94] Ian H. Witten, Alistair Mo�at, and Timothy C. Bell. Managing Giga-

bytes, Compressing and Indexing Documents and Images. Van Nostrand
Reinhold, New York, NY 10003, 1994.

