
Steerable Parallel Coordinates in D3 (SPCD3)

Project Report

Romana Gruber

706.414 Seminar/Project Interactive and Visual Information Systems 4SP WS 2023/2024
Graz University of Technology

30 Oct 2024

Abstract
Parallel coordinates are a visualistion technique for multidimensional datasets. They are
widely used to analyse larger datasets, often in combination with other visualisations like
scatterplots and similarity maps. Interactivity is essential to support an analyst: showing
and hiding dimensions, adjusting a dimension’s range, moving and inverting dimensions,
brushing and linking records, and filtering records.
The JavaScript library Steerable Parallel Coordinates in D3 (SPCD3) implements a parallel
coordinates component which has both built-in interactivity, as well as being steerable
programmatically from the outside via API method calls. The library is written in TypeScript
using D3v7. Ultimately, the SPCD3 library will be used to build an explorable explainer for
parallel coordinates.

© Copyright 2024 by the author(s), except as otherwise noted.

This work is placed under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.

https://creativecommons.org/licenses/by/4.0/

Contents

Contents i

List of Figures iii

List of Tables v

List of Listings vii

1 Introduction 1

2 SPCD3 5
2.1 Dependencies . 5
2.2 Build Tools. 5
2.3 Software Architecture . 6
2.4 Built-In Interactivity . 6
2.5 Steerable API . 8

3 Example Application 11
3.1 Dataset . 11
3.2 Built-In Interactivity . 11
3.3 Additional UI Controls using Steerable API 15

4 Concluding Remarks 19

Bibliography 21

i

ii

List of Figures

1.1 Simple Parallel Coordinates Plot . 2
1.2 Parallel Coordinates by Henry Gannett 2
1.3 Example SPC Application . 3

2.1 Software Architecture Diagram . 7

3.1 Initial Screen of Example Application . 13
3.2 Example Chart: Inverted Dimension . 13
3.3 Example Chart: Moved Dimension . 14
3.4 Example Chart: Context Menu . 14
3.5 Example Chart: Set Range Popup . 15
3.6 Example Chart: Filtered Dimension . 16
3.7 Example Chart: Hovering over Records 16
3.8 Example Chart: Selecting Records . 17
3.9 UI Controls via Steerable API. 18

iii

iv

List of Tables

3.1 Student Marks Dataset . 12

v

vi

List of Listings

2.1 Folder and File Structure . 6

3.1 Student Marks Dataset as CSV . 12

vii

viii

Chapter 1

Introduction

Multidimensional datasets are typically stored in tabular form, like a spreadsheet, with columns repres-
enting dimensions (variables) and rows representing records (data points). A header row often gives the
names of the dimensions. Large multidimensional datasets can have hundreds or thousands of dimensions
and thousands or tens of thousands of records.

Parallel coordinates (PC) is a visualisation technique for multidimensional data, which uses parallel
axes to represent dimensions and polylines to represent records, as shown in Figure 1.1, with three
dimensions and two records. Dimensions are typically drawn as vertical parallel lines from left to right,
but are sometimes also drawn horizontally from top to bottom. A dimension can be either numerical
or categorical (strings). Each dimension has a range and scale, and dimensions can also be normalised.
Each record has a data value on each dimension. Parallel coordinates are primarily used for analysis to
help identify patterns, trends, correlations, and outliers.

The number of dimensions is limited only by the amount of horizontal space, which can be extended
by using horizontal scrolling. Inselberg [2009, Chapter 10] worked, for example, with datasets of around
800 dimensions and 10,000 records. Of course, the plot can become very dense and challenging to
interpret. However, techniques have been developed to help deal with highly cluttered plots, including
axis reordering, using curves, edge-bundling, and sampling [Lu et al. 2016; Graham and Kennedy 2003;
Palmas et al. 2014; Ellis and Dix 2006].

An early form of parallel coordinates were developed in 1883 by Henry Gannett, as part of the Statistical
Atlas of the United States [Gannett and Hewes 1883]. An example can be seen in Figure 1.2, showing
the ranks of the 47 states along 10 dimensions. In 1885, Maurice d’Ocagne published a mathematical
theory of parallel coordinates [d’Ocagne 1885; Nature 1885]. In the computer age, parallel coordinates
were popularised by Alfred Inselberg [Inselberg 1985; Inselberg 2009].

