
1

Hyper-G: A New Tool for Distributed Hypermedia

Frank Kappe, Keith Andrews, J�org Faschingbauer,

Mansuet Gaisbauer, Michael Pichler, J�urgen Schipinger

Institute for Information Processing and Computer Supported New Media (IICM),

Graz University of Technology,

Graz, Austria

Abstract

This paper describes Hyper-G, a new hypermedia information system which

combines the best of Gopher, WAIS, and World Wide Web. Hyper-G is speci�cally

designed as a distributed, large-scale hypermedia information system supporting

navigation in a large body of dynamically changing information without becoming

\lost in hyperspace". Users may choose a hierarchical navigation paradigm, click

on hyper-links, go on guided tours, or perform variable-scope searches.

This paper presents Hyper-G from the user's perspective, outlines the basic

architecture of the system, and describes its interaction with existing distributed

information retrieval tools like Gopher, WAIS, and World Wide Web.

1 Introduction

Hyper-G is the name of an ambitious hypermedia project currently in progress at Graz

University of Technology. Hyper-G was designed as a general-purpose, large-scale, dis-

tributed, multi-user, hypermedia information system, similar in scope to Xanadu [13]

and Intermedia [7]. Based on previous experience with large-scale information systems

(videotex), the aim of the Hyper-G project is to develop a exible hypermedia framework

in order to study and as far as possible eliminate the problems typically associated with

large-scale (i.e. containing millions of documents) hypermedia systems:

1. Disorientation: Also known as the \lost in hyperspace" syndrome, this phe-

nomenon has often been addressed in the literature (�rst by [5]). The symptoms

are: the di�culty of gaining an overview, �nding information again, not knowing

how much information there is on a subject and how much of it has already been

seen, not knowing whether everything important has been seen, etc. For small-scale

systems (like typical HyperCard or ToolBook applications), the problem is not so

acute. However, for large-scale, dynamic hyperbases special facilities have to be pro-

vided [18, 6]. The approach taken in Hyper-G is described in Section 2 of this paper.



2 2 BROWSING AND SEARCHING IN HYPER-G

2. Authoring: Large hyper-structures cannot be created by a single person. As in

large-scale software development, it would be desirable to rely on reusable hypertext

modules with well-de�ned interfaces which are created by di�erent authors according

to a set of prede�ned rules, rather than the current practice, where the simple node-

link model of hypertext facilitates the creation of \spaghetti links" (the analogy of

the node-link model with the GOTO statement of programming languages has been

discussed in [4]). This problem is not discussed further in this paper, however, the

interested reader is referred to [12, 17].

3. Information Distribution: It is clear that a truly large-scale hypermedia system

will, by necessity, also be a distributed information system. Hyper-G is based on the

client-server model, with clients and servers connected via the Internet { Section 3

describes the architecture of Hyper-G. Furthermore, it is desirable to provide as

much interoperability as possible with similar existing tools and services, like Gopher

[1], WAIS [16], and World Wide Web (WWW) [2]. The interoperability of Hyper-G

is described in Section 4 of the paper.

2 Browsing and Searching in Hyper-G

In order to o�er the user a convenient way of �nding information in a large-scale hyperme-

dia information system, a combination of sophisticated navigation and retrieval facilities

is necessary. We believe that a blend of hyper-navigation, hierarchical structuring of in-

formation, guided tours through the information universe, and various search facilities in

conjunction with state-of-the-art user interface metaphors will serve the user better than

any single technique alone.

It should be noted that the following discussion deals only with the logical structure of

information. The physical structure (i.e. which parts of the information body are stored

in what part of the distributed system) should be seen as completely independent of the

logical structure.

2.1 Hyper-Navigation

In a hypertext system the user navigates by clicking on a \hot spot" (a so-called source

anchor) attached to a document, which in turn activates a link to a certain area in another

document (the destination anchor) or the whole destination document. The new document

is then visualised, the user may again click on anchors, and so on.

