
Responsive Visualization Patterns and Tools

David Egger

706.424 Seminar/Project Interactive and Visual Information Systems SS 2023
Graz University of Technology

26 Apr 2024

Abstract
The field of data visualization provides techniques for representing complex data in graphical
form to ease the process of identifying patterns and relations between data points. The
web has become an increasingly important medium for sharing charts and visualizations.
Visualizations on the web must be able to be viewed on a wide range of end user devices,
with a variety of display sizes and resolutions. The automatic adjustment to as many possible
usage scenarios is at the core of what is called responsive visualization.
This survey describes prior work in the field of responsive visualization. It collects and
summarizes existing responsive patterns, which are commonly used to transform visualiza-
tions to fit all possible target devices. It then defines its own set of responsive visualization
patterns, grouped into three kinds: visual, interactive, and data patterns.
Finally, the survey describes a number of tools which can be used to create responsive
visualizations. These tools are grouped into responsive visualization libraries, responsive
visualization systems, and responsive visualization transformation tools.

© Copyright 2024 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents ii

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1

2 Responsive Visualization 3
2.1 Mobile Visualization . 3
2.2 Display Properties . 3
2.3 Responsive Web Design . 4

2.3.1 Responsive Design Strategies 5
2.3.2 Modern Responsive Design 5
2.3.3 Avoiding Horizontal Scrolling 6

2.4 Responsive Visualization Challenges 6
2.5 Approaches to Responsive Visualization 7

3 Responsive Visualization Patterns 9
3.1 Visual Patterns . 9

3.1.1 V1: Scaling Entire Chart Down 9
3.1.2 V2: Repositioning Element Labels 10
3.1.3 V3: Using Tooltips Instead of Element Labels 10
3.1.4 V4: Rotating Axis Tick Labels 10
3.1.5 V5: Shortening Labels and Titles 11
3.1.6 V6: Scaling Labels Between Minimum and Maximum Size 12
3.1.7 V7: Scaling Down Visual Elements 13
3.1.8 V8: Hiding Elements and Labels 14
3.1.9 V9: Rotating Chart 90° . 14
3.1.10 V10: Using a Different Chart 14

3.2 Interaction Patterns . 15
3.2.1 I1: Providing a Toolbar or Menu. 15
3.2.2 I2: Filtering Dimensions and Records 15
3.2.3 I3: Supporting Zooming. 16

i

3.3 Data Patterns . 17
3.3.1 D1: Data Generalization . 17
3.3.2 D2: Data Aggregation . 18
3.3.3 D3: Data Clustering . 18
3.3.4 D4: Data Sampling . 20

4 Responsive Visualization Tools 21
4.1 Responsive Visualization Libraries . 21

4.1.1 Chart.js . 22
4.1.2 Plotly.js . 23
4.1.3 Chartist . 23
4.1.4 Highcharts. 25
4.1.5 RespVis . 25

4.2 Responsive Visualization Systems . 27
4.2.1 Hoffswell et al Visualization System 27
4.2.2 Power BI . 27

4.3 Visualization Transformation Tools . 28
4.3.1 MobileVisFixer . 28
4.3.2 Setlur and Chung Line Chart Resizer 29

5 Concluding Remarks 31

Bibliography 33

ii

List of Figures

2.1 Responsive Breakpoint Diagram . 5

3.1 V1: Scaling Entire Chart Down . 10
3.2 V2: Repositioning Element Labels in Scatterplot 11
3.3 V3: Using Tooltips Instead of Element Labels 11
3.4 V4: Rotating Axis Tick Labels . 12
3.5 V5: Shortening Labels and Titles . 12
3.6 V6: Scaling Labels Between Minimum and Maximum Size 13
3.7 V9: Rotating Chart 90° . 14
3.8 I1: Providing a Menu . 15
3.9 I1: Providing a Toolbar . 16
3.10 I2: Filtering Dimensions and Records . 16
3.11 I3: Supporting Zooming. 17
3.12 D1: Data Generalization. 18
3.13 D1: Data Generalization. 19
3.14 D2: Data Aggregation . 19

4.1 Chart.js: Example Bar Chart . 23
4.2 Plotly.js: Example Bar Chart . 24
4.3 Chartist: Example Bar Chart . 24
4.4 Highcharts: Example Bar Chart . 25
4.5 RespVis: Example Bar Chart . 26
4.6 Hoffswell et al Visualization System . 27
4.7 Power BI: Resizing Visuals. 28
4.8 MobileVisFixer: Improving Mobile-Friendliness 29
4.9 Setlur and Chung: Line Chart Resizer . 30

iii

iv

List of Tables

4.1 Population Dataset . 22

v

vi

List of Listings

2.1 Media Query: Example . 4

vii

viii

Chapter 1

Introduction

The field of data visualization seeks to present data and information visually, so as to facilitate its rapid
assimilation and understanding [Andrews 2024]. Early figures in the field, like William Playfair and
Florence Nightingale, produced visual representations of data on paper [Infogram 2016].

Today, charts and visualizations are largely viewed online on the web. Smartphones and tablets are
also increasingly displacing desktops and laptops as the viewing platform of choice. In the first quarter
of 2023, already 58.33% of all web page views worldwide were requested from mobile devices [Statista
2023].

Responsive web design refers to a set of techniques which can be used to create web pages which
adapt to the characteristics of the user’s device [Marcotte 2014]. These days, all web design is responsive
web design. Data visualizations which are capable of adapting to the different requirements of desktops,
tablets, smartphones, and other devices, are called responsive visualizations [Andrews 2018b].

This survey describes prior work in the field of responsive visualization. It collects and summarizes
existing responsive patterns and then synthesizes its own set of responsive visualization patterns, grouped
into: visual, interactive, and data patterns. Finally, the survey describes a number of tools which can be
used to create responsive visualizations. These responsive visualization tools are grouped into libraries,
systems, and transformation tools.

1

2 1 Introduction

Chapter 2

Responsive Visualization

In essence, the field of responsive visualization describes the process of designing visualizations capable
of adapting to different device characteristics.

2.1 Mobile Visualization
Horak et al. [2021, page 37-40] explain in detail the factors which must be considered when designing
for mobile devices such as phones, tablets, and smartwatches:

• Usage factors: Usage factors describe the impact of a user’s posture when using a device as well
as the position of the device itself. This is very different from desktop devices, which are operated
typically by a person sitting in front of the device, resulting in fixed posture and position of the
device.

• Environmental factors: Environmental factors represent surrounding influences, which may have
impact on the user’s perception and/or interaction capabilities. A noisy bus tour may prevent a user
from catching audio messages or force the user to use one hand to hold on. Lighting conditions can
influence how a visualization is perceived.

• Data factors: Data factors embody the difficulty to render visualizations for large datasets on devices
with limited available screen sizes and/or computational power.

• Human factors: Human factors stand for the individual motivation, background knowledge, attention
span, goals, and subjective preferences a user may have. Depending on those factors, completely
different aspects of a visualization may be of interest to the user.

• Device factors: Device factors include screen size and interaction modalities. Issues like the fat-
finger-problem [Horak et al. 2021, page 38] on touch devices have to be resolved for a visualization
to become truly responsive.

2.2 Display Properties
The size of a screen can be measured in two ways, either in number of pixels or in physical size. When
referring to the physical size of a screen, the correct term is physical size or screen size, which is typically
stated in centimeters or inches. When speaking of the number of pixels, the correct term is display
resolution, or simply resolution [Christensson 2019]. Typically, resolution is stated as width×height,
where width is the number of horizontal pixels and height is the number of vertical pixels, for example
1920×1080.

Pixel density is a measure of detail, which sets the number of pixels in relation to the physical space.
The corresponding unit is pixels per inch (ppi). The aspect ratio defines the relation between width and

3

4 2 Responsive Visualization

1 @media only screen and (max-width: 40rem) {
2 // styling for narrow screens
3 }
4
5 @media only screen and (min-width: 40rem) and (max-width: 60rem) {
6 // styling for medium screens
7 }
8
9 @media only screen and (min-width: 60rem) {

10 // styling for wide screens
11 }

Listing 2.1: Media queries for three viewport sizes, with breakpoints at 40 and 60 rem.

height of an object, for example 16:9.

2.3 Responsive Web Design
In 2010, Marcotte [2010] published his article entitled “Responsive Web Design”, which was the catalyst
for this new design approach to web sites and applications. The intention was to design only once for all
kinds of devices, and to serve the same code from the same URL to all devices. A year later, Marcotte
[2011] expanded on the article with a book of the same title.

Marcotte described three core technical concepts for responsive web design:

• Flexible Grids: The width and height of container elements should be defined in relative CSS units
such as % and em, rather than absolute units such as px. Font sizes should also be specified in relative
units such as em or rem, depending on whether the font sizes should cascade or not.

• Flexible Images: Images and other media elements should adapt their size to the available space, for
example by specifying max-width: 100%;.

• Media Queries: Media queries were introduced in CSS3 and allow selected styles to be applied if
certain conditions are met. In most cases, such conditions query the current viewport width, although
other factors like aspect ratio, screen orientation, or screen resolution can be queried. Listing 2.1
illustrates three typical media queries.

Media queries with viewport widths are often used to define layout breakpoints, at which the screen
layout changes. For example, as shown in Figure 2.1, setting layout breakpoints at 40 rem and 60 rem
defines three layout widths: narrow, medium, and wide. This could be used to implement a one-column
layout for narrow screens (<40 rem), a two-column layout for medium width screens (between 40 and 60
rem), and a three-column layout for wide screens (>60 rem).

For a web page or application, the viewport is the area of the page or application visible to the user
[W3Schools 2023]. The viewport depends on the display properties of the device and the screen real
estate used by the web browser, as well as on the size of the browser window.

Paddings and margins sometimes have to be reduced on narrower screens, and font sizes may have to be
adjusted to the current viewport too. Some elements may have to be reordered or removed, depending on
the initial structure of the user interface. Wider screens may also pose problems, like elements becoming
too large or lines of text becoming too long. This is especially problematic for paragraphs of text, since
lines longer than around 75 characters are harder to read [Rendle 2019].