In 2023, a group of four students implemented a prototype steerable parallel coordinates component
called SPC [Drescher et al. 2023b; Drescher et al. 2023c]. Steerable, in this context, means that the
visualisation is steerable from outside by calling well-defined methods from an API, as well as directly
using interactive operations. The prototype supports interactivity such as showing and hiding dimensions,
moving dimensions, inverting dimensions, and hovering over records. However, the SPC component was
also made steerable, by providing a selection of methods which can be called on the component, such as
show(dimension) and invert(dimension). A small example application (demo) was built to illustrate
this functionality, which can be seen in Figure 1.3. Controls were added to the example application
beneath the parallel coordinates visualisation to select (show and hide) and invert dimensions. These
controls in turn call methods from the SPC’s API.

In this project, the SPC prototype was taken and expanded in terms of its appearance and functionality,
and was renamed Steerable Parallel Coordinates in D3 (SPCD3) [Gruber 2024b]. Important new features
include adjusting a dimension’s range, selecting records, and filtering records. Moreover, the API was
extended with a large number of externally callable methods to steer the SPCD3 component.

1

2 1 Introduction

d1 d2 d3

x1

y1
z1

x2

y2

z2

Figure 1.1: A simple parallel coordinates plot with three dimensions (vertical axes) and two records
(polylines). Each record touches each axis once at the point corresponding to its data value. [Image
drawn by the author of the report.]

Figure 1.2: Henry Gannett developed an early form of parallel coordinates chart to show the ranks
of 47 states along 10 dimensions. The darker blue items indicate the average across all states. A
polyline connects the instance of each state on each dimension. [Image kindly provided by the Library of
Congress, Geography and Map Division.]

3

Figure 1.3: A small example application was built around the SPC library to illustrate its use.
Here, a dataset of student marks is being visualised. The user can interactively move and invert
dimensions and hover over records directly within the plot. However, it is also possible to control
the plot from the outside using the controls beneath the plot. [Screenshot made by the author of the report
from the example application of Drescher et al. [2023c].]

The ultimate goal is to use the SPCD3 library to build an explorable explainer for parallel coordinates.
An explorable explainer guides a reader through an interactive tutorial about a particular topic [Victor
2011; Drescher et al. 2023a]. The illustrations are typically explorable, i.e. can be manipulated by the
reader. An explorable explainer about the parallel coordinates visualisation technique would need a
parallel coordinates component which can be steered from the narrative, to illustrate particular points
along the way.

4 1 Introduction

Chapter 2

SPCD3

Steerable Parallel Coordinates in D3 (SPCD3) is a JavaScript library written in TypeScript, which imple-
ments a parallel coordinates (PC) visualisation. The parallel coordinates visualisation can be manipulated
in two ways: a) by the end user through mouse and keyboard interactions, and b) programmatically through
an API. The library is open source and is available on GitHub [Gruber 2024b].

2.1 Dependencies
The SPCD3 library is written in Typescript [Microsoft 2024] and uses D3 version 7 [Bostock 2024]. D3
is modular and it is not necessary to include the whole of D3. The following D3 modules are used:

• d3-dsv: To parse a CSV file containing data.

• d3-selection: To get a selection and to set attributes, styles, properties, and more.

• d3-drag: To drag and drop the dimensions along the x-axis and for filtering the records.

• d3-shape: To draw the polylines of the parallel coordinates.

• d3-axis: To create the x-axis and y-axes of the parallel coordinates.

• d3-scale: To set the x-scale and y-scale.

• d3-transition: To transform changes smoothly rather than instantaneously.

In addition to D3, the following JavaScript libraries are used within SPCD3:

• mini-svg-data-uri: To convert SVGs into data URIs [Hunt 2022].

• xml-formatter: To prettify the SVG file of the parallel coordinate plot for download [Bottin 2024].

2.2 Build Tools
The task runner Gulp used to automate repeatable tasks [Gulp 2024]. There are four public Gulp tasks:

• build: Creates a new build of the library in three formats (CJS, ESM, and IIFE) and stores the
generated library packages into the dist/library/ folder. Additionally, the example folder is copied
to dist/example/.

• serve: Executes the build task, then additionally executes a private task called watcher, which is
used to initialise a live server for the dist/example/ folder.

• clean: Removes the existing dist/ directory in order to enable a clean rebuild of the project.

5

6 2 SPCD3

src/
example/
index.html
data/
...

main.js
styles.css

lib/
icons/
icons.ts
iconsbase64.ts

index.ts
scripts/
brush.ts
helper.ts
io.ts
parallelcoordinates.ts

Listing 2.1: The main folders and files in the SPCD3 project.

• cleanAll: Restores the project folder to its virgin state, as if it were freshly cloned, by deleting the
existing dist/ and node_modules/ directories and the package-lock.json file.

