
To appear in Proc. of VRML98, Monterey, California, February 1998.

Looking Inside VRwave:
The Architecture and Interface of the VRwave VRML97 Browser

Keith Andrews Andreas Pesendorfer Michael Pichler Karl Heinz Wagenbrunn Josef Wolte�

IICM, Graz University of Technology, Austria

ABSTRACT

This paper presents an inside look into the VRwave VRML97
browser, discussing its internal architecture and some of the insights
we have gained during its development.

VRwave is written largely in Java and is freely available in
source code. A Java layer atop OpenGL provides 3D graphics out-
put. In terms of look and feel, VRwave has a similar interface to
the VRweb VRML 1.0 browser. VRwave also supports the Java
External Authoring Interface (EAI), allowing it to be driven by an
external program.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction Techniques.

Keywords: VRML, browser, VRwave, Java

1 INTRODUCTION

From 1992 to 1994 we developed a browser for interlinked 3D mod-
els for the Hyper-G Internet information system [9], called the Har-
mony 3D Scene Viewer [10, 2]. For lack of any other standard in
1992, we developed our own file format for 3D hypermedia mod-
els (called SDF for Scene Description Format), based on the ascii
output from Wavefront’s Advanced Visualizer software which we
used at the time for modeling. The Harmony 3D Scene Viewer was
first presented in a poster at the European Conference on Hypertext
in Milan in December 1992 [1], and to our knowledge was the first
work combining 3D models and hyperlinking across the Internet.

As discussions on VRML began to gain pace in late 1994, and an
embryonic specification began to emerge, it seemed reasonable to
adapt our browser to read VRML rather than SDF. Hence in April
1995 at the 3rd WWW conference in Darmstadt, we were able to
announce a joint project with NCSA and the University of Min-
nesota to develop VRweb [3], a VRML browser based on the Har-
mony 3D Scene Viewer which we would make freely available in
source code. The first version of VRweb was duly released on 5th
July 1995 and an overview presented at VRML’95 [11].

In the summer of 1996 we began work on a VRML 2.0 browser.
VRweb had been written in C++, but Java was gaining acceptance

�kandrews@iicm.edu, apesen@iicm.edu, mpichler@iicm.edu,
kwagen@iicm.edu, jwolte@iicm.edu
IICM, Schießstattgasse 4a, A-8010 Graz, Austria.

and promised numerous advantages over C++, not least of which
was (some degree of) platform-independence. The new browser
was written in Java, named VRwave to distinguish it from VRweb,
and an initial version released on the 3rd February 1997. This pa-
per takes a look inside VRwave, discussing the architecture of the
code, the design of the user interface, and presenting some of the
problems, discoveries, and insights we have encountered so far.

2 THE ARCHITECTURE OF VRWAVE

This section gives an overview over the internal class structure of
VRwave and describes the main functionality and concepts of its
primary classes.

VRwave source code is comprised of several modular Java
packages. The core classes of VRwave, contained in package
iicm.vrml.vrwave , handle the logic of the browser. Pars-
ing a VRML97 input stream and building a scene graph is done
by the the ‘pw’ library (packageiicm.vrml.pw ). Where
needed, additional node data is stored in apwdat subpackage.
iicm.widgets contains a number of reusable GUI widgets.

Rendering is performed via a Java interface (package
iicm.ge3d ) to the GE3D native code (C) rendering library, which
uses OpenGL as the backend graphics package. Several 3D data
structures (3D vectors, matrices) and utility code for rays and pick-
ing are contained in theiicm.utils3d package.

Finally, VRwave implements the Java External Authoring Inter-
face (EAI), which consists of the packagevrml.external and
the subpackagesfield and exception . It is planned to ex-
tend VRwave to support Java within Script nodes, implementing
the vrml , vrml.field and vrml.node packages. Figure 1
shows the internal architecture of VRwave.

2.1 Representation of a VRML Scene

The entry point to the VRwave browser is class
iicm.vrml.vrwave.VRwave . It can be run as a stan-
dalone Java application (providing a main method) or as a Java
applet embedded in HTML (overriding the start and stop methods
of class Applet). It evaluates parameters given on the command
line or included in the APPLET tag to set options and specify the
file name or URL of the VRML97 input data to load. Its main tasks
are to create an instance of classScene , which reads the initial
scene data, and to create either the VRwave application window or
the Java applet windows. Moreover, it includes methods needed to
establish communication with thevrml.external.Browser
class used in Java EAI applets. All further control and management
of the VRML scene is handled by the Scene instance.

