
Aspects of a

Modern Multi-Media

Information System

Dissertation

for the Award of the Academic Degree

Doctor of Technical Sciences

at the

Graz University of Technology

submitted by

Frank M. Kappe

Institute for

Foundations of Information Processing and

Computer Supported New Media (IICM),

Graz University of Technology

Graz, June 1991

cCopyright 1991 by Frank M. Kappe

First Reader: O. Univ.-Prof. Dr. Hermann A. Maurer

Second Reader: A. O. Univ. Prof. Dr. Volkmar Haase

Aspects of a Modern

Multi-Media Information System

Frank M. Kappe

Abstract

This thesis describes a new, large-scale Hypermedia project (\Hyper-G")
currently being developed at the Institute for Foundations of Informa-
tion Processing and Computer Supported New Media (Head: Professor
Hermann Maurer) of the Technical University of Graz. Experience gath-
ered from modern Hypermedia systems, large-scale information systems,
computer aided instruction and user interface design considerations led
to a number of ideas, features, and examples of applications of Hyper-G.

They were condensed, put into a logical relationship, and used to for-
mulate a set of requirements. The requirements, additional design deci-
sions, and a discussion of implementation-related issues are part of this
thesis.

Also, a new concept for the creation of real-time, interactive animation
is presented. It is essentially a combination of Computer Animation and
Hypermedia technologies, therefore it is called \Hyper-Animation".

This concept is also the basis of some of the more advanced applications
of Hyper-G that are described in this thesis. Applications range from
information systems and electronic publishing to exhibits that may be
found in a virtual museum or exhibition environment.

Acknowledgments

The support of parts of the research reported in this thesis by the Austrian Federal
Ministry for Science and Research is gratefully acknowledged. In addition, a number
of individuals supported me in research and preparation of the thesis:

Prof. Hermann Maurer, thesis supervisor, introduced me to Hypermedia and sug-
gested the topic(s) of the thesis. Numerous fruitful discussions with him and others,
including Prof. Ivan Tomek from Acadia University, Nova Scotia, Prof. Dieter Fell-
ner from the Memorial University of Newfoundland and institute members Helmut
M�ulner, Gerald Pani, Peter Sammer, and Robert Stubenrauch led to ideas contained
herein. Prof. Haase's fast reading allowed last-minute changes and completion
within schedule.

Last, but not least, I want to thank my wife Sigrid for her love and patience during
the preparation of this thesis.

Contents i

Contents

1 Introduction 1

1.1 What is Hypermedia? : 1
1.2 Previous Work : 3
1.3 Overview of Thesis : 3

2 Hypermedia 6

2.1 Overview : 7
2.2 The Design of Hyper-G : 8

2.2.1 Design Strategy : 9
2.2.1.1 De�nition of Terms : : : : : : : : : : : : : : : : : : : 10

2.2.2 Basic Requirements : 12
2.2.2.1 General Requirements : : : : : : : : : : : : : : : : : 12
2.2.2.2 User-related Requirements : : : : : : : : : : : : : : : 13
2.2.2.3 Author-related Requirements : : : : : : : : : : : : : 15
2.2.2.4 System Requirements : : : : : : : : : : : : : : : : : 15
2.2.2.5 Implementation Requirements : : : : : : : : : : : : : 16

2.2.3 Design Decisions : 17
2.2.3.1 Distributed System : : : : : : : : : : : : : : : : : : : 17

2.2.3.1.1 Core System : : : : : : : : : : : : : : : : : 17
2.2.3.1.2 Front-Ends : : : : : : : : : : : : : : : : : : 18
2.2.3.1.3 Back-Ends : : : : : : : : : : : : : : : : : : : 18

2.2.3.2 Software Environment : : : : : : : : : : : : : : : : : 19
2.2.3.3 Multimedia Documents vs. Document Clusters : : : 19
2.2.3.4 Dynamic Links : 22
2.2.3.5 Associative Link Following : : : : : : : : : : : : : : : 23
2.2.3.6 Link Priority : 24
2.2.3.7 Links and Anchors : : : : : : : : : : : : : : : : : : : 24
2.2.3.8 Annotation : 27
2.2.3.9 Navigation Tools : 27
2.2.3.10 User Interface Metaphors : : : : : : : : : : : : : : : 27
2.2.3.11 Collections : 28
2.2.3.12 Tours : 29
2.2.3.13 Database Queries : 30
2.2.3.14 Multilingual Hypermedia : : : : : : : : : : : : : : : 30
2.2.3.15 User Identi�cation Modes : : : : : : : : : : : : : : : 32
2.2.3.16 Access Rights : 34