The module bundler Rollup [Rollup 2024] is used to bundle and build the library. The SPCD3 library
is packaged into three different formats: CommonJS (CJS), Immediately Invoked Function Expres-
sion (IIFE), and ECMAScript Modules (ESM), in both unminified and minified versions, and with a
corresponding map file for better debugging.

2.3 Software Architecture
The code is separated into two main folders. The example/ folder contains the example application code,
consisting of a data/ folder with a few example datasets, an HTML file index.html with a corresponding
CSS file styles.css, and a JavaScript file main.js. The second folder lib/ contains the library itself,
consisting of an icons/ folder and a scripts/ folder. The folder structure is illustrated in Listing 2.1, and
the dependencies of the library’s files are shown in Figure 2.1.

2.4 Built-In Interactivity
There are several built-in functions to manipulate the visualisation. The user can invert dimensions,
move dimensions, hide dimensions, adjust dimension ranges, filter records, hover over records, and select
records.

Inverting Dimensions
By default, a dimension’s axis places higher values at the top and lower values at the bottom. A dimension
can be inverted either by clicking the arrow above the dimension axis or by right-clicking the dimension
name to activate the context menu and selecting Invert. Inverting a dimension can be helpful to corroborate
a suspected correlation between adjacent dimensions.

Moving Dimensions
When looking for correlations between dimensions, meaningful relationships are only revealed between
adjacent dimensions. Hence, it is important to be able to move one dimension next to another dimension
of interest. In SPCD3, dimensions can be dragged and dropped at the desired position.

Built-In Interactivity 7

parallel-
coordinatesio brushhelper

d3v7

mini-svg-
data-uri

xml-
formatter

scripts/ icons/
lib/

Figure 2.1: The dependencies of the SPCD3 library. In the lib/ folder, there are two further folders,
one with all the scripts and one with the icons. Scripts are indicated with rectangles, modules
with diamonds. The arrows indicate dependencies. [Diagram created by the author of the report using
draw.io [2024].]

Hiding Dimensions
Displaying too many dimensions can be overwhelming, so it is important to be able to hide individual
dimensions. A dimension can hidden by right-clicking the dimension name to activate the context menu
and selecting Hide.

Adjusting a Dimension’s Range
By default, the range of the dimension’s axis is set to the rounded down minimum and rounded up
maximum values present in the current dataset. The user can adjust the range of a dimension from its
context menu, where two options are available: Set Range to set the range to specific values and Reset Range
to reset the dimension to the original range.

Filter Records
Records can be activated and deactivated by setting filters on one or more dimensions. A double-edged
range slider can be manipulated on every dimension to filter out records by values on that dimension.
Records outside the range are automatically deactivated and greyed out. A further option is to set and
reset filters from a dimension’s context menu: Set Filter sets a filter to specific values and Reset Filter reset
the filter to include all records.

Hovering over Records
If there are a large number of records, a parallel coordinates visualisation contains a large number of
potentially crossing and overlapping polylines, so it is challenging to recognise which polyline belongs to
which record. Hovering over one or more polylines highlights the polyline(s) beneath the mouse pointer
in red and displays a tooltip with the labels of the corresponding records. By default, the label is taken
from the first column of the dataset.

8 2 SPCD3

Selecting Records
It is helpful to be able to select one or more records in the dataset and to highlight them accordingly.
Left-clicking one or more polylines selects the corresponding record(s) and highlights them in orange.
Shift-left-clicking adds one or more records to the current selection. Control-left-clicking toggles the
selection status of the corresponding records. Left-clicking in empty space clears the current selection.

2.5 Steerable API
SPCD3 provides a set of methods which can be used to steer the visualisation from outside (in essence,
an API). The methods are organised in eight groups, as described below.

I/O Functions
• function loadCSV(csv: string): []

Loads a dataset from a CSV file.

• function drawChart(data: []): void
Creates a parallel coordinates chart from the given dataset, using D3 to dynamically create SVG
elements in the DOM. This chart is considered to be the current chart.

• function deleteChart(): void
Deletes the current parallel coordinates chart.

• function saveAsSvg(): void
Saves the current parallel coordinates chart as an SVG file with a default name of parcoords.svg.

Show and Hide Functions
• function show(dimensionName: string): void

Makes a hidden dimension visible. The dimension is assigned the status shown.

• function hide(dimensionName: string): void
Hides the given dimension. The dimension is assigned the status hidden.

• function getHiddenStatus(dimensionName: string): string
Returns the visibility status of the dimension, which can be either shown or hidden.

Invert Functions
• function invert(dimensionName: string): void

Inverts the given dimension.