ClassScene is responsible for central control and management
of user interactions and the drawing of the scene. It provides sev-
eral methods to pass the VRML97 input data from different sources
to the parser, and keeps the root level node of the scene graph
and a naming dictionary created by the parser. User interface el-
ements, like toolbar, status line, and menu bar, are constructed us-
ing Java AWT (Abstract Windowing Toolkit) classes or subclasses



pw

Scene Graph

ProtoScript
(Java)

Movie
TextureSound

Viewpoint
TimeSensor

Drag Sensors

class.forName

G
E
3
D

A
W
T

VRwave 0.9

VRML
97

A
W
T

I
n
p
u
t

Java App(let)

URL.openStream
Toolkit.getImage

Java VM

EAI
(Java)

Inline

Texture

interaction

navigation

createVrmlFromString

Anchor

Web
Browser

J
D
K

1
0
2

n
a
t
i
v
e

Mesa
or

OpenGL

To be implemented

Figure 1: The internal architecture of VRwave.

of them. The most important of the derived components, class
iicm.ge3d.OGLCanvas (described below), provides the draw-
ing area, which uses native code to embed the OpenGL window
into the Java GUI.

2.2 The ‘pw’ VRML97 Parser

The ‘pw’ (short for “parse world”) VRML97 parser is implemented
as packageiicm.vrml.pw . The main class,VRMLparser ,
reads the VRML input data from ajava.io.InputStream
and creates the scene graph using nodes subclassed from class
iicm.vrml.pw.Node . There are several node categories
(grouping, geometry etc.) and there is a node class correspond-
ing to each VRML97 node eith the appropriate fields. For uniform
handling (simpler scene graph traversal), a root levelGroupNode
is created, containing the VRML file’s top level nodes. A
java.util.Hashtable is used to map names of DEFed nodes
to their representation in the scene graph, and is consulted for USE
statements and when accessed via the Java EAI.

Fields within nodes are represented by instances of class
iicm.vrml.pw.Field or its subclasses respectively. The
field/event categories (plain) Field, eventIn, eventOut, and exposed-

Field, are all handled within one Field base class – in fact, an ex-
posedField is just a combination of a Field, an eventIn, and an
eventOut (this design decision was also influenced by the single
inheritance model of Java).

Fields containing an eventOut (including exposedFields) keep
a list of fields (eventIn, exposedField) they have a route to. The
routes are created by method addRoute of classNode, which uses
a helper function to complete field names with the appropriate pre-
fix/suffix (e.g. ’translation’ to ’translationchanged’, ’rotation’ to
’set rotation’). The Java EAI also supports removing routes through
the method deleteRoute. Once the fields invoked for a route are lo-
cated, the routes are created/removed using a field’s addReceiver
and removeReceiver methods. The sending of events is described
later.

Use of a scene graph is not necessarily imposed by the VRML97
design. Since a shape’s attributes and geometry are tied together in
VRML97, it is possible to choose non-hierarchical data structures
inside the browser. The advantage of the scene graph model is that
it already includes the transformation hierarchy needed for drawing,
and that it provides the possibility for saving the current state of a
dynamic scene. ClassTraverser handles recursive traversal of a
scene graph by visiting each node and calling an abstract method for



each node type, which has to be implemented by derived traverser
classes.

For VRwave, care has been taken to keep ‘pw’ a reusable
VRML97 parser library. A typical example is the preprocessing
step necessary before drawing the scene for the first time. This is
done by classBuilder , which extends the Traverser class. The
additional node information (e.g. the transformation matrix corre-
sponding to a Transform node) is stored in VRwave specific classes
(e.g. class TransformData) of subpackagepwdat , which are refer-
enced via the userdata field of each Node. In dynamic scenes these
data structures have to be updated after receiving events changing
the field values they depend on, which again is described later.

2.3 Rendering

Rendering of the 3D scene in VRwave is done via the Java inter-
face to the GE3D rendering library (“Graphics Engine for 3D”).
GE3D contains higher-level functions for setting up a 3D camera,
defining transformation hierarchies, materials, light sources, draw-
ing polygonal data sets and quadric primitives and so on. OpenGL
serves as the backend graphics library (or the Mesa library using
OpenGL’s API). Layers above the GE3D library do not have to care
about differences between underlying graphic libraries. The current
VRwave version uses the Java native interface of JDK 1.0.2. The
implementation of the GE3D/OpenGL context and possible alter-
natives is described in more detail in the next subsection.