2.2.4 Implied Requirements : 35
2.2.4.1 General Requirements : : : : : : : : : : : : : : : : : 35
2.2.4.2 User-related Requirements : : : : : : : : : : : : : : : 39
2.2.4.3 System Requirements : : : : : : : : : : : : : : : : : 47
2.2.4.4 Implementation Requirements : : : : : : : : : : : : : 50

2.2.5 Process Distribution : 52
2.2.5.1 Session/Interface Manager : : : : : : : : : : : : : : : 53

ii Contents

2.2.5.2 Document Managers : : : : : : : : : : : : : : : : : : 56
2.2.5.3 Database Managers : : : : : : : : : : : : : : : : : : : 57

2.2.6 Data Distribution : 60
2.2.6.1 Hyper-G Objects : 60

2.2.6.1.1 Object-Oriented Design Principles : : : : : 61
2.2.6.1.2 Documents : : : : : : : : : : : : : : : : : : 62
2.2.6.1.3 Anchors : 65
2.2.6.1.4 Links : 65
2.2.6.1.5 Tours : 67
2.2.6.1.6 Collections : : : : : : : : : : : : : : : : : : 70

2.2.6.2 Databases : 70
2.2.6.2.1 The Keys & Attributes Database (KAD) : : 70
2.2.6.2.2 Collection-Speci�c Databases : : : : : : : : 73
2.2.6.2.3 Remote Databases : : : : : : : : : : : : : : 74

2.2.7 The User's View : 76
2.2.7.1 Search Strategies : 76
2.2.7.2 User Con�gurable Options : : : : : : : : : : : : : : : 77

2.2.8 The Author's View : 78
2.2.8.1 Document Editing : : : : : : : : : : : : : : : : : : : 78
2.2.8.2 Link Editing : 80

2.2.9 The System Administrator's View : : : : : : : : : : : : : : : : 81
2.3 Implementing a Prototype of Hyper-G : : : : : : : : : : : : : : : : : 82

2.3.1 Purpose : 82
2.3.2 Priority of Requirements : 83
2.3.3 The Hypermedia Base System (HBS) : : : : : : : : : : : : : : 87
2.3.4 From HBS to the Hyper-G Prototype : : : : : : : : : : : : : : 90
2.3.5 Document Managers : 91

2.3.5.1 Text Document Manager : : : : : : : : : : : : : : : : 91
2.3.5.2 Drawing Document Manager : : : : : : : : : : : : : 92
2.3.5.3 Raster Image Document Manager : : : : : : : : : : : 93
2.3.5.4 Digitized Sound Document Manager : : : : : : : : : 94
2.3.5.5 Digital Movie Document Manager : : : : : : : : : : : 95
2.3.5.6 Animation Document Manager : : : : : : : : : : : : 95
2.3.5.7 Map Document Manager : : : : : : : : : : : : : : : : 96
2.3.5.8 Communications Document Manager : : : : : : : : : 96
2.3.5.9 Dialog Document Manager : : : : : : : : : : : : : : 96
2.3.5.10 Tour Guide : 96

2.3.6 User Interface : 97
2.3.7 Data : 99

Contents iii

3 Hyper-Animation 101

3.1 Introduction : 101
3.2 Conventional Computer Animation : : : : : : : : : : : : : : : : : : : 102

3.2.1 Classi�cation of Computer Animation Systems : : : : : : : : : 103
3.3 Hyper-Animation Data Types : 108

3.3.1 Still Images : 108
3.3.2 Digital Video : 111
3.3.3 Computer Animation : 112
3.3.4 Sound : 113

3.4 Functionality : 114
3.4.1 Styles of Interaction : 116

3.5 Integration within Hyper-G : 116
3.5.1 Hyper-Animation Links and Anchors : : : : : : : : : : : : : : 117

3.6 The Hyper-Animation Editor : 118
3.7 Examples : 118

4 Some Advanced Applications of Hyper-G 120

4.1 University Information System : 121
4.1.1 Information Retrieval : 121
4.1.2 Computer Mediated Communication (CMC) : : : : : : : : : : 122
4.1.3 Computer Supported Collaborative Work (CSCW) : : : : : : 124
4.1.4 Computer Aided Instruction : : : : : : : : : : : : : : : : : : : 125
4.1.5 Other Aspects : 126