• function getInversionStatus(dimensionName: string): string
Returns the inversion status of a dimension, which can be either ascending or descending.

• function setInversionStatus(dimensionName: string, status: string): void
Sets the inversion status of the given dimension to one of ascending and descending.

Move Functions
• function move(dimensionNameA: string, toRightOf: boolean, dimensionNameB: string):
void

Moves dimension A either to the left side of dimension B or to the right side of dimension B.

Steerable API 9

• function moveByOne(dimensionName: string, direction: string): void
Moves a dimension one position to the left or right, independent of other dimensions.

• function swap(dimensionNameA: string, dimensionNameB: string): void
Swaps the positions of the given dimensions.

• function getDimensionPosition(dimensionName: string): number
Returns the position of the given dimension (0...n).

• function setDimensionPosition(dimensionName: string, position: number): void
Sets the position of the given dimension (0...n).

Range Functions
• function getDimensionRange(dimensionName: string): [min, max]

Returns the given dimension’s current range (min, max).

• function setDimensionRange(dimensionName: string, min: number, max: number): void
Sets the range of the given dimension to specific values (min, max).

• function setDimensionRangeRounded(dimensionName: string, min: number, max: number):
void

Sets the range of the given dimension to rounded specific values (min, max).

• function getMinValue(dimensionName: string): number
Returns the minimum data value of a dimension.

• function getMaxValue(dimensionName: string): number
Returns the maximum data value of a dimension.

• function getCurrentMinRange(dimensionName: string): number
Returns the current minimum value of a dimension’s range (in data coordinates).

• function getCurrentMaxRange(dimensionName: string): number
Returns the current maximum value of a dimension’s range (in data coordinates).

Filter Functions
• function getFilter(dimensionName: string): [min, max]

Returns the minimum and maximum values of the filter of a dimension.

• function setFilter(dimensionName: string, min: number, max: number): void
Sets the filter for a dimension by specifying minimum and maximum values. If the minimum value
lies below the current range, the filter minimum is set to the current range minimum. If the minimum
value exceeds the current range, the filter maximum is set to the current range maximum.

Selection Functions
• function getSelected(): []

Returns all selected records in the chart as an array. Each record is identified with its label, taken by
default from the first column of the dataset.

• function setSelection(records: []): void

10 2 SPCD3

Selects one or more records by handing over an array of labels.

• function toggleSelection(record: string): void
Toggles the selection of a given record by specifying its label.

• function isSelected(record: string): boolean
Returns the selection status of a given record by specifying its label.

• function setSelected(record: string): void
Selects a given record by specifying its label.

• function setUnselected(record: string): void
Deselects a given record by specifying its label.

Selection Functions with ID
• function setSelectionWithId(recordIds: []): void

Selects one or more records by handing over an array of IDs.

• function toggleSelectionWithId(recordId: number): void
Toggles the selection of a given record by specifying its ID.

• function isSelectedWithId(recordId: number): boolean
Returns the selection status of a given record by specifying its ID.

• function setSelectedWithId(recordId: number): void
Selects a given record by specifying its ID.

• function setUnselectedWithId(recordId: number): void
Deselects a given record by specifying its ID.

Helper Functions
• function getAllRecords(): []

Returns all records as an array.

• function getAllDimensionNames(): []
Returns an array of all dimensions names in order.

• function getNumberOfDimensions(): number
Returns the number of dimensions.

• function getDimensionPosition(dimensionName: string): number
Returns the position of a dimension (0..𝑚 − 1).

• function isDimensionCategorical(dimensionName: string): boolean
Returns true if a dimension is categorial and false if not (i.e. it is numerical).

• function setDimensionForHovering(dimension: string): void
Sets the label for hovering by specifiying its ID.

• function getRecordWithId(recordId: number): string
Returns the record by specifying its ID.

Chapter 3

Example Application

An example application was built to demonstrate the functionality of the SPCD3 library. It loads a sample
dataset, creates a parallel coordinates chart with SPCD3’s built-in interactivity, and adds UI controls to
showcase the steerable API. The initial screen is shown in Figure 3.1.

3.1 Dataset
A fictitious dataset of student marks was created by Drescher et al. [2023b]. It consists of a header row,
30 rows of data (records), and 9 columns (dimensions), including the name of the student. Each row
represents one student and their marks between 0 and 100 in 8 subjects. Each dimension, apart from the
first, represents one subject. The first 11 rows of the dataset in CSV form are shown in Listing 3.1. The
full dataset is shown in tabular form in Table 3.1. The student marks dataset was deliberately curated to
contain some interesting outliers and correlations. For example, students who are good in English are
usually also good in German.