This simple and intuitive paradigm of browsing through information rather than searching

for it has already successfully been used in a number of information systems (for exam-

ple WWW), and it is indeed very well suited for applications such as encyclopedias, user



2.2 Collection Hierarchy 3

manuals, computer based teaching material, presentations, online help systems, and the

like. The use of multimedia document types (image, sound, video, animation) in addi-

tion to text transforms hypertext into hypermedia. In hypermedia systems the browsing

paradigm is essential, as multimedia documents cannot in general be searched for. This

is why Hyper-G was designed as a hypermedia system.

However, as explained in the introduction, the basic node-link model of hypertext has

its limitations when applied to a large body of information, both for the user (\lost

in hyperspace") and for the author (\spaghetti links"). Therefore, this basic model is

augmented in Hyper-G by additional structuring and navigation facilities { collections,

guided tours, and searching { which are shown in Figure 1 and discussed in more detail

in the forthcoming sections.

Document

Link

Collection

Search Result

Guided Tour

Figure 1: The Hyper-G Navigation Model

2.2 Collection Hierarchy

Every Hyper-G document is a member of one or more collections, which are in turn

members of one or more collections (except for the root collections). This (recursive)

de�nition yields collection hierarchies like the one shown in Figure 2. Note that this

hierarchy is, in fact, an acyclic directed graph and not a tree, since objects may belong to

multiple \parent collections". Rather, the collection hierarchy can be seen as a thesaurus-

like structure de�ned over the whole information body and orthogonal to the hyperlink

structure (compare Figure 1).



4 2 BROWSING AND SEARCHING IN HYPER-G

ChemistryBiology

Biochemistry Organic Ch. Anorganic Ch.

Natural Sciences

Zoology

from root collection

"descend"

"ascend"

Figure 2: The Collection Hierarchy

The collection hierarchy serves three purposes:

1. Navigation: When users visit a collection, they are given an overview of all ob-

jects belonging to that collection, and can select (and thus visit) any of these objects

(similar to a Gopher menu). This hierarchical navigation scheme reduces the propa-

bility that users get lost in the information space. In addition and in parallel to this

paradigm, Hyper-G users may use hyper-navigation, guided tours and searching to

visit documents. In this case, they may consult the collection hierarchy to learn the

relative position of that document within the information universe (see Section 2.5),

which alleviates the \lost in hyperspace" syndrome.

2. Search Scope: When issuing a search operation (see section 2.4), users may indi-

cate that only parts of the collection hierarchy should be searched, in order to reduce

the amount of matches returned (for example, by switching o� dictionaries when

one knows the meaning of the search term). Users may mark certain collections as

\active": only objects which are members of the active collections (recursively) are

returned by a search operation.

3. Access Rights: In a large-scale hypermedia information system we assume there

exist many authors. The collection hierarchy is used to grant write permissions to

certain parts of the information structure to authors, and to organise registration

of their information with the rest of the information universe. Also, read access

to certain parts of the information space can be granted or denied to certain user

groups.

In our concrete implementation, three classes of collection are currently de�ned:



2.3 Guided Tours 5

� Ordinary collections as described above display a list of menu items when visited.

The order of the items may be statically de�ned or dynamically sorted based on

certain attributes of the collection members (title, author, creation time, etc.).

� A cluster is similar to a collection, but when a cluster is visited all of its sub-

structures are visited (visualised) too. This structure is used to implement mul-

timedia documents (for example, to play an audio clip while an image and a text

document are shown), and to support multilingual documents and version control.

� A tour is a collection, which when visited visits all of its substructures in a certain

order. It is used to implement \linear hypertexts" with automatically generated

\next" and \previous" interface elements. This class of collection is used to realise

guided tours (see Section 2.3).

The Hyper-G database server is aware of these structural elements and uses them to

maintain database consistency (such as making sure that every document is a member

of at least one collection, deletion of a document from a tour automatically joins its

neighbours, etc.)

2.3 Guided Tours

Guided tours are paths through the information network which have been signposted by

some expert in the topic at issue. As shown in Figure 1, guided tours need not take into

account the link structure or collection membership of the visited documents.

Of course, a document may be part of any number of such tours. When users visit

a document as part of a tour, they are given the opportunity to switch to a di�erent

tour (if available), or continue with a di�erent navigation paradigm. Guided tours are

typically used to present a compilation of highlights about a particular topic, very much

like taking a guided tour to see the sights of as city one is visiting for the �rst time. They

are also useful for preparing hypermedia presentations of existing material.