Responsive Web Design 5

40rem 60rem

header

global-nav

stories

specials

footer

narrow medium wide

Figure 2.1: A responsive breakpoint diagram. Setting layout breakpoints at, say, 40 rem and 60 rem
provides for three different layout widths: narrow, medium, and wide. The layout scales smoothly
between breakpoints and changes at a breakpoint. [Used with kind permission of Keith Andrews.]

2.3.1 Responsive Design Strategies

In the early days of the web, developers designed applications only for desktops and laptops. Therefore,
it is not surprising that when web browsers became available for mobile devices, the first strategy was
to adapt a design for a desktop device to also fit a mobile device. This design strategy is known as
desktop-first design.

As the number of mobile devices out-shipped the number of desktop and laptop devices in 2010, a
rethinking of the design strategy started. Web designers began to design their applications for narrower
screens first, later ensuring that the design responded well to make use of the extra space available on
wider devices. This strategy became known as mobile-first design [Wroblewski 2011].

The increasing usage of the mobile web led to a strategy which went even further, with the objective to
solely design for mobile devices, so-called mobile-only design. This strategy can make sense for projects
which are clearly dominated by mobile devices, like location-based services [Dreher 2023].

Perhaps the best strategy is to define a number of logical layout widths (say narrow, medium, and wide)
using layout breakpoints, like those in Figure 2.1, and to design for all of them in parallel. A good name
for it would be everything-in-parallel design.

2.3.2 Modern Responsive Design

Over ten years have passed since the term responsive web design was first used [Marcotte 2010]. Naturally,
the web continued to evolve and new tools for creating responsive web applications were created. In his
online article, Shadeed [2023] discusses the current state of responsive web design in 2023.

The core message is to reduce the number of media queries and instead use more recent CSS layout
techniques like Flexbox [MDN 2023a] and Grid [MDN 2023b], and viewport units [MDN 2023c]:

• The Flexbox property flex-wrap can be used to make elements fill up the available space, and
realign themselves automatically into additional rows if space becomes too narrow.

6 2 Responsive Visualization

• CSS Grid layout allows elements to be placed in a 2d grid, with sizing according to a variety of
criteria, such as auto-resizing for columns:
.grid {
grid-template -columns: repeat(auto-fit, minmax(10rem, 1fr));

}

Here, the columns will always have a minimum width of 10rem. If the grid container grows enough to
fit another column without breaking the 10rem constraint, the number of columns will automatically
increase. A more detailed explanation can be found at [Soueidan 2017].
Another possibility is to explicitly assign grid-template-areas for specific named elements:
grid-template -areas: "a a a"

"b c c"
"b c c";

• With the introduction of CSS comparison functions, another tool for increasing the fluidity of layouts
became available. For example, the clamp function allows font sizing to fluidly change between a
minimum and maximum size:
h1 {
font-size: clamp(2rem, 2rem + 0.5vw, 3rem);

}

• Size container queries are similar to media queries, but refer to the size of the parent element
(container), rather than the viewport. This is often what is wanted, so size container queries can be
expected to replace media queries for responsive layout. Container query units (cqw, cqh) work like
viewport units (vw, vh), but are relative to the corresponding parent container.

• Style container queries allow the current styling of a container element to be queried, so as to
conditionally apply styling to its contents.

At the time of writing, all of the above CSS features are supported by all modern web browsers, according
to Deveria [2023], with except to style container queries which are still being standardized.

2.3.3 Avoiding Horizontal Scrolling
In his blog post, Juviler [2021] explains why it is generally a bad idea to encounter horizontal scrolling
in a web application:

• Since the beginning of the web, the convention was and is to scroll vertically through a web
application, not horizontally. Changing this rule would result in a higher cognitive workload for the
user.

• Many users might simply not notice that horizontal scrolling was possible (discoverability).

• Vertical scrolling is easy to do with a mouse wheel, horizontal scrolling, on the other hand, is not.
Similarly, users of mobile phones have a higher range of motion to scroll vertically than horizontally.

For these reasons, it is generally advisable to avoid horizontal scrolling in web development and to deal
with issues of fitting content into narrower widths in other ways.

2.4 Responsive Visualization Challenges
In responsive visualization, a common strategy is to first design a visualization for wider viewports and
then apply responsive transformations to adapt the visualization to also fit narrower ones [Kim et al.
2021]. Such transformations often include reducing or removing non-essential information in order for

Approaches to Responsive Visualization 7

the visualization to take up less space. However, the author has to be careful not to change the original
wider version in a way that communicates a different message.

As Kim et al. [2021] explain, the key challenge when creating a responsive visualization is the density-
message tradeoff. This means shrinking the size of a chart alone will not be sufficient to create a good
visualization for a smaller viewport. They distinguish three types of challenge in this context:

• Graphical Density Challenges: Visualizations often include many smaller elements like axis ticks,
points, lines, labels, etc. When a visualization shrinks, these elements can only shrink to a certain
extent. Otherwise, users would not be able to read labels or differentiate between similar-looking
elements like data points with different radii. However, if elements do not shrink with the visu-
alization, this will inevitably lead to overlapping elements. A typical approach for avoiding such
scenarios is to thin out elements in a way that preserves the original message, but does not show too
many elements.

• Layout Challenges: Visualizations are often built from a set of components. If enough width is
available, it makes sense to place the legend to the right of the chart. If less width is available,
placing the legend above or below the chart is a more reasonable approach.

• Interaction Complexity Challenges: For the majority of interaction modalities on desktop devices,
equivalent interactions exist for mobile devices. However, some interactions, like hovering or
navigating by tabbing (pressing the Tab key), are only available when using a mouse or keyboard,
respectively [Korduba et al. 2022, page 4]. Additional factors like the precision difference between a
finger and a mouse pointer must also be taken into account when designing responsive visualizations.

2.5 Approaches to Responsive Visualization
Two levels of responsiveness can be achieved when creating visualizations: multiple separate pre rendered
visualizations, or a single responsive visualization.

In the first approach, certain ranges of viewport width are predefined and visualizations are created
for each of them beforehand. This is typically done by first creating a base visualization and then
applying responsive transformations at fixed-width breakpoints. The breakpoints should be chosen
carefully to provide appealing visualizations for as many devices as possible. This method comes with
the advantage of having stable, fixed visualizations for specified screen sizes, easing the integration of
visualizations. Certain visualizations can be prepared as raster graphics, if necessary due to performance
constraints. Recently developed tools like Hoffwell’s visualization system [Hoffswell et al. 2020] support
this approach. Modifications to one visualization can be propagated down to the others, and a simultaneous
preview of all visualizations helps avoid inconsistencies. While using multiple pre rendered visualizations
has advantages, it breaks the principle of shipping a single codebase for all kinds of devices.

The second approach is to create one visualization for specific viewport dimensions, which is capable
of adapting itself automatically and fluidly if the dimensions change. This method comes with the
advantage of visualizations being always able to adjust perfectly to the available space. Furthermore, the
transition between different visualization sizes is smoother than with multiple pre rendered visualizations.
For these reasons, visualizations of this type are considered to be truly responsive. The disadvantage of
creating a single responsive visualization is the complex process behind it. Not all transformations are
applied simultaneously and are sometimes capable of influencing each other. Furthermore, breakpoints
will still be necessary to switch between different layouts at specific viewport or container widths. A
good example of a tool for creating a single responsive visualization is RespVis [Andrews et al. 2023].
The designer is provided an API for creating visualizations directly in the DOM of an HTML document.
Chart components can be laid out using standard CSS layout techniques like Flexbox and Grid.

8 2 Responsive Visualization

Chapter 3

Responsive Visualization Patterns

Kim et al. [2021] list 76 design strategies for transforming wider visualizations into narrower ones.
Each strategy includes a target element and an executed action. Targets are grouped into five types:
data, encoding, interaction, narrative, and references/layout, while actions are split into five kinds:
recomposition, rescaling, transposition, reposition, and compensation.

This chapter presents a curated set of 16 tried-and-tested responsive visualization patterns, divided
into three groups: visual patterns (10), interaction patterns (3) and data patterns (3). These patterns are
generic, best practice examples, which can theoretically be applied by any arbitrary visualization system.
However, since the web is the primary medium for consuming visualizations, all the patterns assume
web-based visualizations. Practical examples of the patterns can be seen at the showcase web sites of
Andrews [2018a] and Egger and Oberrauner [2023b].

3.1 Visual Patterns
Visual patterns are applied directly to visualizations in order to change the state and appearance of a
visualization’s components to maximize the user experience depending on the available space:

• V1: Scaling Entire Chart Down

• V2: Repositioning Element Labels

• V3: Using Tooltips Instead of Element Labels

• V4: Rotating Axis Tick Labels

• V5: Shortening Labels and Titles

• V6: Scaling Labels Between Minimum and Maximum Size

• V7: Scaling Down Visual Elements

• V8: Hiding Elements and Labels

• V9: Rotating Chart 90°

• V10: Using a Different Chart

3.1.1 V1: Scaling Entire Chart Down
The most straightforward visual transformation is to scale the whole chart down. However, if downscaling
is too excessive, this approach becomes problematic as certain components become unreadable. While
there is no fixed rule on a minimum font size, there is some consensus around the root font size being 16px

9

10 3 Responsive Visualization Patterns

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(a) Entire chart simply scaled down.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(b) Wide version of chart.

Figure 3.1: V1: A grouped bar chart illustrating that a chart can become unreadable when the entire
chart is simply scaled down. [Images created with RespVis [Egger and Oberrauner 2023b] by the author of this
survey.]

or 12pt [PennState 2023]. The Web Content Accessibility Guidelines (WCAG) documentation also states
that text should be scalable up to 200% of its original size [WCAG 2023]. Text labels in particular should
not be scaled down below this tolerance. Similar issues arise when downscaling markers for data points;
they can become too small to distinguish. Another problem occurs when downscaling a visualization in
just one direction. This can lead to an unacceptable degree of distortion. As Andrews [2018b] states, it
is not enough to just scale down a visualization to make it responsive. If it were, it would be the only
pattern needed for achieving responsiveness. Figure 3.1 illustrates the problems which occur when only
scaling down the entire visualization.