Every scene rendering, which causes a call of the
SceneCanvas ’ paint method, is done by a scene graph
traversal in classDrawer . Its methods specify the drawing rules
for each node type based on methods of classGE3Dand using
information stored in the data structures created during building.

The Scene class also implements behaviour functions which
occur on each frame. On each redraw, the timestamp of the cur-
rent frame (needed for event handling) is obtained from the Java
system time and stored. Any TimeSensors, registered during the
preprocessing step, are then notified. Viewpoint management (in-
cluding user navigation) is also handled by class Scene, which does
not support bindable node behaviour at this time.

2.4 OpenGL and Java

OpenGL is a standard library for 3D graphics, which is easy to
program, widely used, very suitable for hardware acceleration, and
available on many platforms. OpenGL originally evolved from
SGI’s GL and is now available for Windows, various Unix ma-
chines, and the Macintosh. A graphics library called Mesa, which
is freely available in source code, also uses the OpenGL API. It was
natural to provide a Java binding to OpenGL, which was originally
done by Leo Chan at the Computer Graphics Lab University of Wa-
terloo [4], and later by various other people. However, there does
not exist an “official” (standard) binding for OpenGL.

Providing Java wrappers for the various OpenGL calls is
straightforward and easily done via the Java native code interface.
The more difficult part is to provide the window context integration
(which is not part of the core OpenGL library) for various plat-
forms. There are basically two possibilities to achieve this: the
native code can open a new toplevel window for rendering or in-
tegrate a drawing area into a window or canvas created via Java’s
AWT. The first approach is relatively simple, but lacks true inte-
gration of 3D output into a Java application, which may include a
menu bar and “decorations” like buttons, status lines and so on.

For this, it is necessary to obtain the native window informa-
tion from the Java Canvas (an AWT subwindow for drawing) and
to establish an OpenGL context for it. One way to do this is to
circumvent Java’s internals and get this information in a window
system dependent manner. (as we did for VRwave, described next).

The more direct way is to use the interface to the Peer objects of the
JDK. The latter method is more reliable and provides the possibil-
ity to use several OpenGL canvases within one Java application, but
obviously depends not only on the platform, but also on the particu-
lar JDK implementation (the interface of which may also be version
dependent).

As mentioned above, classiicm.ge3d.OGLCanvas , a sub-
class of the Java AWT Canvas, uses native methods to get an
OpenGL context for rendering into the Canvas area. For this pur-
pose it is necessary to determine the Canvas’ native window ID. A
string containing the title of the Java frame window is passed to the
native code implementation (in filegejcon.c ). The application
window ID is found by examining the window titles of all children
of the root window. Afterwards, the canvas window is determined
by choosing the most deeply nested subwindow (the search is recur-
sive). It also provides a method to activate and initialise the created
OpenGL context, which must be called prior to issuing OpenGL
commands.

In August 1997, the Java3D API specification [6] was released
as part of the Java Media API framework. Java3D uses a high-
level, scene graph-based programming model. Initial Java3D im-
plementations are expected to be layered atop other, lower-level 3D
graphics libraries, such as OpenGL, Direct3D, or QuickDraw3D.
As Java3D implementations become available in 1998, the render-
ing part of VRwave can be replaced to make Java3D calls, allowing
a 100% pure Java version of VRwave.

2.5 Event Processing

VRML events originate from Sensors, Scripts, or the Java EAI. Sen-
sors may become active based on time (TimeSensor), user input
(TouchSensor, dragging sensors) or scene states (VisibilitySensor,
Collision). When an eventOut (managed by classField , see ‘pw’)
has to be sent, it calls its sendEvent method passing the current
timestamp and itself as sender to its receiveEvent method, i.e. it re-
acts as if it just got the event and has to dispatch it further on to its
own recipients. Loops are prevented by comparing the timestamp
with the last time of receiving an event.

Each class wanting to be notified about a change of field value
has to implement the GotEventCallback interface and register it-
self for the field with the method setEventCallback. At the time of
receiving an event, all these callbacks are executed. This mecha-
nism is provided for the Java EAI and is also used inside VRwave,
for example to recompute a transformation matrix when a field is
changed. Finally, receiveEvent is called for each receiver.