4.2 Electronic Publishing : 126
4.3 The Viewseum : 128

4.3.1 Unorthodox User Interfaces : : : : : : : : : : : : : : : : : : : 129
4.3.1.1 Track Balls and Thumb Wheels : : : : : : : : : : : : 129
4.3.1.2 Touch Screen : 129
4.3.1.3 HOTACT : 130
4.3.1.4 Sensors : 130
4.3.1.5 3D I/O Devices : 130

4.3.1.5.1 3D Input Devices : : : : : : : : : : : : : : : 130
4.3.1.5.2 3D Output Devices : : : : : : : : : : : : : : 131

4.3.1.6 Eye Tracking : 135
4.3.1.7 Gesture Recognition : : : : : : : : : : : : : : : : : : 136
4.3.1.8 Voice Recognition : : : : : : : : : : : : : : : : : : : 136

4.3.2 n-dimensional Movies : 137
4.3.3 The Interactive Movie : 139
4.3.4 Virtual Objects { Virtual Reality : : : : : : : : : : : : : : : : 140

Bibliography 142

iv Contents

List of Figures

2.1 The Hyper-G Core System : 17
2.2 Hyper-G and the World : 18
2.3 A Multimedia Document (Window Dump) : : : : : : : : : : : : : : : 20
2.4 A Typical Document Cluster : 21
2.5 Active Anchors: The Branch Anchor : : : : : : : : : : : : : : : : : : 26
2.6 Graphical Browser of the InterMedia System : : : : : : : : : : : : : : 28
2.7 A Typical Collection Hierarchy : 29
2.8 Basic Link Types and their Relative Priority : : : : : : : : : : : : : : 38
2.9 Hyper-G Protection Scheme : 49
2.10 Server Processes : 53
2.11 Part of the Hyper-G Object Class Hierarchy : : : : : : : : : : : : : : 62
2.12 An Example Document Object : 64
2.13 Tours Implemented with Labeled Links : : : : : : : : : : : : : : : : : 69
2.14 Using the KAD for Forward Link Following : : : : : : : : : : : : : : 73
2.15 Sub-Tours Implemented with the Simple Script Language : : : : : : : 97
2.16 The Desk-Top User Interface Metaphor : : : : : : : : : : : : : : : : : 98

3.1 A Simple Hyper-Animation Example : : : : : : : : : : : : : : : : : : 119

4.1 The DataGlove (VPL Research) : 132
4.2 Dual-Monitor Stereoscopic Display : : : : : : : : : : : : : : : : : : : 133
4.3 Block Diagram of Varifocal Mirror Display System : : : : : : : : : : : 135
4.4 The 1-Dimensional Digital Movie : 137
4.5 The 2-Dimensional Digital Movie : 138
4.6 A 2-Dimensional Digital Movie Grid : : : : : : : : : : : : : : : : : : 139

Contents v

List of Tables

2.1 De�nition of Terms : 11
2.2 Supported Functions of User Identi�cation Modes : : : : : : : : : : : 34
2.3 Typical User Interfaces, Users and Applications : : : : : : : : : : : : 40
2.4 Public Virtual Methods of Class DocumentManager : : : : : : : : : : 57
2.5 Public Methods of Class KADBM used by S/IM : : : : : : : : : : : : 58
2.6 Public Virtual Methods of Class CDBM used by S/IM : : : : : : : : 59
2.7 Keys and Attributes of Class Hyper-G Object : : : : : : : : : : : : : 61
2.8 Keys and Attributes of Class Document : : : : : : : : : : : : : : : : 63
2.9 Suggested Document File Formats : 65
2.10 Anchor Data Depending on Document Type : : : : : : : : : : : : : : 66
2.11 Attributes of Class Link : 67
2.12 The Link-Anchor Relation : 72
2.13 The Anchor-Document Relation : 72
2.14 The Document-Collection Relation : : : : : : : : : : : : : : : : : : : 72
2.15 Software Used to Generate Documents : : : : : : : : : : : : : : : : : 79
2.16 Priority of General Requirements (Part 1) : : : : : : : : : : : : : : : 85
2.17 Priority of General Requirements (Part 2) : : : : : : : : : : : : : : : 86
2.18 Priority of User-Related Requirements (Part 1) : : : : : : : : : : : : 86
2.19 Priority of User-Related Requirements (Part 2) : : : : : : : : : : : : 87
2.20 Priority of Author-Related Requirements : : : : : : : : : : : : : : : : 87
2.21 Priority of System Requirements : 88
2.22 Priority of Implementation Requirements : : : : : : : : : : : : : : : : 88

3.1 Classi�cation Criteria of Computer Animation : : : : : : : : : : : : : 104

Chapter 1

Introduction

What is this thesis about?