3.2 Built-In Interactivity
Some interactivity is built into the parallel coordinates visualisation: the user can invert dimensions,
move dimensions, hide dimensions, adjust dimensions ranges, filter records, hover over records, and
select records.

A dimension can be inverted by clicking the arrow above its axis. This can be seen in Figure 3.2, where
the dimension Maths is inverted. Clicking the arrow again returns the dimension to its non-inverted state.
A further option is to invert the dimension via the context menu, which opens with a right-mouse click
on the dimension name.

Moving dimensions is important in finding correlations, because only adjacent dimensions can be
compared. Within the chart, a dimension can be dragged and dropped to the desired position. In
Figure 3.3, English was moved next to German to check the theory that students who are good at German
are also good at English.

Each dimension has a context menu, accessed by right-clicking the dimension name, as shown in
Figure 3.4. Through the context menu, users can hide or invert the dimension, set or reset the range, and
set or reset the filter. This flexibility allows users to adapt the visualisation to their specific needs and
preferences. Dimensions can only be hidden in the context menu. Once a dimension is hidden, it can
only be shown again by selecting the Show All item in the context menu, which makes all dimensions in
the dataset visible.

By default, the range of the dimension’s axis is set to the rounded down minimum and rounded
up maximum values which are present in that column of the current dataset. A user can adjust the

11

12 3 Example Application

1 Name,Maths,English,PE,Art,History,IT,Biology,German
2 Adrian ,95,24,82,49,58,85,21,24
3 Amelia ,92,98,60,45,82,85,78,92
4 Brooke ,27,35,84,45,23,50,15,22
5 Chloe ,78,9,83,66,80,63,29,12
6 Dylan ,92,47,91,56,47,81,60,51
7 Emily ,67,3,98,77,25,100,50,34
8 Evan,53,60,97,74,21,78,72,75
9 Finn,42,73,65,52,43,61,82,85

10 Gia,50,81,85,80,43,46,73,91
11 Grace ,24,95,98,94,89,25,91,69
12 ...

Listing 3.1: The first 11 rows of the student marks dataset in CSV form.

Name Maths English PE Art History IT Biology German

Adrian 95 24 82 49 58 85 21 24
Amelia 92 98 60 45 82 85 78 92
Brooke 27 35 84 45 23 50 15 22
Chloe 78 9 83 66 80 63 29 12
Dylan 92 47 91 56 47 81 60 51
Emily 67 3 98 77 25 100 50 34
Evan 53 60 97 74 21 78 72 75
Finn 42 73 65 52 43 61 82 85
Gia 50 81 85 80 43 46 73 91
Grace 24 95 98 94 89 25 91 69
Harper 69 9 97 77 56 94 38 2
Hayden 2 72 74 53 40 40 66 64
Isabella 8 99 84 69 86 20 86 85
Jesse 63 39 93 84 30 71 86 19
Jordan 11 80 87 68 88 20 96 81
Kai 27 65 62 92 81 28 94 84
Kaitlyn 7 70 51 77 79 29 96 73
Lydia 75 49 98 55 68 67 91 87
Mark 51 70 87 40 97 94 60 95
Monica 62 89 98 90 85 66 84 99
Nicole 70 8 84 64 26 70 12 8
Oswin 96 14 62 35 56 98 5 12
Peter 98 10 71 41 55 66 38 29
Renette 96 39 82 43 26 92 20 2
Robert 78 32 98 55 56 81 46 29
Sasha 87 1 84 70 56 88 49 2
Sylvia 86 12 97 4 19 80 36 8
Thomas 76 47 99 34 48 92 30 38
Victor 5 60 70 65 97 19 63 83
Zack 19 84 83 42 93 15 98 95

Table 3.1: A fictitious dataset of student marks between 0 and 100 for 30 students in 8 subjects,
originally created by Drescher et al. [2023b]. The table has a header row, 30 rows of data
(records), and 9 columns (dimensions) including the name of the student.

Built-In Interactivity 13

Figure 3.1: The initial screen of the example application. The student marks dataset has been
loaded, the parallel coordinates chart has been drawn, and additional UI controls beneath the
chart demonstrate the use of the steerable API. [Screenshot made by the author of the report using the Demo
of Gruber [2024a].]

Figure 3.2: Clicking the arrow above a dimension inverts the dimension. Here, the dimension Maths
has been inverted. Clicking the arrow again returns it to the non-inverted state. [Screenshot by the
author of the report using the Demo of Gruber [2024a].]

14 3 Example Application

Figure 3.3: A dimension can be repositioned by drag-and-drop. Here, English has been moved to
the final position after German. [Screenshot made by the author of the report using the Demo of Gruber [2024a].]