2.4 Search Facilities

Hyper-G o�ers two modes of searching:

� Every Hyper-G object has a set of associated attributes (title, keywords, author,

creation time, expiration time, etc.), which can be searched for, including boolean

combinations. Typical queries might be \Give me all documents with fractal and

compression in the title", or \Give me all objects which have been created since

yesterday" or \Give me all images with the keyword clinton".



6 2 BROWSING AND SEARCHING IN HYPER-G

� Text documents are automatically full text indexed on insertion, which supports

the use of content-based full text queries. The Hyper-G full text server supports

fuzzy boolean queries as described in [14] and WAIS-like nearest-neighbour searches

based on the vector space model [15].

In both modes, the scope of the search can be de�ned in a exible way:

� a single collection on a single Hyper-G server;

� a set of collections on a number of Hyper-G servers;

� the local Hyper-G server (all collections);

� a number of Hyper-G servers (all collections);

� all Hyper-G servers worldwide (all collections).

2.5 User Interface Considerations

We do not expect a user to choose one of the above navigation paradigms and then

stick to it. Rather, we expect that users will want to readily change their means of

navigation. For example, when looking something up in an encyclopedia, one may �rst

use hierarchical navigation to locate a suitable encyclopedia, then issue a search on titles

or content restricted to that encyclopedia, looking at the list of results in turn, and then

following hyperlinks (cross references) as necessary. It is the responsibility of the Hyper-G

user interface to ensure that users may change paradigm whenever they want, without

ever becoming lost.

Figure 3: Harmony Text Viewer Showing Document \grep(1)"

To illustrate some of these issues, let us look at some screen shots taken from the Harmony

Hyper-G client for X Windows. Let us assume our user wants to look up the manual



2.5 User Interface Considerations 7

page of the UNIX grep command. To do this, the user would activate the \Manual

Pages" collection in the local server, and look for objects with \grep" in their title (the

search dialog is not shown for space reasons). Figure 3 shows the Harmony Text Viewer

displaying the resulting text document. The user could now for example follow a link to

the ex command to look up the syntax of regular expressions. This is a standard hypertext

feature found in many systems. Analogously, the Harmony Image Viewer allows the

activation of links attached to (parts of) image documents.

Figure 4: Harmony Collection Browser Showing Location of \grep(1)"

Rather important in overcoming the \lost in hyperspace" problem is that the location of

the \grep(1)" document in the collection hierarchy is simultaneously displayed in another

window, Harmony's Collection Browser { shown in Figure 4. The user always sees the

location of the current document (highlighted by colour) with respect to the collection

hierarchy, i.e. if the user now follows the link to the ex document, the position of that

document would also be shown. In our example, we see that the \grep(1)" is part of the

\(1) User Commands" subcollection of the \ULTRIX 4.2" collection. If it were also a

member of other collections, all the paths from the root collection down to the document

would be opened up.

The collection browser is itself active: clicking on a collection \opens" it, i.e. its \children"

are shown. In our example, if the user now clicks on \(1) User Commands", the titles of

all user commands under ULTRIX 4.2 are displayed. The collection browser is a kind of

\global map" showing the relative position of the current document.

The collection browser shows only the collection hierarchy; it does not reect the link



8 3 ARCHITECTURE

Figure 5: The Harmony Local Map Around \grep(1)"

structure. Unfortunately, in a large-scale system, it is not feasible to automatically gen-

erate a global map showing all hyperlinks. It is however possible to generate a local map

(also called a web view or �sheye view) of the \vicinity" of the current document, i.e.

documents related (recursively) to the current document by incoming or outgoing links.

Figure 5 shows the link structure of the ULTRIX manual pages around the \grep(1)"

document, two levels in either direction.

3 Architecture

This section gives an overview of the main components of Hyper-G. For more detail,

the interested reader is referred to [9, 11]. The dual requirements of a large number

of (multimedia) documents and a large number of users lead naturally to the use of a

client/server design model, with clients and servers connected via the Internet (using

TCP/IP).