To put is simple: This thesis is about Hypermedia.

1.1 What is Hypermedia?

This question cannot be answered trivially. The origin of the Hypermedia idea can
be traced back to 1945, although it was not called Hypermedia at that time. The
idea had no big impact then, because it could not be implemented in a satisfactory
way with the available hardware and software.

However, Hypermedia has more than one root. The term itself is derived from
Hypertext and Multimedia, but it seems that a number of di�erent disciplines of
computer science (and others) { including Information Retrieval, Computer Based
Learning, Computer Graphics, Human-Computer Interactions, User Interface De-
sign, Electronic Publishing, Communication Systems, and Cognitive Psychology {
have evolved in such a way that eventually they met at Hypermedia.

This is why now, after almost 50 years, there is so much interest in Hypermedia.
The time of Hypermedia has come. And it is also the reason why Hypermedia means
di�erent things to di�erent people:

� For some people (typically those concerned with information retrieval), Hy-
pertext is a way of organizing and retrieving information. The typical Hyper-
text application for this group is encyclopedia-like information, with no other
structure other than cross-references (links) imposed on the data. Hyperme-
dia is the obvious extension to this concept (pictures, sound, etc.).

1

2 CHAPTER 1. INTRODUCTION

� Computer Aided Instruction (CAI) experts use Hypermedia as a medium for
presentation of courseware. However, the structure of lessons is often \pseudo-
linear", i.e. linear or strictly hierarchical, in order to not confuse the users
(students) and guarantee that they �nd their way through the material, see
all the material, etc.

� Computer Graphics experts tired of de�ning 2D and 3D graphics standards and
producing realistic images have found a new toy: Multimedia. For graphics
people, Multimedia means basically digital video and/or real-time animation
(\virtual reality"). To them, Hypermedia is basically Multimedia plus links.

� User interface designers may argue that Hypermedia is just a user interface
technique. At last, there is a concept for software that lets them forget about
keyboards and makes use of new user interface devices like touch screens, po-
sition sensors, eye trackers etc., and heavily relies on graphical user interfaces.

� Cognitive Psychology argues that the concept is more suited to the associative
nature of human thinking than the conventional referential access to electronic
data (e.g. having to know in what directory and �le the information is in order
to �nd it).

� Hypertext and Hypermedia may also be seen as a concept of electronic pub-
lishing. When compared to a conventional book, electronic Hypertext and
Hypermedia versions o�er much greater functionality. Electronic publishers
would probably say \Hypermedia is what you will �nd on a typical CD ROM".

� Hypermedia should enhance communication and collaboration of users. In
fact, early systems emphasized this aspect more than today's modern imple-
mentations. \Groupware", \Computer Supported Collaborative Work", \Elec-
tronic Classroom", and \Electronic Meeting Systems" are new challenges for
Hypermedia systems.

� The casual computer users who are no expert in any computer science �eld
will probably already have seen one incarnation of Hypertext: The context-
sensitive on-line help that is built into most modern personal computer soft-
ware. So they also (think to) know what is Hypertext.

Now what is Hypermedia, again?

My opinion is that Hypermedia is all of the above, or at least has the potential to be.
This thesis describes the design and some applications of a new Hypermedia system
called Hyper-G. The system is developed at the Technical University of Graz, and is
designed in such a way that it serves as a solid foundation on which to build diverse
Hypermedia applications.

1.2. PREVIOUS WORK 3

1.2 Previous Work

This work relies on experience gathered at the Institutes of Information Processing
of the Graz University of Technology under the leadership of Professor Hermann
Maurer over the last decade or so, as briey described below.

First, there is rich experience with Bildschirmtext { the Austrian videotex system,
that can be considered a simple Hypertext system. Information is structured in
\pages" that are organized hierarchically; however, arbitrary links between pages
can be de�ned. The pages can also contain (simple) graphics, so it can almost be
considered a Hypermedia system.