3.1.2 V2: Repositioning Element Labels
Repositioning of labels can help avoid intersections and clutter. In web-based visualizations, this can be
achieved using media queries or container queries. Both of these are discussed in Section 2.3. Figure 3.2
illustrates how repositioning element labels can help avoid clutter in a visualization.

3.1.3 V3: Using Tooltips Instead of Element Labels
If a visualization contains many data points, but has only limited space, a helpful pattern is to hide the
labels of all elements and display an element’s label upon hover or selection. In web-based visualizations,
the CSS hover selector can be used to display a tooltip while hovering over an element with a pointer
device. For touch devices, a single touch can be used to toggle the display of a tooltip. The disadvantage
of this pattern is that it is not immediately obvious to users (discoverability). A practical example of the
usage of tooltips can be seen in Figure 3.3.

3.1.4 V4: Rotating Axis Tick Labels
An especially useful method for avoiding intersections and clutter of axis labels is to rotate the x-axis
tick labels. As the available horizontal space decreases, this approach helps preserve more of the original
axis label information (rather than thinning out or shortening the axis labels). The rotation of y-axis tick
labels can also be considered, but is less useful.

For web-based visualizations, a possible way to achieve rotating tick labels is to use a combination
of JavaScript and CSS. A JavaScript algorithm and event listeners are necessary to detect the currently

Visual Patterns 11

55950€

9990€

11500€

29690€

24425€

6890

13650€

6900€

Car Characteristics

Mercedes-Benz Renault Ford

Other Volkswagen Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make

M
e
rce

d
e
s-B

e
n
z

R
e
n
a
u
lt

Fo
rd

O
th

e
r

V
o
lksw

a
g
e
n

O
p
e
l

(a) Narrow: Adap-
ted label posi-
tions.

55950€

9990€

11500€

29690€

24425€

6890€

13650€

6900€

Car Characteristics

Mercedes-Benz Renault Ford

Other Volkswagen Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make

M
e
rce

d
e
s-B

e
n
z

R
e
n
a
u
lt

Fo
rd

O
th

e
r

V
o
lksw

a
g
e
n

O
p
e
l

(b) Narrow: Un-
changed label
positions.

55950€

9990€

11500€

29690€

24425€

6890€

13650€

6900€

Car Characteristics from AutoScout24 in Germany

Car Make
Mercedes-Benz

Renault

Ford

Other

Volkswagen

Opel

H
P
 i
n
 [

P
S
]

40

80

120

160

200

Car Make

Mercedes-Benz Renault Ford Other Volkswagen Opel

(c) Wide: Plenty of room for element labels.

Figure 3.2: V2: A scatterplot containing element labels. Clutter can lead to labels overlapping
elements at narrow widths. Repositioning the element labels resolves the issue. [Images created with
RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

11800€

50€

41149€
2500€ 64100€40206€

4290€

91000€
28500€200000€

176000€
21162€32000€

79785€
50200€ 241000€134602€

11990€

10€ 58747€105778€102442€26011€
12300€10€

166825€

23200€

136400€ 81104€
2264€

5870€ 46328€

64500€

168055€29830€

76108€ 125343€

215334€

94217€
18950€17061€ 134000€10€4000€

81700€
129000€

34138€51826€
50142€57000€96000€13756€ 74000€

22300€

124000€

4120€

33000€ 85095€
25000€

39998€

27351€

20000€
39851€

56000€31850€3800€ 180000€180936€55608€
40327€79956€

9682€

119500€142600€
21000€

23800€

56770€

54068€ 125550€88204€
54894€

157607€185051€64390€

15736€

47000€ 81122€62514€
23500€

79450€31862€55600€63210€
12987€117660€21700€

25632€10€

99900€9700€36000€79957€100€
25979€85000€

4500€

151000€
57830€

10€ 204000€54980€

13000€

93500€63900€

25860€

72376€39500€

29990€

123000€
107900€

30000€118867€
31500€
124746€167000€

37908€110702€107772€

61979€

16285€

172097€125000€

99305€
28000€112400€89999€

131990€
10€

59150€

1000€

128680€
41500€ 160000€115900€64000€98407€

18459€

50€
244400€

21000€

37600€

15988€
82849€94000€60891€367000€61821€49500€

43873€

68686€42000€

100€

49000€

7400€

3500€

269000€43733€128000€111700€61770€

5000€

800€ 226735€

16990€

225000€60582€148401€209000€
76342€41824€4900€

79072€93427€
45914€27622€16287€
9948€

120000€

2100€

101000€187193€109000€42000€184000€
134000€119475€112500€

4€

57596€99000€244000€

5000€

24852€
136100€

74800€

52736€

108614€196000€4700€13287€
92000€27999€

24470€

123814€58100€110608€

96450€

150000€50000€29893€

19€

300907€21800€

17000€

25€35399€ 240000€140000€86300€
30€ 19632€

169986€

27337€

36000€ 65200€
88807€

39000€ 29000€
98870€

14000€
70277€

83910€
211000€182000€52100€19878€20735€

103115€24255€78000€119000€

16098€

142503€118200€

48744€

190000€74957€103414€
86000€

41130€

66000€
84500€38211€18000€161000€245000€85000€50000€

10€

36957€113789€110193€

96300€
41830€

3000€
40000€

76000€10€
216000€110113€

37600€34000€ 138922€63711€38500€ 119000€37383€9000€

4800€

43654€

23941€

24920€
68904€ 54000€36500€ 28900€55479€3000€

170000€

37755€

116274€
157900€

18370€

28500€163305€79000€ 124694€

81206€
95650€

42117€57000€
103100€

1850€

173990€

10950€
96938€

112054€
67000€

3000€

31700€139173€ 190000€138000€ 159000€116000€147945€9000€

3000€
10780€

64000€
44050€ 40576€ 215000€14176€ 183000€67000€

30349€

43924€15912€

26300€

33703€
17920€
11€

83183€
85000€54000€114000€

96749€

159000€
135110€

92342€51273€68279€40779€28336€70000€74000€92800€11200€28821€80000€
1000€

79942€
25135€

43467€
32000€ 189990€

199000€

62200€
12847€

45000€
54742€ 203200€

142579€
116900€141493€

150628€
62090€

10€ 99300€66300€ 182941€39730€ 99000€
131719€

46500€97000€

22478€22470€

40000€149000€94500€

15754€

112516€99800€89000€100€ 95500€
19008€

17416€55350€46634€19000€ 82260€164000€

15750€17725€

183450€
33890€9984€22500€20€ 47679€

29800€
85750€

94682€107517€ 250000€
159800€

12000€

95770€

182452€

25385€

18654€
149000€20355€5€ 85300€368000€

127507€

126400€93210€42800€10€ 89829€50€

136940€

4900€

100800€
1600€
40569€9985€

117000€
100€27840€

85310€
11072€138409€

173000€
51833€132550€

110513€97450€16569€

1263€

92328€ 68053€
99800€

95000€
120000€

84229€

164000€7990€57900€ 113500€

5000€

22400€

98000€

24335€

118427€

38070€
57000€129358€

75998€73318€358000€
50€ 49000€

1000€59500€166791€187800€13799€ 88456€ 138290€150000€54990€

20€
14975€

70000€
32597€44262€

31021€
20144€

99€
194766€85488€

130000€

23053€135550€

Car Characteristics from AutoScout24 in Germany

Legend
Other

Mercedes-Benz

Renault

Ford

Volkswagen

Opel

C
a
r

P
ri

ce
 [

E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power in [PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

(a) Overwhelming number of element labels. (b) Tooltips instead of labels.

Figure 3.3: V3: If a scatterplot contains many data points in a narrow space, it makes sense to use
tooltips instead of element labels. [Images created with RespVis [Egger and Oberrauner 2023b] by the author of
this survey.]

appropriate angles of labels, while the styling of the labels themselves can be achieved via the CSS
properties rotate or transform: rotate(). The advantage of this pattern is the preservation of the
original axis information. On the downside, the axis labels are harder to read, since the natural reading
direction is not retained. A practical example of a chart making use of rotating x-axis tick labels can be
seen in Figure 3.4.

3.1.5 V5: Shortening Labels and Titles
A common technique for avoiding clutter and overlaps is to have different formats for labels for different
space requirements. Numbers, for example, can be shown in full length if enough space is available
(e.g. 2,200,000), but shortened to well-known abbreviated forms (e.g. 2.2M) when space is limited.
Similar strategies can be applied to other types of text such as dates, organization names, and geographic
locations. However, when using shortened labels in a visualization, any resulting information loss, such
as that caused by the rounding of numbers, should also be considered. Shortened texts should use well-
known and understandable formats so as not to confuse users. Figure 3.5 demonstrates how the technique
can be applied in practice.

12 3 Responsive Visualization Patterns

Electric Power Consumption (kWh per Capita)

Legend

USA

Europe

East Asia

C
o

n
s
u

m
p

ti
o

n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year

19
72

19
74

19
76

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

(a) Narrow: Rotated x-axis labels.

Electric Power Consumption (kWh per Capita)

Legend

USA

Europe

East Asia

C
o

n
s
u

m
p

ti
o

n

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

11,000

12,000

13,000

14,000

Year

1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

(b) Wide: Room for horizontal x-axis labels.

Figure 3.4: V4: A multi-line chart which avoids intersection of x-axis tick labels at narrow widths
by rotating the labels. [Images created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

2.2M

Country

Austria Italy France Germany Netherlands

(a) Narrow: Shortened y-axis labels.

190k 200k 220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0M

400k 420k
450k

Total Remuneration 2018 to 2020

Year
2020

2021

2022

To
ta

l
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

2,000,000

2,200,000

Country

Austria Italy France Germany Netherlands

(b) Wide: Original y-axis labels.

Figure 3.5: V5: A grouped bar chart with label shortening applied to the y-axis tick labels. [Images
created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

3.1.6 V6: Scaling Labels Between Minimum and Maximum Size
Having different font sizes for different space requirements can be a useful method not only for increasing
the readability of labels, but also improving the overall aesthetics of a visualization. Having larger font
sizes where space allows looks much better than choosing the easier, safe option of always having the
same smaller font size, as can be seen in Figure 3.6.