ClassSceneCanvas extends theOGLCanvas of the GE3D
package. It overloads the paint and event handling methods to draw
the 3D scene and to handle user input (mouse and keyboard events).
The paint method activates the OpenGL context and calls the draw
method of the scene class, which draws the 3D scene via the Drawer
traversal. Afterwards, any icons forming part of the navigation in-
terface (for example heads-up navigation mode) are drawn atop the
3D scene. Finally, it must schedule another redraw if there are any
TimeSensors active (and behaviour is enabled).

Mouse and keyboard events in VRwave are separated into two
categories:navigationand interaction. Navigation events control
the user’s movement through the world (provided by the browser),
whereas interaction events encompass activation and manipulation
of Anchors and dragging sensors (e.g. CylinderSensor) defined in
the VRML scene.

2.6 Communication

Inline scene and texture image requests are handled by an in-
stance of classiicm.vrml.vrwave.URLServer . It imple-
ments thejava.lang.Runnable interface. Therefore, its in-



stances can be executed by threads and load the scenes and im-
ages without blocking. It manages a queue of nodes which re-
quest the data. Depending on the type of the next element
in the queue (Inline or ImageTexture) the appropriate method
is called to load the data. Inline scene data is directed into
the parser as ajava.io.InputStream as received from
java.net.URL.openStream() . The scene graph created
by the parser is traversed by theBuilder class and its root
level node is stored asInlineData . Texture image data is
loaded with java.awt.Toolkit.getImage() . The load-
ing process is controlled by a helper class, which implements the
java.awt.image.ImageConsumer interface and receives
pixel data in a Java float array. This array is passed to a GE3D
method, which encapsulates the texture inside an OpenGL/Mesa
display list (or texture object) and returns a texture identifier num-
ber for drawing.

Another job of theScene class is to send the URL information
of any activated anchors to an external web browser and cause it
to display the requested document. If VRwave is running as a stan-
dalone application this is done by a Netscape remote call, otherwise
it can be done directly via the AppletContext.

3 THE VRWAVE USER INTERFACE

In terms of the look and feel of its user interface, VRwave is a
direct descendant of VRweb. The VRwave window is divided verti-
cally into four areas: menu bar, tool bar, display area, and status bar.
The menu bar provides access to the full functionality of VRwave,
the tool bar and additional accelerator keys provide quick access to
commonly used functions.

As in VRweb, five rendering modes are supported: wire frame,
hidden line, flat shading, smooth shading, and texturing. The ren-
dering mode specified in the VRML file can be overridden. It is
also possible to specify a separate rendering mode for use during
interactive navigation. For instance, on a display without hard-
ware graphics acceleration, it might be advisable to navigate in wire
frame mode and see a textured version only when stationary.

VRwave provides four navigational modes.Flip mode is used to
examine an object, whilst the viewer remains stationary. The mouse
buttons have assignments for translation, rotation, and zooming.
Figure 2 shows a model of a cavalry pistol from the famous col-
lection in the Landeszeughaus (Armoury) in Graz being examined
in Flip mode.

TheWalk metaphor is used to stroll through a 3D environment.
Natural walking motion (forwards and backwards, possibly veer-
ing slightly to left or right) is assigned to the left mouse button.
Complementary controls for vertical motion and/or side-stepping,
and for turning the head are assigned to the middle and right mouse
buttons respectively.

Fly Tomode implements point-of-interest (POI) style navigation
[7]. Here, the user first selects a point of interest somewhere in the
model and is then able to perform controlled, logarithmic motion to-
wards (and away from) the POI, approaching by the same fractional
distance in each time step. Optionally, a rotational component can
be activated (with the Shift key), which results in a final approach
path to the POI head-on along the surface normal. This mode is
very useful for examining details of a scene and complements other
navigation metaphors like Walk or Flip, but is not sufficient as a
navigation technique per se.

Heads Upis perhaps the easiest navigation mode for beginners,
since its controls are clearly visible. Icons overlaid across the centre
of the viewing window (like a pilot’s heads-up display) symbolise
the individual navigation tools: eyes to look around, a walking per-
son for walking, crossed arrows for vertical and sideways motion.
Figure 3 shows the Stefaniensaal of Graz Convention Center [5]
being explored in Heads Up mode.

Other functions include opening local files, saving files, setting
preferences, changing colours, and so forth. The current frame rate
can be displayed in the status area.

4 THE JAVA EXTERNAL AUTHORING IN-
TERFACE (EAI)

The Java External Authoring Interface (EAI) [8] allows an exter-
nal program (applet or application) to drive the VRML browser.
The principal functionality provided by the Java EAI is to make a
Browser object available to an external Java applet, which gives ac-
cess to the entire Browser Script Interface defined for scripts inside
Script nodes, and to nodes named by DEF in the scene.