Figure 3.4: Right-clicking a dimension’s name opens the context menu. [Screenshot made by the author of
the report using the Demo of Gruber [2024a].]

Additional UI Controls using Steerable API 15

Figure 3.5: Manually setting a range for a dimension. [Screenshot made by the author of the report using the
Demo of Gruber [2024a].]

dimension’s range by selecting Set Range in the context menu and completing the dialogue in the resulting
popup window, as shown in Figure 3.5. It is also possible to reset the dimension to its original range. For
example, if student marks in Maths are between 0 and 100, but the worst performing student achieved 2
out of 100, and the best student achieved 98 out of 100, then the axis range would show 2 to 98 by default.
In such a dataset, it might make sense to adjust the range of every axis to show 0 to 100 to better reflect
the domain.

Filtering records can be done for each dimension by moving the upper or lower filter control of the
double-edged range slider up and down. All records outside of the filtered area become inactive and are
greyed out. The effect is reflected immediately in the visualisation. It is also possible to move the whole
range slider up or down, once it is no longer at its maximum size. In Figure 3.6, a filter was set on the
dimension Maths, where the upper filter is 80 and the lower filter is 20. All records outside of the filter
become inactive and greyed out. A filter can be precisely set for a dimension by selecting Set Filter in the
context menu. A popup window opens, where a new minimum and maximum value for the filter can be
entered.

When hovering over polylines in the chart, the corresponding records are highlighted in red and their
names are shown in a tooltip to identify them. The records of the student dataset, for example, are
identified by the Name dimension, as shown in Figure 3.7.

Furthermore, it is possible to select one or more records in the chart by left-clicking, shift-left-
clicking, and control-left-clicking to select, extend the selection, and toggle membership in the selection
respectively. Selected records are highlighted in orange, as shown in Figure 3.8.

3.3 Additional UI Controls using Steerable API
An essential part of the SPCD3 library is the steerability of the parallel coordinates visualisation com-
ponent from outside, via the API functions described in Section 2.5. In order to illustrate the use of
the API functions, the example application implements a number of features in its UI with the help of
underlying API functions. The following features, shown in Figure 3.9, are integrated via buttons and
dropdown menus:

• Upload File: Upload a CSV file containing a dataset.

16 3 Example Application

Figure 3.6: It is possible to filter records by adjusting the double-edged range slider for a dimension.
All records outside of the filtered area become inactive and are greyed out. [Screenshot made by the
author of the report using the Demo of Gruber [2024a].]

Figure 3.7: When hovering over polylines in the chart, the corresponding records are highlighted in
red and their names are shown in a tooltip to identify them. [Screenshot made by the author of the report
using the Demo of Gruber [2024a].]

Additional UI Controls using Steerable API 17

Figure 3.8: Two records have been selected and are highlighted in orange. [Screenshot made by the author
of the report using the Demo of Gruber [2024a].]

• Download SVG: Download the plot as an SVG file.

• Set Ranges from Data: (Re)set the ranges of all dimensions to the minimum and maximum values which
appear in the dataset for each dimension. This is the default for the example chart.

• Round Ranges from Data: Round the ranges of all dimensions up and down to “nice” values.

• Reset Chart: Reset all filters, ranges, inversions, and selections to the initial state.

• Show Dimensions: Open a dropdown, where each dimension can be hidden or shown.

• Invert Dimensions: Open a dropdown, where each dimension can be inverted.

• Move Dimensions: Open a dropdown, where a dimension can be selected and then moved left or right
via the arrow buttons.

• Set Filter: Open a dropdown, where a dimension can be selected and then a filter set on that dimension.

• Set Range: Open a dropdown, where a dimension can be selected and then the range set on that
dimension.

• Select Records: Open a dropdown, where each record can be selected or unselected.

18 3 Example Application

Figure 3.9: Functionality provided through the SPCD3 API. Above the plot, five buttons provide
features to upload a dataset, download the chart as SVG, reset the ranges, and reset the entire
chart. Beneath the plot, there are six additional UI controls to show, invert, and move dimensions,
set filters, set ranges, and select records. [Screenshot made by the author of the report using the Demo of
Gruber [2024a].]

Chapter 4

Concluding Remarks

Parallel coordinates are a widely-used visualisation technique for multidimensional datasets. They
can assist an analyst to identify clusters, outliers, and correlations within a multidimensional dataset.
Interactivity such as showing and hiding dimensions, adjusting a dimension’s range, moving and inverting
dimensions, brushing and linking records, and filtering records is essential to support the analysis process.