Figure 6 shows the architecture of Hyper-G. Unlike Gopher or WWW clients, Hyper-G

Clients are not required to connect to multiple Hyper-G servers. Rather, clients talk to

the same server all the time. Should information from a remote server be needed, the local

server fetches it and delivers it to the client. This approach o�ers the following advantages:

� It keeps clients simple and allows for an e�cient, connection-oriented protocol.

� It enables caching of remote information in the local server.

� It simpli�es maintenance of user accounts and access rights in the local link server

(the user has to identify to one server only).

� It enables the link server to gather statistics and user pro�les on a per-session basis.



9

to remote Hyper-G Servers

Hyper-G Server

Full Text

Server

Document
Server

Link

Gopher

WWW

WAIS

Gopher

WWW

Client Server GatewayLegend:

Servers:WWW
Client

Gopher
Client

LAN
Client

Hyper-G

Server
Remote

Remote
Clients:

Figure 6: Hyper-G Architecture

The local Hyper-G server connects to other Hyper-G servers on demand, maintaining

consistency of the information base and performing searches across server boundaries.

For the client, the existence of servers other than the local server is not visible; the

local server performs like a \super-server" knowing about all the information stored in

all other servers. In a sense, it behaves like a domain name server which can be queried

with the gethostbyname() system call on UNIX machines, knows about some local names,

asks other servers for remote names, and caches the results for higher performance { all

transparent to the calling process.

The Hyper-G server, conceptually a single process, in fact comprises three distinct server

processes: full text server, link server, and document server. The full text server is

dedicated to full text retrieval, document clustering, and automatic link generation and

is not discussed further here.

The link server is a sophisticated object-oriented database of objects, i.e. descriptions

of documents, links, anchors, collections, tours, remote databases, etc. (for an in-depth

description of Hyper-G objects and features see [8, 10]) and relations between such objects

(for example, which anchors are attached to which documents, which source anchors are

connected to which destination anchors/documents, which documents belong to which



10 3 ARCHITECTURE

collection, etc.). The main functions of the link server are:

� It assigns object IDs to objects and ensures that no two objects share the same ID.

In addition, it guarantees that when an object is modi�ed, it receives a new object

ID so that it can be distinguished from the old version. When an object is deleted,

its ID is not reused.

� It maps object IDs to objects. In Hyper-G, an object ID is just a unique number

(similar to an ISBN number or a mail message id) assigned to every object (and

hence every document). In the link server (and only there) more information on the

object is stored: such as title, author, creation date, and in the case of documents

also the data necessary to retrieve the document from a document server. Therefore,

should a document be changed (say, moved from server A to server B) only the

information in the link server has to be updated.

� Unlike many other hypertext systems (for example, WWW), Hyper-G strictly sepa-

rates links from documents. This allows the attachment of links to documents even

when the document itself cannot be changed, for example because it resides on a

CD-ROM or on a remote server where the protocol prevents writing of documents.

In general, this is a desirable feature since it allows users to annotate material that

is otherwise read-only (for example, encyclopedias). The link information, together

with meta-information about objects (title, author, creation date, etc.) is stored

within the link server, while the documents themselves reside on a document server.

� A centralised link store enables the system to support bidirectional links1, i.e. to

answer the question \What other documents refer to the current document?". This

is important for two reasons:

{ Whenever a document is deleted or modi�ed, the system is able to tell which

other documents refer to the document in question. Hence references to nonex-

istent or outdated documents can automatically be identi�ed and (possibly)

removed from the web, thus maintaining web integrity. This is especially im-

portant in large multi-user systems, where the person deleting a document can

not be expected to know of all the links to that document.

{ It allows advanced user interfaces to draw local maps like the one shown in

Figure 5.

� The link server is aware of the collection hierarchy and uses this knowledge them to

maintain database consistency.

� As every Hyper-G object contains some meta-information (title, author, creation

date, additional keywords, etc.), the link server can perform complex boolean and

fulltext queries (for example, \Give me documents with title containing UNIX, cre-

ated by user fkappe after 93/06/01") either over the whole database or a certain

subset of the collection hierarchy. Unlike Gopher or World Wide Web, Hyper-G does

1It should be noted that the link server concept and bidirectional links were �rst implemented in the

Intermedia system [7].



11

not require the information provider to set up a search engine for every suitable

collection of documents. Rather, every document and every collection is automati-

cally searchable on creation and it is the user's decision as to where a search seems

reasonable.