For web-based visualizations, there are two approaches to implement this transformation. The first
relies on media or container queries and defines fixed font sizes for different breakpoints. The other
uses CSS comparison functions to fluidly transition between smaller and larger font sizes. The second
approach can also be combined with container query units to relate the font sizes to the size of the
visualization container. This method relies heavily on modern CSS techniques, which are discussed in
Subsection 2.3.2.

Visual Patterns 13

2.0M

290k

210k
160k

130k
100k

65k

P
o
p
u
la
ti
o
n

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

City

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

(a) Fixed-size (small) unscaled labels.

2.0M

290k
210k

160k 130k 100k 65k

P
o
p
u
la
ti
o
n

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

City

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

(b) Scaled labels.

Figure 3.6: V6: A bar chart with scaled labels. When a visualization has the available space, it
makes sense to enlarge the font size of the labels and titles. [Images created with RespVis [Egger and
Oberrauner 2023b] by the author of this survey.]

3.1.7 V7: Scaling Down Visual Elements
Scaling is a transformation applicable at multiple levels and in multiple variants. One form of scaling
is scaling down selected visual elements. This approach varies for different kinds of element. A bar
element, for example, can be scaled in both horizontal and vertical directions without problems. The
same holds for lines in a line chart, since these simply have to update their thickness and target points. A
marker for a data point is more complicated, since it must retain its aspect ratio during scaling to avoid
distortion. The same holds for any other marker elements.

Freely scaling down a selection of elements is applicable only to visualizations with a variable aspect
ratio. Other types of visualization like pie charts, chord diagrams, and maps can apply this kind of
transformation to their elements only when retaining their original aspect ratio. A good example of a
practical use case of this pattern can be seen in Figure 3.5. The width of the bars of the grouped bar chart
becomes smoothly narrower as less space is available.

The advantages of this technique are that much space can be saved without information loss and smooth
transitions via event listeners appear very natural. On the downside, the pattern is only applicable to
visualizations with a manageable number of elements, since otherwise elements are already quite small
even at larger widths. Another disadvantage is that line elements in line charts appear steeper at narrower
widths and flatter at larger widths, affecting the perception of the original message.

14 3 Responsive Visualization Patterns

190k200k220k

680k
730k

780k

1.2M

1.3M

1.4M

1.8M
1.9M

2.0M

400k420k450k

Total Remuneration

2020 2021 2022

To
ta

l
R

e
m

u
n

e
ra

ti
o

n
[E

U
]

0.0

400k

800k

1.2M

1.6M

2.0M

Country

Austria Italy France GermanyNetherlands

(a) Horizontal space is cluttered.

190k

200k

220k

680k

730k

780k

1.2M

1.3M

1.4M

1.8M

1.9M

2.0

400k

420k

450k

Total Remuneration

2020 2021 2022

C
o

u
n

tr
y

Austria

Italy

France

Germany

Netherlands

Total Remuneration
[EU]

0.0 400k 800k 1.2M 1.6M 2.0M

(b) Transposing the chart so it extends
vertically rather than horizontally.

Figure 3.7: V9: Rotating a grouped bar chart by 90° to make better use of vertical space. [Images
created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

3.1.8 V8: Hiding Elements and Labels
One possibility to adapt a visualization to narrower widths is to remove some elements or labels completely.
When applying this technique, care must be taken to not alter the original message of the visualization.
The advantage of this pattern is that an arbitrary amount of space can be saved by removing enough
elements. However, this comes at the cost of information loss with respect to all the removed elements.
When removing whole categories or dimensions, it is advisable to offer interactive possibilities, so the
user can choose which dimensions or categories are of interest. This is described in more detail in
Subsection 3.2.2. A practical example of hiding labels can be seen in Figure 3.3, which demonstrates
how visible labels can be replaced with tooltips.

3.1.9 V9: Rotating Chart 90°
Transposing or rotating a chart by 90° can be a convenient way to align the dimension which requires
more space vertically rather than horizontally. Even if vertical scrolling is required, it is much more
acceptable than horizontal scrolling. An example of a rotated grouped bar chart can be seen in Figure 3.7.
The advantage of this pattern is that no information is lost by the transformation process. The main
disadvantage is the major change of the visualization which may affect other ongoing transformations.

3.1.10 V10: Using a Different Chart
At some point, the best option may be to completely swap a visualization for a different one. This
technique is the last resort, when other techniques either lead to unacceptable information loss, alteration
of the original message, distortion of the visualization, or unreadable elements or labels. The advantage
of this technique is that it provides a solution where all others do not. On the downside, maintaining two
different visualizations is more effort.

Interaction Patterns 15

Figure 3.8: I1: The menu provided by Highcharts. [Image created with Highcharts [Highsoft 2023] by Keith
Andrews and used with kind permission.]

3.2 Interaction Patterns
Interaction patterns support responsiveness by providing interactive functionality such as zooming and
filtering:

• I1: Supporting Toolbar and Menus

• I2: Filtering Dimensions and Records

• I3: Supporting Zooming

3.2.1 I1: Providing a Toolbar or Menu
Interactivity bound to visual elements, such as hovering or a right-click context menu, suffers from poor
discoverability. The user has to know such actions are possible or discover them by trial and error. A
toolbar or menu, on the other hand, is visible to users, and its features can be explored. Typical actions
provided by toolbars or menus include being able to download a chart as SVG, download the data as CSV,
view the chart in full screen, view the data as a table, and show and hide specific records and dimensions
in the data.

The advantages of this pattern are the theoretically unlimited interaction options that can be added to
a visualization and the high likelihood of the toolbar being discovered by the user. Disadvantages of the
pattern include the space needed for the additional control elements and the effort for the user to find them
if they are hidden by default. A practical example of a menu from Highcharts is shown in Figure 3.8.
Another example showing the toolbar provided by Plotly.js can be seen in Figure 3.9.

3.2.2 I2: Filtering Dimensions and Records
If space requirements are very tight, there is often no other solution than removing information from a
visualization. However, when doing so it is a good idea to empower the user to choose which dimensions
or records should be shown or hidden. The user may not be able to see all the data at once, but still has
access to all information if necessary.

Possible interaction elements for the filtering of data can be the legend of a chart, the elements
themselves, or separate control elements such as dropdown menu. Figure 3.10 shows the filtering of
records from a grouped bar chart.

16 3 Responsive Visualization Patterns

Figure 3.9: I1: The toolbar provided by Plotly.js. [Image created with Plotly.js [Plotly 2023] by the author of this
survey.]

(a) All five records visible. (b) Only two of five records visible.

Figure 3.10: I2: A grouped bar chart where records (Countries) or dimensions (Years) can be filtered
with a control menu. [Images created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

3.2.3 I3: Supporting Zooming
Zooming is a crucial tool for overcoming the problems of limited resolutions and narrow screens. The
standard approach, geometric zoom, allows a user to control the magnification of a visualization, and
thereby trade the space needed for irrelevant information for more space for areas of interest [infovis-wiki
2006]. The scatterplot example presented by Egger and Oberrauner [2023b] demonstrates perfectly how
this technique can be combined with grabbing and panning to make data points accessible. Figure 3.11
shows how zooming can be used to solve problems with dense data and intersecting elements.

In fisheye zoom, the focus area is magnified and the surrounding context area reduced, like using a
magnifying glass to view the chart or visualization. Instead of removing the context completely, it is
distorted to take up less space. For cartesian visualizations, with perpendicular axes such as x and y,
cartesian zoom can be used. This technique divides the chart into a grid of cells and distorts the size of

Data Patterns 17

Car Characteristics from AutoScout24 in Germany

Legend
Volkswagen

Opel

Ford

Renault

Mercedes-Benz

Other

P
ri

c
e

[E
U

]

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

240,000

Horse Power
[PS]

0 50 100 150 200 250 300 350 400 450 500 550 600 650

(a) Unzoomed.

Car Characteristics from AutoScout24 in Germany

Legend
Volkswagen

Opel

Ford

Renault

Mercedes-Benz

Other

P
ri

c
e

[E
U

]

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

70,000

Horse Power
[PS]

160 180 200 220 240 260 280 300 320

(b) Geometric zooming.

Figure 3.11: I3: A scatterplot with many overlapping data points. To enable the user to inspect all
points, geometric zooming is supported. [Images created with RespVis [Egger and Oberrauner 2023b] by the
author of this survey.]

the cells such that more interesting cells are enlarged to show more detail, while surrounding cells are
made smaller. Fisheye and cartesian zoom are described in detail by Sarkar and Brown [1992], interactive
examples can be explored in the responsive scatterplot example by Andrews [2018a].

Another approach is called semantic zoom [Bederson and Hollan 1995]. This form of zooming does
not simply change the sizes of items, but considers which items to display and how to display them. To
apply the technique, a form of data structuring is needed to create different layers of detail. Depending
on the current zoom factor, elements can be removed, split into sub-elements, or change size or shape
[infovis-wiki 2014].

3.3 Data Patterns
The applicability of visual patterns is highly dependent on the size of the dataset and the chosen visualiz-
ation type. In many cases, it is necessary to group and transform the original data to obtain new datasets
and statistics, which can be visualized more easily. Such data patterns include:

• D1: Data Generalization

• D2: Data Aggregation

• D3: Data Clustering

• D4: Data Sampling

3.3.1 D1: Data Generalization
Data generalization combines many data points into manageable groups. For example, individual ages
can be binned into age ranges [Satori 2021]. The approach allows information to be presented in a more
compact way, consuming less space and not overwhelming the user with too many data points.

An example can be seen in Figure 3.12, which shows a parallel coordinates chart about used cars in
Germany. In Figure 3.12a, each car is displayed as its own polyline. After binning the records along the
first three dimensions, classes of cars have been created, allowing Figure 3.12b to show a different view
on the data.

Rabinowitz [2014] shows another way of how data generalization can be used to create responsive
visualizations. He created an interactive online prototype of a scatterplot, where the user can select
how much space is available to the visualization and how many data points should be included. The
visualization transforms into a heatmap if the density of the data points exceeds a certain threshold. The

18 3 Responsive Visualization Patterns

(a) Each car is displayed as its own polyline. (b) Binning produces classes of car.