The SPCD3 library was implemented in TypeScript using D3v7 to provide steerable parallel coordin-
ate plots with these important techniques. The library has both built-in interactivity and is steerable
programmatically from the outside via API method calls. The library is open source and is available on
GitHub [Gruber 2024b].

Further improvements might include adding histograms to the dimensions or providing colour-coding
for specific groupings of records. In the near future, the SPCD3 library will be used to build an explorable
explainer, a kind of interactive tutorial to explain how parallel coordinates work.

19

20 4 Concluding Remarks

Bibliography

Bostock, Mike [2024]. D3. 25 Apr 2024. https://d3js.org/ (cited on page 5).

Bottin, Chris [2024]. XML-formatter. 20 Jan 2024. https://github.com/chrisbottin/xml- formatter
(cited on page 5).

d’Ocagne, Maurice [1885]. Coordonnées Parallèles et Axiales: Méthode de transformation géométrique
et procédé nouveau de calcul graphique déduits de la considération des coordonnées parallèlles. In
French. Gauthier-Villars, 1885. 93 pages. https://archive.org/details/coordonnesparal00ocaggoog
(cited on page 1).

draw.io [2024]. draw.io. 27 Jun 2024. https://drawio.com/ (cited on page 7).

Drescher, Philipp, Jeremias Kleinschuster, Sebastian Schreiner, and Burim Vrella [2023a]. Explorable
Explainers. Survey Paper. Information Visualisation, SS 2023, Graz University of Technology, 19 May
2023. https://courses.isds.tugraz.at/ivis/surveys/ss2023/ivis-ss2023-g1-survey-explorables.pdf
(cited on page 3).

Drescher, Philipp, Jeremias Kleinschuster, Sebastian Schreiner, and Burim Vrella [2023b]. Steerable
Parallel Coordinates in JavaScript. Project Report. Information Visualisation, SS 2023, Graz University
of Technology, 16 Jun 2023. https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1
-project-steerable-parcoords.pdf (cited on pages 1, 11–12).

Drescher, Philipp, Jeremias Kleinschuster, Sebastian Schreiner, and Burim Vrella [2023c]. SteerablePar-
allelCoordinates. 20 Jul 2023. https://github.com/burimvrella/SteerableParallelCoordinates (cited
on pages 1, 3).

Ellis, Geoffrey and Alan Dix [2006]. Enabling Automatic Clutter Reduction in Parallel Coordinate Plots.
Transactions on Visualization and Computer Graphics 12.5 (Sep 2006), pages 717–724. doi:10.1109
/TVCG.2006.138. https://eprints.lancs.ac.uk/id/eprint/12830/ (cited on page 1).

Gannett, Henry and Fletcher Willis Hewes [1883]. Scribner’s Statistical Atlas of the United States, Show-
ing by Graphic Methods their Present Condition and their Political, Social and Industrial Development.
New York, 1883. https://loc.gov/item/a40001834/ (cited on page 1).

Graham, Martin and Jessie Kennedy [2003]. Using Curves to Enhance Parallel Coordinate Visualisations.
Proc. 7th International Conference on Information Visualization (IV 2003) (London, UK). IEEE, 16 Jul
2003, pages 10–16. doi:10.1109/IV.2003.1217950. https://napier-repository.worktribe.com/preview/26
7520/IV03_G1087_GrahamKennedyParallelCurves.pdf (cited on page 1).

Gruber, Romana [2024a]. Steerable Parallel Coordinates. 30 Oct 2024. https://tugraz-isds.github.io
/spcd3 (cited on pages 13–18).

Gruber, Romana [2024b]. Steerable Parallel Coordinates in D3 (SPCD3). 30 Oct 2024. https://github
.com/tugraz-isds/spcd3 (cited on pages 1, 5, 19).

Gulp [2024]. Gulp. 29 Mar 2024. https://gulpjs.com/ (cited on page 5).

21

https://d3js.org/
https://github.com/chrisbottin/xml-formatter
https://archive.org/details/coordonnesparal00ocaggoog
https://drawio.com/
https://courses.isds.tugraz.at/ivis/surveys/ss2023/ivis-ss2023-g1-survey-explorables.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1-project-steerable-parcoords.pdf
https://courses.isds.tugraz.at/ivis/projects/ss2023/ivis-ss2023-g1-project-steerable-parcoords.pdf
https://github.com/burimvrella/SteerableParallelCoordinates
http://doi.org/10.1109/TVCG.2006.138
http://doi.org/10.1109/TVCG.2006.138
https://eprints.lancs.ac.uk/id/eprint/12830/
https://loc.gov/item/a40001834/
http://doi.org/10.1109/IV.2003.1217950
https://napier-repository.worktribe.com/preview/267520/IV03_G1087_GrahamKennedyParallelCurves.pdf
https://napier-repository.worktribe.com/preview/267520/IV03_G1087_GrahamKennedyParallelCurves.pdf
https://tugraz-isds.github.io/spcd3
https://tugraz-isds.github.io/spcd3
https://github.com/tugraz-isds/spcd3
https://github.com/tugraz-isds/spcd3
https://gulpjs.com/