Currently, there are two commonly used ways to get an in-
stance of this Browser class: getting it from the static method
Browser.getBrowser() or using Netscape’s LiveConnect
which depends on a proprietary netscape package and requires the
Browser class to be a subclass of Plugin, which is also proprietary
to the Netscape browser. The Browser class of VRwave’s Java EAI
implementation supports both options.

As most of VRwave’s functionality can be accessed via the
Scene class, the Browser instance obtained contains a private ref-
erence to VRwave’s actual Scene instance. Before any of its meth-
ods can be called, it must be ensured that this Scene instance has
been created by VRwave already. This is done implicitly if the
Browser instance has been obtained using its getBrowser() method:
the method returns null as long as the Scene instance doesn’t ex-
ist, a loop in the external applet is run until it returns the Browser
instance. If the Browser instance was obtained using LiveConnect,
a method which blocks until the Scene instance has been created
is called at the beginning of each method accessing this Scene in-
stance.

After parsing the root scene, the Scene instance obtains the
Hashtable mapping DEF names to Nodes inside the scene graph
from the parser and stores it as a member variable. The
Browser.getNode() method uses this Hashtable to get a ref-
erence to the required node. This reference is passed to the created
instance of vrml.external.Node, which stores a reference to Scene in
a private member variable for event handling purposes. This Node
instance is returned by method getNode().

Instances ofvrml.external.Node provide methods to
access the node’s EventIn and EventOut fields by name.
They use the iicm.vrml.pw.Node classes’getEvent() method,
which returns a reference to the required field represented
by an instance ofiicm.vrml.pw.Field . Depending on
the field type a new instance of the corresponding class of
package vrml.external.field is created and returned.
They are subclasses ofvrml.external.field.EventIn or
vrml.external.field.EventOut and contain methods to
send events to the field or get the current value of the field respec-
tively. They also maintain a reference to VRwave’s Scene class
instance.

Classvrml.external.field.EventIn defines a method
sendEvent, which calls the sendEvent() method of its associated
EventIn field (which is a subclass ofiicm.vrml.pw.Field )
after ensuring that the event does not have the same timestamp as
the last event sent to this field. Events with same timestamp to one
field are ignored to avoid event loops.

Instances of subclasses of
vrml.external.field.EventOut should
be able to register classes implementing the
vrml.external.field.EventOutObserver inter-
face, whose callback() methods are then called whenever an event
is generated for the associated EventOut field. The advise() method
takes the class, which is to be registered, and a user-defined



Figure 2: VRwave in Flip mode displaying a textured model of a cavalry pistol from the world-renowned Zeughaus (armoury) in Graz.

Figure 3: VRwave in Heads-Up navigation mode showing the Stefaniensaal of Graz Convention Center. Note the navigational icons overlaid
across the centre of the viewing area.



object as parameters and adds them to lists. The EventOut class
itself implements the iicm.vrml.pw.GotEventCallback interface,
described above. On the first call of advise(), it registers itself to its
EventOut field’s list of callbacks. It’s gotEventCB() method is now
called whenever an event is sent by the EventOut field. Inside this
method, it calls the callback() methods of all EventOutObserver
classes, passing along the user defined object of the advise() call,
which makes it possible to use the same callback function to handle
events from multiple sources.

The Browser.createVrmlFromString() method cre-
ates a new instance of iicm.vrml.pw.VRMLparser to parse the
String parameter containing the VRML data. Since the ‘pw’
parser processes input of class java.io.InputStream, an instance of
java.io.StringBufferInputStream has to be created from the input
String. The scene graph is built and stored in a Node array, which
is duly returned by createVrmlFromString().

The Browser.addRoute() and
Browser.deleteRoute() methods use the addRoute()
or deleteRoute() methods of the nodes (instances of class
iicm.vrml.pw.Node) containing the affected fields. The remaining
methods of Browser use functions provided directly by the Scene
instance, for example getName(), getCurrentFrameRate(), and
getWorldURL().

5 CURRENT AND FUTURE WORK

Work on VRwave is ongoing. PROTOs and EXTERNPROTOs are
currently parsed but are then ignored. Work on supporting Java
scripting in Script nodes is underway, ElevationGrid and Text node
support is planned soon. Currently, VRwave is available for Unix
platforms, but work on a Windows port is underway.