Figure 3.12: D1: A parallel coordinates chart with binning applied to the first three dimensions.
[Images created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

resulting heatmap is a generalized version of the scatterplot, in that it bins data points into a grid with the
cell coloring indicating the data point density, as shown in Figure 3.13.

3.3.2 D2: Data Aggregation
Data aggregation is a method used to summarize the information from a collection of data points into
one or multiple useful statistics, such as average or sum [Zanini 2023]. When creating responsive
visualizations, it allows the presentation of large amounts of underlying data as single visualization
elements.

Figure 3.14 shows the global surface temperature anomalies of the years 1850 and 2023, i.e. the
difference in global surface temperature in those years compared to the average temperature in the 100
years from 1901 to 2000 [NCEI 2024]. The bar chart in Figure 3.14a shows the data for 1850 and 2023
in monthly intervals. The bar chart in Figure 3.14b aggregates the monthly data into two bars, one for
each of the two years. This version of the chart is much more compact, but the original message of a
significant rise in average global surface temperature between the years 1850 and 2023 is preserved.

3.3.3 D3: Data Clustering
Clustering or cluster analysis groups objects (records) based on their similarity. The most common clus-
tering algorithms include: hierarchical clustering, k-means clustering, model-based clustering, density-
based clustering, and fuzzy clustering [Matilda 2023].

For responsive visualizations, clustering algorithms enable new options for dealing with large datasets
as it allows the abstraction of similar data points within a dataset. One example is the use of agglomerative
hierarchical clustering to replace overlapping data points with a cluster element, with interactions such
as displaying cluster information and toggling presentation as a cluster versus individual data points.

Data Patterns 19

(a) Each data point is displayed individually. (b) Binning produces cells shaded according to data
point density.

Figure 3.13: D1: A scatterplot transforms into a heatmap if a certain threshold of data point density
is exceeded. [Images created with Rabinowitz’ prototype [Rabinowitz 2014] by the author of this survey.]

(a) Monthly data. (b) Yearly data.

Figure 3.14: D2: Two versions of a bar chart with different time aggregation intervals. [Images created
with Chartist [Kunz 2017] by the author of this survey.]

20 3 Responsive Visualization Patterns

3.3.4 D4: Data Sampling
Data sampling is a technique typically used in statistical analysis to identify patterns and trends in a
population by extracting, processing, and analyzing a representative sample of an overall population
[Egnyte 2022]. It can also be used to improve the responsiveness and performance of visualizations by
avoiding overplotting.

Probabilistic sampling has the objective of creating samples which represent the overall population as
accurately as possible. Different types of probabilistic sampling include: random sampling, stratified
sampling, cluster sampling, and systematic sampling. Non-probabilistic sampling techniques are less
rigorously representative and include: convenience sampling, quota sampling, snowball sampling, and
purposive sampling.

A good example of how data sampling can be used to create responsive visualizations can be seen in
Figure 3.11. The scatterplots show a random sample of 500 cars from the original 46,405 cars in the
dataset [Ander 2021].

Chapter 4

Responsive Visualization Tools

A number of tools are available to make it easier for developers to create responsive visualizations. These
can be grouped into three types:

• Responsive Visualization Libraries: JavaScript code libraries which can be used by developers to run
responsive visualizations directly in the browser. They help developers create highly customizable,
interactive visualizations adaptable to all possible space requirements.

• Responsive Visualization Systems: These systems provide a user interface for creating responsive
visualizations without having to write any code. They can be used by non-programmers, but
provide less customizability than working directly with code. The created visualizations can then
be embedded into the desired applications.

• Visualization Transformation Tools: This kind of tool assists in the design of responsive visualiza-
tions by taking a base design and automatically applying transformations to it to obtain visualizations
which fit other space requirements.

4.1 Responsive Visualization Libraries
Responsive visualization libraries help developers code responsive visualizations which run directly in the
browser. Five responsive visualization libraries were explored: Chart.js, Plotly.js, Chartist, Highcharts,
and RespVis. The following criteria were used to compare them:

• Render Method: One of SVG-DOM, Canvas2D, or WebGL.
SVG-DOM refers to the use of JavaScript to dynamically create and modify SVG nodes in the
browser’s internal data structure (DOM). SVG charts are vector graphics and are freely scalable.
They can be styled by CSS and can be relatively easily saved as SVG files.
Canvas2D refers to the use of the HTML <canvas> element and its 2d rendering context to draw
graphics to a 2d pixel-based canvas. Swensen [2021] discusses the differences between SVG
rendering and canvas rendering.
WebGL refers to the use of the HTML <canvas> element and its 3d webgl or webgl2 rendering context
to create scene-based 3d graphics with the WebGL 3d graphics API [Khronos 2024]. WebGL is a
low-level API, but its graphics are hardware accelerated where a device has a GPU, making WebGL
graphics highly performant. WebGPU is a new low-level 3d graphics API [W3C 2024], designed to
supersede WebGL.

• Available Charts: The suite of chart types provided by the library.

• Licensing: The license(s) under which the library is available.

• Bundle Size: The unpacked size and the minified gzipped size of the library bundle available in the

21

22 4 Responsive Visualization Tools

City Population

Vienna 1,973,403
Graz 289,440
Linz 210,165
Salzburg 155,021
Innsbruck 132,493
Klagenfurt 101,403
Villach 65,127

Table 4.1: The population of seven Austrian cities from 2023 [Hernández 2023]. The dataset was
used to create a simple bar chart with each of five visualization libraries.

npm package registry, according to Bundlephobia [2023].

• Popularity: The number of stars on GitHub.

• Performance: Performance is measured by the lowest frame rate (fps) occurring while resizing a bar
chart for 10 seconds, once with the unchanged dataset (7 bars) and once with the dataset included
ten times (70 bars). The tests were performed using Firefox 124.0.1 on Ubuntu 22.4.4 LTS, on a
Acer laptop with 16 GB RAM.

• Provided Functionality: The features and functionality provided by the library.

To analyze and compare the libraries, the same bar chart was created with each of the five libraries
using the dataset shown in Table 4.1. The data represents the population of six Austrian cities as provided
by Hernández [2023] in 2023. The five charts are hosted on a dedicated web site [Egger 2023].

4.1.1 Chart.js
Chart.js is an open-source library for creating charts via the HTML canvas element (Canvas2D) [Chart.js
2023]. Figure 4.1 shows the example bar chart created with Chart.js. The following points sum up the
most important information about Chart.js v4.3.3:

• Render Method: Canvas2D.

• Available Charts: Eight different chart types: area charts, bar charts, bubble charts, doughnut and
pie charts, line charts, polar area charts, radar charts, and scatterplots.

• Licensing: Open-source. Anyone can make contributions via pull requests.

• Bundle Size: Unpacked 4.92 MB, minified gzipped 66.6 kB.

• Popularity: 62 k GitHub stars.

• Performance: The performance test resulted in a minimum of 57 fps with 7 bars and 53 fps with 70
bars.

• Provided Functionality: The reason for Chart.js’ popularity is its well thought-out default configur-
ation, making it possible to create responsive charts with smooth animations with just a few lines
of code. The team behind the library provides solid documentation for all chart types, with extens-
ive examples too. Chart.js offers good basic interactiveness like smooth animations and tooltips.
However, elements cannot be directly customized, since are only drawn to a HTML5 canvas element.

Responsive Visualization Libraries 23

(a) Narrow. (b) Wide.

Figure 4.1: Chart.js: The example bar chart created with Chart.js on narrow and wide screens.
[Images created with Chart.js [Chart.js 2023] by the author of this survey.]

4.1.2 Plotly.js
Plotly.js renders its content inside an SVG element [Plotly 2023]. It is built on top of D3 and provides
a broad selection of available visualization types. Figure 4.2 shows the example bar chart created with
Plotly.js. The following points sum up the most important information about Plotly.js v2.26.2:

• Render Method: SVG-DOM.

• Available Charts: Over 40 different chart types, including 3D charts and geographical maps.

• Licensing: Open-source. Anyone can make contributions via pull requests.

• Bundle Size: Unpacked 60.4 MB, minified gzipped 1.1 MB.

• Popularity: 15.9 k GitHub stars.

• Performance: The performance test resulted in a minimum of 54 fps with 7 bars and 20 fps with 70
bars.

• Provided Functionality: The configuration of charts is not as straightforward as with Chart.js. The
default settings do not lead to such smooth and pleasing results, making it harder for developers
to find the perfect configuration. Activating the responsive mode enables the automatic resizing of
a visualization, but the adjustments to the visualization do not look smooth by default. The chart
creator can adjust hover, click, zoom, and pan events. Plotly.js provides a toolbar for its charts,
containing controls for the end user to zoom, pan, and download the chart.

4.1.3 Chartist
Chartist is a lightweight tool primarily used for generating basic chart types [Kunz 2017]. Before Chartist
was created, there already existed many different charting libraries. The motivation behind creating
Chartist was to solve all the little problems of the existing libraries and to create an even better one [Kunz
2017]. Figure 4.3 shows the example bar chart created with Chartist.

The following points sum up the most important information about Chartist v1.3.0:

• Render Method: SVG-DOM.

• Available Charts: Bar charts, line charts, and pie charts, as well as subtypes and variations of these
basic chart types.

• Licensing: Open-source. Anyone can make contributions via pull requests.

24 4 Responsive Visualization Tools

(a) Narrow. (b) Wide.

Figure 4.2: Plotly.js: The example bar chart created with Plotly.js on narrow and wide screens.
[Images created with Plotly.js [Plotly 2023] by the author of this survey.]

(a) Narrow. (b) Wide.

Figure 4.3: Chartist: The example bar chart created with Chartist on narrow and wide screens.
[Images created with Chartist [Kunz 2017] by the author of this survey.]

• Bundle size: Unpacked 1.35 MB, minified gzipped 11.7 kB.

• Popularity: 13.3 k GitHub stars.

• Performance: The performance test resulted in a minimum of 57 fps with 7 bars and 49 fps with 70
bars.