� A sophisticated, hierarchical access control scheme built into the link server supports

the restriction of access to individual documents and collections to certain groups

of users. The link server also supports modi�cation of the database (including

rearrangement of the collection hierarchy and editing of documents) by clients, for

which access control is also a precondition. There are plans to support accounting

functions as well, but these have not yet been implemented.

� The link server is also the ideal place to gather detailed statistical data about system

usage.

Hyper-G clients connect to the link server and use it to search and browse through the in-

formation space. Whenever a document (text, image, sound, . . . ) is needed, it is retrieved

from the document server, which stores all local documents and caches remote documents.

All document requests are routed through the local document server. If the document

requested has not yet been cached, the request is forwarded to the document server on

which the document resides. The local document server retrieves the document from the

remote document server and simultaneously retransmits it to the client and stores it in

the cache. If the document is found in the cache, it is transmitted directly to the client.

The document server should be con�gured to control a certain amount of mass storage

(say a few hundred megabytes of hard disk) and use it as cache memory for incoming

documents. When this space is exhausted, the server removes the least recently accessed

document from the cache. It is intended that the document server reside on the same

LAN as the client, so that transmission from cache to client is reasonably fast.

A problem typically associated with caching in distributed environments is that of mod-

i�cation of what is cached. When a document is modi�ed, it must be guaranteed that

the user sees the new version of the document the next time it is retrieved and not an

old copy still in the cache. Other systems do this by assigning expiry dates to objects, or

by notifying all caches whenever objects are changed or deleted, which in turn requires

the maintenance of a list of all caches, what they have cached, and so forth. Fortunately,

however, the problem does not arise at all in our design. Remember, the link server

guarantees that new object IDs are assigned to modi�cations of objects and that IDs of

deleted objects are not reused. When a document is modi�ed, the new version receives a

new ID which is passed to the client when the user visits that document. Therefore, it is

impossible that the local document server �nds the new object in its cache and will auto-

matically reload the new document from the remote document server. An old copy of the

document residing in the cache cannot be accessed any more and will therefore eventually

be deleted because of the least-recently-used strategy of the cache.



12 5 ACKNOWLEDGEMENTS

4 Interoperability

As was mentioned at the very beginning of this paper, we consider the interoperability of

information services to be a very important issue. As indicated in Figure 6, Hyper-G is

able to interact with Gopher, WWW, and WAIS servers and Gopher and WWW clients.

As shown on the left hand side of Figure 6, the Hyper-G server can be accessed using

Gopher or WWW clients. When accessed by a Gopher client, the collection hierarchy

is mapped into a Gopher menu tree; hyperlinks cannot be represented in the Gopher

metaphor. At the foot of each Gopher menu, a synthetic search item is generated which

allows the user search the corresponding collection. When accessed by a WWW client,

each level of the collection hierarchy is converted to an HTML [3] document containing

a menus with links to other sub-menus. The menus are marked as searchable. Hyper-G

text documents are transformed into HTML documents (including their links).

In the other direction (the right hand side of Figure 6), Hyper-G clients can contact Go-

pher, WWW, and WAIS servers in order to retrieve information from them. The Hyper-G

server is able to store pointers to such remote objects. This allows the incorporation

of information on remote non-Hyper-G servers (almost) seamlessly: Gopher menus are

transformed into Hyper-G collections, WWW text documents into Hyper-G text docu-

ments, and WAIS queries and responses into Hyper-G queries and responses.

In the future, we plan to move the knowledge of external protocols from the Hyper-G client

to the document server. To access information stored within external databases, clients

may then connect to the document server which retrieves and caches the document. In

addition, the client may request the document in a speci�c representation (say, a certain

image format and/or quality), and the document server will convert it and cache the

result (and possibly also the original representation). This approach will make clients

simpler, relieving them from the burden of understanding other information retrieval

protocols and �le formats. Software maintenance will also become easier, because only

the document server's code has to be modi�ed in order to support new protocols and �le

formats (remember, there may be a large number of clients tailored to di�erent platforms

and user types).

5 Acknowledgements

Partial Support of the Hyper-G project by the Austrian Ministry of Science, Joanneum

Research, and the European Space Agency is gratefully acknowledged.