In order to accelerate picking and collision detection, bounding
boxes will be maintained internally. Viewpoint management and
the two viewpoint-dependent sensors (VisibilitySensor and Prox-
imitySensor) also still need to be implemented. Farther in the fu-
ture, support for AudioClip and MovieTexture will depend on the
availability of underlying audio and video libraries.

Particular priority is being given to the encapsulation of 3D out-
put for various platforms. VRwave 0.9 uses the JDK 1.0.2 native
code interface to access the GE3D and thence OpenGL libraries
for 3D output. Unfortunately, there is no longer a single, standard
native code interface for Java, but three different ones: JNI (Sun
JDK 1.1), JRI (Netscape), and RNI (Microsoft). This necessitates
branching code (#ifdef and#define ) dependent on the local
Java Virtual Machine being used (appletviewer, Netscape, or Inter-
net Explorer respectively).

As long as native code is used for 3D output, users have to install
a local library (GE3D for OpenGL access) in addition to the VR-
wave Java code. This is somewhat troublesome and prohibits the
use of an entirely applet version of VRwave. Hopefully, at some
point in the future implementations of Java3D will be available
across multiple platforms, and GE3D can be eliminated entirely,
resulting in a 100% pure Java version of VRwave.

6 CONCLUDING REMARKS

We have presented an inside look at the VRwave browser for
VRML97, discussing its internal architecture and some of the in-
sights we have gained.

VRwave is available both in binary and in source code. The
source code is copyrighted, but is freely available for non-
commercial use (see the licence notice with the distribution for full
details). Further information about VRwave is available from the
VRwave Home Page at:

http://www.iicm.edu/vrwave

The VRwave distribution itself is available by anonymous ftp
from:

ftp://ftp.iicm.edu/VRwave

and numerous mirror sites worldwide. At time of writing, the latest
release was VRwave 0.9 of 30th September 1997.

The VRML97 parser ‘pw’ is also available separately under the
GNU LGPL (Library General Public License), allowing it to be
freely incorporated into other programs.

7 ACKNOWLEDGEMENTS

We would like to thank our colleagues at the IICM and the VR-
web and VRwave user communities for their support and helpful
suggestions during over the past 5 years. The name VRwave is a
trademark of IICM.

REFERENCES

[1] Keith Andrews. Using 3D scenes as hypermedia nodes. Poster
at the ACM European Conference on Hypertext (ECHT’92),
Milan, Italy, December 1992.

[2] Keith Andrews. Constructing cyberspace: Virtual reality and
hypermedia. Presented at Virtual Reality Vienna ’93.ftp:

//ftp.iicm.edu/pub/papers/vrv93.ps.gz , December 1993.

[3] Keith Andrews. VRweb project announcement
(press release), April 1995. http://www.iicm.edu/

vrweb-press-announce01.html .

[4] Leo Chan. An unofficial port of opengl to java. Computer
Graphics Lab, University of Waterloo.http://www.meta.

cgl.uwaterloo.ca/SourceCodeAndDemos/OpenGL4java.html .

[5] Cyber Congress. Graz Convention Center.http://www.

gcongress.com/vrml/3dmodel.htm .

[6] Java 3D API Specification.http://java.sun.com/products/

java-media/3D/ .

[7] Jock D. Mackinlay, Stuart K. Card, and George G. Robertson.
Rapid controlled movement through a virtual 3D workspace.
In Proc. SIGGRAPH’90, pages 171–176, Dallas, Texas, Au-
gust 1990. ACM.

[8] Chris Marrin. External authoring interface reference, Jan-
uary 1997. http://vrml.sgi.com/moving-worlds/spec/

ExternalInterface.html .

[9] Hermann Maurer, editor.HyperWave: The Next Generation
Web Solution. Addison-Wesley, May 1996.http://www.

iicm.edu/hgbook .

[10] Michael Pichler. Interactive browsing of 3D scenes in hyper-
media: The Hyper-G 3D viewer. Master’s thesis, Graz Uni-
versity of Technology, Austria, October 1993.ftp://ftp.

iicm.edu/pub/papers/pichler1.ps.gz .

[11] Michael Pichler, Gerbert Orasche, Keith Andrews, Ed Gross-
man, and Mark McCahill. VRweb: A multi-system VRML
viewer. InProc. First Annual Symposium on the Virtual Real-
ity Modeling Language (VRML ’95), pages 77–85, San Diego,
California, December 1995.http://www.iicm.edu/vrml95/

vrweb.html .