• Provided Functionality: When creating a chart with Chartist, one will find two popular versions of
the library. A GitHub Pages homepage [Kunz 2017] of version v0.11 is returned as the first result
when browsing for Chartist. However, this version is deprecated, the documentation at [Kunz 2023]
shows information about the current version v1.3.0. When trying to experiment with different chart
configurations, one can see that the docs are only partly complete. Using TypeScript and exploring
directly how types are built up is perhaps a faster way to search for specific chart options. Since
Chartist primarily focuses on the visualization and rendering of charts, it is up to the developer
which event handling and interaction possibilities are implemented. The Chartist team recommends
using the default styles and overriding them as necessary.

Responsive Visualization Libraries 25

(a) Narrow. (b) Wide.

Figure 4.4: Highcharts: The example bar chart created with Highcharts on narrow and wide screens.
[Images created with Highcharts [Highsoft 2023] by the author of this survey.]

4.1.4 Highcharts
Highcharts is a commercial charting library with source code available, which offers multiple different
licenses [Highsoft 2023]. For non-commercial and educational purposes, the library can be used for free.
Figure 4.4 shows the example bar chart created with Highcharts.

The following points sum up the most important information about Highcharts v11.1.0:

• Render Method: SVG-DOM.

• Available Charts: Over 50 different chart types, and additional modules for creating dashboards,
maps, stocks and Gantt charts.

• Licensing: Commercial product with a variety of licenses for commercial use. Free for non-
commercial and educational use. The source code is available. Developers can contribute to the
project via pull requests.

• Bundle Size: Unpacked 116 MB, minified gzipped 96.5 kB.

• Popularity: 11.5 k github stars.

• Performance: The performance test resulted in a minimum of 56 fps with 7 bars and 52 fps with 70
bars.

• Provided Functionality: The setup needed for creating a first chart with Highcharts is somewhat
cumbersome, because the demonstration examples do not include the components which must be
imported from the library. Also, the declaration file is very large (over 23 MB). This can lead
to limitations when making use of TypeScript’s intellisense system. Highcharts provides a broad
selection of possibilities when it comes to user interactions. By default, elements appear via
animations and are highlighted on hovering. Tooltips are included by default too. However, the
transition between different widths and heights of a visualization is not smooth.

4.1.5 RespVis
RespVis is an open-source visualization library and built on top of D3 [Egger and Oberrauner 2023a;
Andrews et al. 2023]. It uses a novel layouting approach to make it possible to position SVG elements
via CSS. Figure 4.5 shows the example bar chart created with RespVis. he following points sum up the
most important information about RespVis v1.0.0:

• Render Method: SVG-DOM.

26 4 Responsive Visualization Tools

1.

289.4k

210.2k

155.0k

132.5k

101.4k

65.13k

Population

C
it
y

Vienna

Graz

Linz

Salzburg

Innsbruck

Klagenfurt

Villach

Population

0
.0

2
0
0
k

4
0
0
k

6
0
0
k

8
0
0
k

1
.0
M

1
.2
M

1
.4
M

1
.6
M

1
.8
M

2
.0
M

(a) Narrow.

2.0M

290k

210k
160k 130k

100k
65k

Population of Austrian Cities

P
o

p
u

la
ti

o
n

0.0

200k

400k

600k

800k

1.0M

1.2M

1.4M

1.6M

1.8M

2.0M

City

Vienna Graz Linz Salzburg Innsbruck Klagenfurt Villach

(b) Wide.

Figure 4.5: RespVis: The example bar chart created with RespVis on narrow and wide screens.
[Images created with RespVis [Egger and Oberrauner 2023b] by the author of this survey.]

• Available Charts: Bar charts, line charts, and scatterplots, as well as variations and subtypes thereof.

• Licensing: Open-source. Anyone can make contributions via pull requests.

• Bundle Size: Unpacked 377 kB, minified gzipped 57 kB. RespVis is currently not available in the
npm package registry, therefore the size was directly measured by cloning and building the source
code of the library.

• Popularity: RespVis is currently not widely used.

• Performance: The performance test resulted in a minimum of 47 fps with 7 bars and 7 fps with 70
bars.

• Provided Functionality: RespVis currently does not provide extensive documentation on how to
create visualizations, but has showcase examples included in the source code of the repository
[Egger and Oberrauner 2023a]. The library lets users create charts by calling the corresponding
render methods in JavaScript. The rendered charts can then be styled via CSS and responsive
transformations can be specified either via CSS or by assigning event listeners and changing the data
passed to the visualization.

Some further improvements which could be made to RespVis include:

• Automatic Responsive Transformations: Applying responsive transformations automatically, without
requiring the user to specify them, is one of the reasons responsive libraries are popular. Many users
simply want a working solution for all screen sizes and do not care about when exactly which
transformation is applied. For example, automatic tick reduction when the chart shrinks is very
practical.

• Smooth Animations: Some chart libraries support appealing animations on the first rendering of a
chart. This would fit well in RespVis.

• Grid Lines: Toggling the visibility of grid lines would be a nice feature for users of RespVis.

• Developer Experience: A well-documented, consistent API with extensive examples is crucial for a
library to be adopted by developers.

• Applying Bundle Splitting: Chart.js has a separate guide to how the tree shaking process can be
optimized for the library. A similar approach would make sense for RespVis.

• Automatic Text Wrapping: Highcharts is the only library which creates titles that wrap automatically

Responsive Visualization Systems 27

Figure 4.6: Hoffswell et al: The tool supports the design of multiple size variants of a chart in
parallel. [Image extracted from Hoffswell et al. [2020]. Copyright © 2020 Association of Computing Machinery and
used under § 42f.(1) of Austrian copyright law.]

if too little space is available. This is a useful feature and should be included in RespVis too, as it
reduces the need to specify different title text for different breakpoints.

4.2 Responsive Visualization Systems
This section discusses recent tools which support the creation of multiple versions of a visualization to
fit different space requirements.

4.2.1 Hoffswell et al Visualization System
Hoffswell et al. [2020] implemented a tool for designing multiple views of a visualization in parallel,
for instance, a landscape desktop version, and both portrait and landscape mobile versions. Constructed
visualizations are specified in Vega-Lite [Heer 2024], a high-level grammar for interactive visualizations.
Modifications made to one view are propagated to the other views by default. All views are previewed
at the same time to help avoid inconsistencies and keep all views up to date. Views can also be locked
and therefore excluded from propagation. If only two views are unlocked one can adjust the differences
between the views.

The visualization tool is not publicly available, but there is an example gallery showcasing visualizations
created by the tool [Hoffswell et al. 2023]. Figure 4.6 shows the user interface of the tool during the
design process with multiple views of the visualization in parallel.

4.2.2 Power BI
Power BI is a set of services provided by Microsoft [Microsoft 2024] for collecting, analyzing, trans-
forming data from one or multiple sources and finally creating visualizations and reports which can be
collaboratively shared.

28 4 Responsive Visualization Tools

(a) Narrow. (b) Wide.

Figure 4.7: Power BI: When scaling a visual up or down in a report, it responsively adjusts to the
new space requirements. However, it remains static once published. [Images created with Power BI
[Microsoft 2024] by the author of this survey.]

Gal [2017] provides a short description of the responsive features available for Power BI. In short,
when working on a report via Power BI Desktop, a visualization designer can change the size of an
existing visual and the visual will automatically adapt to its new width and height. This feature comes
in handy when creating a visual for different devices with the visual automatically adapting to the new
requirements. However, the visual then remains static when published at that particular size. Figure 4.7
shows the same bar chart adapted by Power BI Desktop to narrower and wider sizes.

4.3 Visualization Transformation Tools
This section discusses tools which automatically apply responsive transformations to existing visualiza-
tions to adapt them to different space requirements.

4.3.1 MobileVisFixer
MobileVisFixer is a tool to automatically transform SVG-based graphics into mobile-friendly ones [Wu
et al. 2021]. MobileVisFixer uses a reinforcement-learning-based approach, producing a model capable
of finding mobile-friendly solutions for visualization problems in a claimed 89% of cases.

Initially, 374 visualization examples from 103 different domains were collected by a web crawler. The
authors then manually went through all the examples and identified five main issues with the visualizations
in terms of mobile-friendliness:

• Content placed outside the viewport.

• Font size unreadable.

• Cluttered and overlapping text.

• Unnecessary white space.

• Visualization layout becomes distorted.

In the end, the model was trained to optimize the first four of the above-listed issues. Successful
transformations can be seen in Figure 4.8. Unfortunately, the source code of MobileVisFixer is currently
not public, which prohibits practical evaluation.

Visualization Transformation Tools 29

Figure 4.8: MobileVisFixer: Uses an AI model to transform a visualization to a more mobile-friendly
version. [Image extracted from Wu et al. [2021]. Copyright © 2021 IEEE and used under IEEE Thesis/Dissertation
Reuse Rule.]

4.3.2 Setlur and Chung Line Chart Resizer
Setlur and Chung [2021] implemented a line chart resizing algorithm to automatically adapt line charts
to fit different size requirements. The creation of the tool was inspired by cartographic generalization
principles, which help to remove less semantically meaningful elements and emphasize more relevant
elements in the field of cartography.

The algorithm first analyzes all elements of an existing line chart to assess their semantic meaning.
Then a number of spatial metrics are calculated: density, distance, area ratio, and collision between
elements. The algorithm first repositions labels via jittering and eliminates semantically less important
elements until the spatial constraints are satisfied. Subsequently, the line is simplified and ticks are
merged to avoid congestion. Unfortunately, the source code of the line chart resize algorithm is currently
not public, which prohibits practical evaluation.

According to Setlur and Chung [2021], the algorithm was implemented in HTML and JavaScript using
D3. Figure 4.9 shows an example of a line chart resized to fit narrower screen sizes.

30 4 Responsive Visualization Tools

Figure 4.9: Setlur and Chung: Automatic resizing of line charts on narrower spaces. [Image extracted
from Setlur and Chung [2021]. Used under the terms of a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.]

Chapter 5

Concluding Remarks

This survey summarizes existing work in the field of responsive visualization and its related field respons-
ive web design. It describes a set of patterns applicable to create responsive visualizations. Existing
libraries, systems, and tools which ease the creation of responsive visualizations are discussed and
analyzed.

The presented patterns vary deeply in type and degree of implementation complexity and include
techniques for conducting small changes as well as complete transformations of a visualization. The
decision as to which pattern to use always depends on the visualization type and the resulting advantages
and disadvantages of the pattern in the given scenario. In most cases, the combination of a number of
patterns leads to the desired result.