22 Bibliography

Hunt, Taylor [2022]. Mini SVG data: URI. 09 Mar 2022. https://github.com/tigt/mini-svg-data-uri
(cited on page 5).

Inselberg, Alfred [1985]. The Plane with Parallel Coordinates. The Visual Computer 1.2 (01 Aug 1985),
pages 69–91. doi:10.1007/BF01898350. https://www.asc.ohio-state.edu/statistics/statgen//j_spr201
3/Inselberg_1985_Parallel-Coordinates.pdf (cited on page 1).

Inselberg, Alfred [2009]. Parallel Coordinates: Visual Multidimensional Geometry and Its Applications.
Springer, 08 Oct 2009. 554 pages. ISBN 0387215077 (cited on page 1).

Lu, Liangfu, Mao Huang, and Jinson Zhang [2016]. Two Axes Re-ordering Methods in Parallel Coordi-
nates Plots. Journal of Visual Languages & Computing 33.1 (01 Apr 2016), pages 3–12. doi:10.1016/j
.jvlc.2015.12.001. https://opus.lib.uts.edu.au/bitstream/10453/41014/1/1-s2.0-S1045926X15300379-ma
in.pdf (cited on page 1).

Microsoft [2024]. TypeScript. 09 May 2024. https://typescriptlang.org/ (cited on page 5).

Nature [1885]. Coordonnées Parallèles et Axiales: Méthode de transformation géométrique et procédé
nouveau de calcul graphique déduits de la considération des coordonnées parallèlles. Nature 31
(16 Apr 1885). Book review, pages 551–552. doi:10.1038/031551b0 (cited on page 1).

Palmas, Gregorio, Myroslav Bachynskyi, Antti Oulasvirta, Hans Peter Seidel, and Tino Weinkauf [2014].
An Edge-Bundling Layout for Interactive Parallel Coordinates. Proc. 2014 IEEE Pacific Visualization
Symposium (PacificVis 2014) (Yokohama, Japan). 04 Mar 2014, pages 57–64. doi:10.1109/PacificVis.2
014.40. https://www.csc.kth.se/~weinkauf/publications/documents/palmas14a.pdf (cited on page 1).

Rollup [2024]. rollup.js - The JavaScript Module Bundler. 22 May 2024. https://rollupjs.org/ (cited
on page 6).

Victor, Bret [2011]. Explorable Explanations. 10 Mar 2011. https://worrydream.com/ExplorableExplana
tions/ (cited on page 3).

https://github.com/tigt/mini-svg-data-uri
http://doi.org/10.1007/BF01898350
https://www.asc.ohio-state.edu/statistics/statgen//j_spr2013/Inselberg_1985_Parallel-Coordinates.pdf
https://www.asc.ohio-state.edu/statistics/statgen//j_spr2013/Inselberg_1985_Parallel-Coordinates.pdf
http://amazon.co.uk/dp/0387215077/
http://doi.org/10.1016/j.jvlc.2015.12.001
http://doi.org/10.1016/j.jvlc.2015.12.001
https://opus.lib.uts.edu.au/bitstream/10453/41014/1/1-s2.0-S1045926X15300379-main.pdf
https://opus.lib.uts.edu.au/bitstream/10453/41014/1/1-s2.0-S1045926X15300379-main.pdf
https://typescriptlang.org/
http://doi.org/10.1038/031551b0
http://doi.org/10.1109/PacificVis.2014.40
http://doi.org/10.1109/PacificVis.2014.40
https://www.csc.kth.se/~weinkauf/publications/documents/palmas14a.pdf
https://rollupjs.org/
https://worrydream.com/ExplorableExplanations/
https://worrydream.com/ExplorableExplanations/

	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	2 SPCD3
	2.1 Dependencies
	2.2 Build Tools
	2.3 Software Architecture
	2.4 Built-In Interactivity
	2.5 Steerable API

	3 Example Application
	3.1 Dataset
	3.2 Built-In Interactivity
	3.3 Additional UI Controls using Steerable API

	4 Concluding Remarks
	Bibliography