REFERENCES 13

References

[1] Alberti B., Anklesaria F., Lindner P., McCahill M., and Torrey D.:

\The Internet Gopher Protocol: A Distributed Document Search and Retrieval Pro-

tocol". March 1992. Available by anonymous ftp from boombox.micro.umn.edu in

directory pub/gopher/gopher protocol.

[2] Berners-Lee T., Cailliau R., Groff J., and Pollermann B.: \World-Wide

Web: The Information Universe". Electronic Networking: Research, Applications

and Policy, 2(1):52{58, Spring 1992.

[3] Berners-Lee T. and Conolly D.: \Hypertext Markup Language (HTML)".

June 1993. Version 1.2. Available in hypertext on the World Wide Web as

http://info.cern.ch/hypertext/WWW/Markup/HTML.html.

[4] DeYoung L.: \Linking Considered Harmful". In Rizk A., Streitz N.,

and Andr�e J. (editors), Hypertext: Concepts, Systems and Applications; Proc.

ECHT'90, pages 238{249, Cambridge University Press, 1990.

[5] Edwards D. M. and Hardman L.: \Lost in Hyperspace: Cognitive Mapping and

Navigation in a Hypertext Environment". In McAleese R. (editor), Hypertext:

Theory into Practice, pages 105{125, Blackwell Scienti�c Publications Ltd., 1989.

[6] Gloor P. A.: \CYBERMAP: Yet Another Way of Navigating in Hyperspace". In

Proc. Hypertext '91, pages 107{121, ACM, December 1991.

[7] Haan B. J., Kahn P., Riley V. A., Coombs J. H., and Meyrowitz N. K.:

\IRIS Hypermedia Services". Communications of the ACM, 35(1):36{51, January

1992.

[8] Kappe F.: Aspects of a Modern Multi-Media Information System. PhD thesis,

Graz University of Technology, Austria, June 1991. Also available as IIG Report

308; IIG, Graz University of Technology (Jun 1991), and by anonymous ftp from

iicm.tu-graz.ac.at in directory pub/Hyper-G/doc.

[9] Kappe F.: \Hyper-G: A Distributed Hypermedia System". In Leiner B. (editor),

Proc. INET '93, San Francisco, California, pages DCC{1{DCC{9, Internet Society,

August 1993.

[10] Kappe F.,Maurer H., and Sherbakov N.: \Hyper-G { A Universal Hypermedia

System". Journal of Educational Multimedia and Hypermedia, 2(1):39{66, 1993.

[11] Kappe F., Pani G., and Schnabel F.: \The Architecture of a Massively Dis-

tributed Hypermedia System". Internet Research: Electronic Networking Applica-

tions and Policy, 3(1):10{24, Spring 1993.

[12] Maurer H., Kappe F., Sherbakov N., and Srinivasan P.: \Structured Brows-

ing of Hypermedia Databases". In Grechenig T. and Tscheligi M. (editors),

Proc. VCHCI '93, Vienna, Austria, pages 51{62, Springer, LNCS 733, September

1993.



14 REFERENCES

[13] Nelson T. H.: Literary Machines (Edition 87.1). The Distributors, South Bend,

IN 46618, USA, 1987.

[14] Salton G., Fox E. A., and Wu H.: \Extended Boolean Information Retrieval".

Communications of the ACM, 26(12):1022{1036, December 1983.

[15] Salton G., Wong A., and Yang C. S.: \A Vector Space Model for Automatic

Indexing". Communications of the ACM, 18(11):613 �., November 1975.

[16] Stein R. M.: \Browsing Through Terabytes { Wide-area Information Servers Open

a New Frontier in Personal and Corporate Information Services". Byte, 16(5):157{

164, May 1991.

[17] Stubenrauch R., Kappe F., and Andrews K.: \Large Hypermedia Systems:

The End of the Authoring Era". In Proc. ED-MEDIA 93, Orlando, Florida,

pages 495{502, AACE, Charlottesville, VA, June 1993.

[18] Utting K. and Yankelovich N.: \Context and Orientation in Hypermedia Net-

works". ACM Transactions on Information Systems, 7(1):58{84, January 1989.