31

32 5 Concluding Remarks

Bibliography

Ander [2021]. Germany Cars Dataset. 2021. https://kaggle.com/datasets/ander289386/cars-germany?r
esource=download (cited on page 20).

Andrews, Keith [2018a]. Responsive Data Visualisation. 2018. https://projects.isds.tugraz.at/respv
is/ (cited on pages 9, 17).

Andrews, Keith [2018b]. Responsive Visualisation. CHI 2018 Workshop on Data Visualization on Mobile
Devices (MobileVis 2018) (Montréal, Québec, Canada). 21 Apr 2018. https://mobilevis.github.io/a
ssets/mobilevis2018_paper_4.pdf (cited on pages 1, 10).

Andrews, Keith [2024]. Information Visualisation Course Notes. 08 Mar 2024. https://courses.isds.tu
graz.at/ivis/ivis.pdf (cited on page 1).

Andrews, Keith, David Egger, and Peter Oberrauner [2023]. RespVis: A D3 Extension for Responsive SVG
Charts. Proc. 27th International Conference Information Visualisation (IV 2023) (Tampere, Finland).
25 Jul 2023, pages 19–22. doi:10.1109/IV60283.2023.00014. https://ftp.isds.tugraz.at/pub/papers/and
rews-iv2023-respvis.pdf (cited on pages 7, 25).

Bederson, Benjamin B. and James D. Hollan [1995]. Pad++: A Zoomable Graphical Interface System.
Conference Companion, ACM Conference on Human Factors in Computing Systems (CHI 1995)
(Denver, Colorado, USA). 07 May 1995, pages 23–24. doi:10.1145/223355.223394. https://cs.umd.edu
/~bederson/images/pubs_pdfs/p23-bederson.pdf (cited on page 17).

Bundlephobia [2023]. Bundlephobia. 06 Dec 2023. https://bundlephobia.com/ (cited on page 22).

Chart.js [2023]. Chart.js. 19 Aug 2023. https://chartjs.org/ (cited on pages 22–23).

Christensson, Per [2019]. Resolution Defiinition. 26 Aug 2019. https://techterms.com/definition/reso
lution (cited on page 3).

Deveria, Alexis [2023]. Can I Use. 19 Aug 2023. https://caniuse.com/ (cited on page 6).

Dreher, Stefan [2023]. Digitalisierung mit Apps: Mobile First wird zu Mobile Only. 11 Oct 2023. https:
//almato.com/blog/mobile-first-zu-mobile-only/ (cited on page 5).

Egger, David [2023]. Responsive Visualization Tools. 19 Aug 2023. https://responsive-visualization-
tools.netlify.app/ (cited on page 22).

Egger, David and Peter Oberrauner [2023a]. Respvis Repository. 24 Apr 2023. https://github.com/tugr
az-isds/respvis (cited on pages 25–26).

Egger, David and Peter Oberrauner [2023b]. Respvis-V2 Release Demo. 24 Apr 2023. https://respvis.n
etlify.app/ (cited on pages 9–14, 16–18, 26).

Egnyte [2022]. Data Sampling. 19 Apr 2022. https://egnyte.com/guides/life-sciences/data-sampling
(cited on page 20).

Gal, Roy [2017]. Responsive Visualizations Coming to Power BI. 06 Jul 2017. https://powerbi.microsof
t.com/fr-be/blog/responsive-visualizations-coming-to-power-bi/ (cited on page 28).

33

https://kaggle.com/datasets/ander289386/cars-germany?resource=download
https://kaggle.com/datasets/ander289386/cars-germany?resource=download
https://projects.isds.tugraz.at/respvis/
https://projects.isds.tugraz.at/respvis/
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://mobilevis.github.io/assets/mobilevis2018_paper_4.pdf
https://courses.isds.tugraz.at/ivis/ivis.pdf
https://courses.isds.tugraz.at/ivis/ivis.pdf
http://doi.org/10.1109/IV60283.2023.00014
https://ftp.isds.tugraz.at/pub/papers/andrews-iv2023-respvis.pdf
https://ftp.isds.tugraz.at/pub/papers/andrews-iv2023-respvis.pdf
http://doi.org/10.1145/223355.223394
https://cs.umd.edu/~bederson/images/pubs_pdfs/p23-bederson.pdf
https://cs.umd.edu/~bederson/images/pubs_pdfs/p23-bederson.pdf
https://bundlephobia.com/
https://chartjs.org/
https://techterms.com/definition/resolution
https://techterms.com/definition/resolution
https://caniuse.com/
https://almato.com/blog/mobile-first-zu-mobile-only/
https://almato.com/blog/mobile-first-zu-mobile-only/
https://responsive-visualization-tools.netlify.app/
https://responsive-visualization-tools.netlify.app/
https://github.com/tugraz-isds/respvis
https://github.com/tugraz-isds/respvis
https://respvis.netlify.app/
https://respvis.netlify.app/
https://egnyte.com/guides/life-sciences/data-sampling
https://powerbi.microsoft.com/fr-be/blog/responsive-visualizations-coming-to-power-bi/
https://powerbi.microsoft.com/fr-be/blog/responsive-visualizations-coming-to-power-bi/

34 Bibliography

Heer, Jeffrey [2024]. Vega-Lite – A Grammar of Interactive Graphics. 12 Apr 2024. https://vega.githu
b.io/vega-lite (cited on page 27).

Hernández, Juanma [2023]. World Cities Database. 31 Mar 2023. https://kaggle.com/datasets/juanmah
/world-cities (cited on page 22).

Highsoft [2023]. Highcharts. 30 Aug 2023. https://highcharts.com/ (cited on pages 15, 25).

Hoffswell, Jane, Wilmot Li, and Zhicheng Liu [2020]. Techniques for Flexible Responsive Visualization
Design. Proc. ACM Conference on Human Factors in Computing Systems (CHI 2020) (Online). ACM,
25 Apr 2020, Paper 648, pages 1–13. doi:10.1145/3313831.3376777. https://jhoffswell.github.io/webs
ite/resources/papers/2020-ResponsiveVisualization-CHI.pdf (cited on pages 7, 27).

Hoffswell, Jane, Wilmot Li, and Zhicheng Liu [2023]. Responsive Visualization System Example Gallery.
30 Aug 2023. https://jhoffswell.github.io/website/resources/supplemental/responsive-supplemen
tal/ (cited on page 27).

Horak, Tom, Wolfgang Aigner, Matthew Brehmer, Alark Joshi, and Christian Tominski [2021]. Respon-
sive Visualization Design for Mobile Devices. In: Mobile Data Visualization. Edited by Bongshin
Lee, Raimund Dachselt, Petra Isenberg, and Eun Kyoung Choe. CRC Press, 23 Dec 2021. Chapter 2,
pages 33–65. ISBN 0367534711. doi:10.1201/9781003090823-2. https://imld.de/cnt/uploads/Horak2021_Mo
bileDataVisBook_Chap02_Responsive.pdf (cited on page 3).

Infogram [2016]. Key Figures in the History of Data Visualization. 15 Jun 2016. https://medium.com/@In
fogram/key-figures-in-the-history-of-data-visualization-30486681844c (cited on page 1).

infovis-wiki [2006]. Zoom. 05 Oct 2006. https://infovis-wiki.net/wiki/Zoom (cited on page 16).

infovis-wiki [2014]. Semantic Zoom. 10 Jul 2014. https://infovis-wiki.net/wiki/Semantic_Zoom (cited
on page 17).

Juviler, Jamie [2021]. Horizontal Scrolling in Web Design: How to Do It Well. 14 Jun 2021. https://blo
g.hubspot.com/website/horizontal-scrolling (cited on page 6).

Khronos [2024]. WebGL Overview. 01 Mar 2024. https://khronos.org/webgl/ (cited on page 21).

Kim, Hyeok, Dominik Moritz, and Jessica Hullman [2021]. Design Patterns and Trade-Offs in Responsive
Visualization for Communication. Computer Graphics Forum 40.3 (29 Jun 2021), pages 459–470. ISSN
1467-8659. doi:10.1111/cgf.14321. https://arxiv.org/abs/2104.07724 (cited on pages 6–7, 9).

Korduba, Yaryna, Stefan Schintler, and Andreas Steinkellner [2022]. Responsive Data Visualization.
Information Visualisation SS 2022. Survey Paper. Graz University of Technology, Austria, 31 May
2022. 33 pages. https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-
vis.pdf (cited on page 7).

Kunz, Gion [2017]. Chartist. 08 Dec 2017. https://gionkunz.github.io/chartist-js/ (cited on pages 19,
23–24).

Kunz, Gion [2023]. ChartistV1. 30 Aug 2023. https://chartist.dev/ (cited on page 24).

Marcotte, Ethan [2010]. Responsive Web Design. 25 May 2010. https://alistapart.com/article/respon
sive-web-design/ (cited on pages 4–5).

Marcotte, Ethan [2011]. Responsive Web Design. A Book Apart, 07 Jun 2011. 143 pages. ISBN 098444257X.
http://abookapart.com/products/responsive-web-design (cited on page 4).

Marcotte, Ethan [2014]. Responsive Web Design. 2nd Edition. A Book Apart, 02 Dec 2014. 153 pages.
ISBN 1937557189. http://abookapart.com/products/responsive-web-design (cited on page 1).

https://vega.github.io/vega-lite
https://vega.github.io/vega-lite
https://kaggle.com/datasets/juanmah/world-cities
https://kaggle.com/datasets/juanmah/world-cities
https://highcharts.com/
http://doi.org/10.1145/3313831.3376777
https://jhoffswell.github.io/website/resources/papers/2020-ResponsiveVisualization-CHI.pdf
https://jhoffswell.github.io/website/resources/papers/2020-ResponsiveVisualization-CHI.pdf
https://jhoffswell.github.io/website/resources/supplemental/responsive-supplemental/
https://jhoffswell.github.io/website/resources/supplemental/responsive-supplemental/
http://amazon.co.uk/dp/0367534711/
http://doi.org/10.1201/9781003090823-2
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://imld.de/cnt/uploads/Horak2021_MobileDataVisBook_Chap02_Responsive.pdf
https://medium.com/@Infogram/key-figures-in-the-history-of-data-visualization-30486681844c
https://medium.com/@Infogram/key-figures-in-the-history-of-data-visualization-30486681844c
https://infovis-wiki.net/wiki/Zoom
https://infovis-wiki.net/wiki/Semantic_Zoom
https://blog.hubspot.com/website/horizontal-scrolling
https://blog.hubspot.com/website/horizontal-scrolling
https://khronos.org/webgl/
http://worldcatlibraries.org/wcpa/issn/1467-8659
http://doi.org/10.1111/cgf.14321
https://arxiv.org/abs/2104.07724
https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-vis.pdf
https://courses.isds.tugraz.at/ivis/surveys/ss2022/ivis-ss2022-g2-survey-resp-vis.pdf
https://gionkunz.github.io/chartist-js/
https://chartist.dev/
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/responsive-web-design/
http://amazon.co.uk/dp/098444257X/
http://abookapart.com/products/responsive-web-design
http://amazon.co.uk/dp/1937557189/
http://abookapart.com/products/responsive-web-design

35

Matilda, Sarah [2023]. A Comprehensive Guide to Cluster Analysis: Applications, Best Practices and
Resources. 21 Nov 2023. https://displayr.com/understanding-cluster-analysis-a-comprehensive-g
uide/ (cited on page 18).

MDN [2023a]. CSS Flexible Box Layout. MDN Web Docs, 24 May 2023. https://developer.mozilla.or
g/en-US/docs/Web/CSS/CSS_flexible_box_layout (cited on page 5).

MDN [2023b]. CSS Grid Layout. MDN Web Docs, 15 Jun 2023. https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_grid_layout (cited on page 5).

MDN [2023c]. CSS Values and Units. MDN Web Docs, 06 Sep 2023. https://developer.mozilla.org/e
n-US/docs/Learn/CSS/Building_blocks/Values_and_units (cited on page 5).

Microsoft [2024]. Power BI. 07 Mar 2024. https://powerbi.microsoft.com/ (cited on pages 27–28).

NCEI [2024]. The Global Anomalies and Index Data. National Centers for Environmental Information,
21 Feb 2024. https://ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
(cited on page 18).

PennState [2023]. Font Size on the Web. Pennsylvania State University, 13 Nov 2023. https://accessibi
lity.psu.edu/fontsizehtml/ (cited on page 10).

Plotly [2023]. Plotly.js. 30 Aug 2023. https://plotly.com/javascript/ (cited on pages 16, 23–24).

Rabinowitz, Nick [2014]. Responsive Data Visualization. 25 Sep 2014. https://nrabinowitz.github.io
/rdv/?scatterplot (cited on pages 17, 19).

Rendle, Robin [2019]. Six Tips for Better Web Typography. 27 Feb 2019. https://css-tricks.com/six-t
ips-for-better-web-typography/ (cited on page 4).

Sarkar, Manojit and Marc H. Brown [1992]. Graphical Fisheye Views of Graphs. Proc. ACM Conference
on Human Factors in Computing Systems (CHI 1992) (Monterey, California, USA). 03 May 1992,
pages 83–91. doi:10.1145/142750.142763. https://www.cs.montana.edu/courses/spring2005/430/pg/ft_g
ateway.cfm.pdf (cited on page 17).

Satori [2021]. Data Generalization: The Specifics of Generalizing Data. 03 Nov 2021. https://sator
icyber.com/data-masking/data-generalization/#when-is-data-generalization-important (cited on
page 17).

Setlur, Vidya and Haeyong Chung [2021]. Semantic Resizing of Charts Through Generalization: A Case
Study with Line Charts. Proc. IEEE Visualization Conference (Vis 2021) (Online). 24 Oct 2021,
pages 46–50. doi:10.1109/VIS49827.2021.9623306. https://vidyasetlur.com/recent-papers (cited on
pages 29–30).

Shadeed, Ahmad [2023]. The Guide To Responsive Design In 2023 and Beyond. 01 Feb 2023. https://i
shadeed.com/article/responsive-design/ (cited on page 5).

Soueidan, Sara [2017]. Auto-Sizing Columns in CSS Grid: ‘auto-fill‘ vs ‘auto-fit‘. 29 Dec 2017. https:
//css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/ (cited on page 6).

Statista [2023]. Percentage of Mobile Device Website Traffic Worldwide. 19 Aug 2023. https://statista
.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/ (cited on page 1).

Swensen, Matthew [2021]. Using SVG vs. Canvas: A Short Guide. 10 May 2021. https://blog.logrocke
t.com/svg-vs-canvas/ (cited on page 21).

W3C [2024]. WebGPU. 05 Feb 2024. https://w3.org/TR/webgpu/ (cited on page 21).

W3Schools [2023]. Responsive Web Design - The Viewport. 19 Aug 2023. https://w3schools.com/css/c
ss_rwd_viewport.asp (cited on page 4).

https://displayr.com/understanding-cluster-analysis-a-comprehensive-guide/
https://displayr.com/understanding-cluster-analysis-a-comprehensive-guide/
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_flexible_box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_flexible_box_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_grid_layout
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units
https://developer.mozilla.org/en-US/docs/Learn/CSS/Building_blocks/Values_and_units
https://powerbi.microsoft.com/
https://ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://accessibility.psu.edu/fontsizehtml/
https://accessibility.psu.edu/fontsizehtml/
https://plotly.com/javascript/
https://nrabinowitz.github.io/rdv/?scatterplot
https://nrabinowitz.github.io/rdv/?scatterplot
https://css-tricks.com/six-tips-for-better-web-typography/
https://css-tricks.com/six-tips-for-better-web-typography/
http://doi.org/10.1145/142750.142763
https://www.cs.montana.edu/courses/spring2005/430/pg/ft_gateway.cfm.pdf
https://www.cs.montana.edu/courses/spring2005/430/pg/ft_gateway.cfm.pdf
https://satoricyber.com/data-masking/data-generalization/#when-is-data-generalization-important
https://satoricyber.com/data-masking/data-generalization/#when-is-data-generalization-important
http://doi.org/10.1109/VIS49827.2021.9623306
https://vidyasetlur.com/recent-papers
https://ishadeed.com/article/responsive-design/
https://ishadeed.com/article/responsive-design/
https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/
https://css-tricks.com/auto-sizing-columns-css-grid-auto-fill-vs-auto-fit/
https://statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://statista.com/statistics/277125/share-of-website-traffic-coming-from-mobile-devices/
https://blog.logrocket.com/svg-vs-canvas/
https://blog.logrocket.com/svg-vs-canvas/
https://w3.org/TR/webgpu/
https://w3schools.com/css/css_rwd_viewport.asp
https://w3schools.com/css/css_rwd_viewport.asp

36 Bibliography

WCAG [2023]. How to Meet WCAG (Quick Reference). Web Content Accessibility Guidelines, 13 Nov
2023. https://w3.org/WAI/WCAG22/quickref/ (cited on page 10).

Wroblewski, Luke [2011]. Mobile First. A Book Apart, Oct 2011. 130 pages. ISBN 9781937557027. https:
//abookapart.com/products/mobile-first (cited on page 5).

Wu, Aoyu, Wai Tong, Tim Dwyer, Bongshin Lee, Petra Isenberg, and Huamin Qu [2021]. MobileVisFixer:
Tailoring Web Visualizations for Mobile Phones Leveraging an Explainable Reinforcement Learning
Framework. IEEE Transactions on Visualization and Computer Graphics 27.2 (Feb 2021), pages 464–
474. doi:10.1109/TVCG.2020.3030423. https://hal.inria.fr/hal-03001709/ (cited on pages 28–29).

Zanini, Antonello [2023]. Data Aggregation – Definition, Use Cases, and Challenges. 20 Nov 2023.
https://brightdata.com/blog/web-data/data-aggregation (cited on page 18).

https://w3.org/WAI/WCAG22/quickref/
http://amazon.co.uk/dp/9781937557027/
https://abookapart.com/products/mobile-first
https://abookapart.com/products/mobile-first
http://doi.org/10.1109/TVCG.2020.3030423
https://hal.inria.fr/hal-03001709/
https://brightdata.com/blog/web-data/data-aggregation

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 Responsive Visualization
	2.1 Mobile Visualization
	2.2 Display Properties
	2.3 Responsive Web Design
	2.3.1 Responsive Design Strategies
	2.3.2 Modern Responsive Design
	2.3.3 Avoiding Horizontal Scrolling

	2.4 Responsive Visualization Challenges
	2.5 Approaches to Responsive Visualization

	3 Responsive Visualization Patterns
	3.1 Visual Patterns
	3.1.1 V1: Scaling Entire Chart Down
	3.1.2 V2: Repositioning Element Labels
	3.1.3 V3: Using Tooltips Instead of Element Labels
	3.1.4 V4: Rotating Axis Tick Labels
	3.1.5 V5: Shortening Labels and Titles
	3.1.6 V6: Scaling Labels Between Minimum and Maximum Size
	3.1.7 V7: Scaling Down Visual Elements
	3.1.8 V8: Hiding Elements and Labels
	3.1.9 V9: Rotating Chart 90°
	3.1.10 V10: Using a Different Chart

	3.2 Interaction Patterns
	3.2.1 I1: Providing a Toolbar or Menu
	3.2.2 I2: Filtering Dimensions and Records
	3.2.3 I3: Supporting Zooming

	3.3 Data Patterns
	3.3.1 D1: Data Generalization
	3.3.2 D2: Data Aggregation
	3.3.3 D3: Data Clustering
	3.3.4 D4: Data Sampling

	4 Responsive Visualization Tools
	4.1 Responsive Visualization Libraries
	4.1.1 Chart.js
	4.1.2 Plotly.js
	4.1.3 Chartist
	4.1.4 Highcharts
	4.1.5 RespVis

	4.2 Responsive Visualization Systems
	4.2.1 Hoffswell et al Visualization System
	4.2.2 Power BI

	4.3 Visualization Transformation Tools
	4.3.1 MobileVisFixer
	4.3.2 Setlur and Chung Line Chart Resizer

	5 Concluding Remarks
	Bibliography