However, the user interface is cumbersome: Links are activated by pressing the keys
\0" to \9", there is no full-text search, transmission is slow, and so on. Users report
the typical problems with Hypertext: It takes them too long to �nd information,
they have di�culty �nding it again in a later session, get lost in the information,
etc.

Encyclopedias have been prepared in Hypertext form and are now available to the
general public. On-line communication of videotex users and o�-line bulletin boards,
a sort of E-mail, and access to other databases (e.g. Homebanking, phone directory)
are the communication facilities already implemented in the Austrian videotex sys-
tem. It is a large-scale, multi-user information system and many the problems of
such systems apply and have been investigated.

Second, experience with Computer Aided Instruction (CAI) { more than 700 lessons
on various topics are available { has shown us some of the user interface related
problems of presentation-type CAI systems. Also, the system employed can be
regarded as simple Hypertext (Hypermedia) system. There is some experience with
question-answer dialogs not found in similar systems, and this will be incorporated
into Hyper-G.

Third, my personal experience is in the �eld of computer graphics, graphical user
interfaces, and computer animation. This is why chapters 3 and 4 are a bit graphics-
and user-interface-biased.

1.3 Overview of Thesis

Many of the ideas that can now be found in the design of Hyper-G are condensed
from discussions with Hermann Maurer, Ivan Tomek, Robert Stubenrauch, Helmut
M�ulner, and others. There have been previous attempts to come up with a clean
design of the overall system, based on (sometimes vague) ideas of what might be

4 CHAPTER 1. INTRODUCTION

possible applications of Hyper-G, but none was entirely successful in separating
requirement speci�cation and implementation details.

I tried to grasp those ideas, structure them into a set of requirements, and to strictly
separate the speci�cation of requirements from additional design decisions and the
description of the implementation model. This can be found in chapter 2, which
certainly constitutes the main part of the thesis. In its clear separation of the various
aspects and its elegant design using a relatively small number of orthogonal concepts
this can be considered an important and novel contribution to Hypermedia research.

Chapter 3 introduces a new concept for the creation of real-time, interactive anima-
tion. It is essentially a combination of Computer Animation and Hypermedia tech-
nologies, therefore I call it Hyper-Animation. A key point is that it can be naturally
integrated within the Hyper-G environment.

This concept is also the basis of some of the more advanced applications of Hyper-G
described in chapter 4. Typical applications will be information systems, electronic
publishing, and exhibits that may be found in a museum or exhibition environment.
Chapter 4 also closes the circle of this thesis, as the applications described there led
to the original requirements contained in chapter 2.

Finally, a word on the structure of the text. In order to make this introductionary
chapter as readable as possible, I have deliberately avoided cross-references, refer-
ences to �gures and tables, citations, and footnotes.

However, technical texts like this thesis are di�cult to write as linear text. In the
forthcoming chapters, you will see a lot of constructs like \ (section 4.3.1.8, page

136)", \see �gure 2.1 on page 17", \1", and \`[136]", which are typical elements of
Hypertext (\links"). Because the text contains also some �gures, you might regard
it as a (poor) implementation of Hypermedia.

As a consequence, the text is di�cult to read on paper. I have included page
numbers in the \long jump" references to reduce \access time" when following the
link. On some occasions, I have avoided cross-references and duplicated information
(e.g. where it is only one sentence). This introduces a bit of redundancy, but eases
reading.

The text was written using LaTEX[90, 91], which lets you specify the structure of the
text instead of the appearance. It is easy to decompose the text into its individual
sections, subsections, and paragraphs and then create overview documents that
contain just links to those pieces of text [57]. References are not explicit but use
symbolic names of the target (e.g. Referencing �gure 2.1 is done by specifying
\ref{figCoreSystem}; at the �gure there is a \label{figCoreSystem}). Such

1This is a footnote (or annotation in Hypertext terminology).

1.3. OVERVIEW OF THESIS 5

references can easily be converted to Hypertext links to the actual �gure. The same
is true for cross-references in the text, footnotes and citations (if the cited literature
is also available as Hypertext).

As a conclusion, I hope that soon documents like this one can be automatically
converted to Hyper-G documents and links, and be easier to read and use as a
reference.

Chapter 2

Hypermedia

This chapter constitutes the main part of this thesis. It contains both the speci�ca-
tion of requirements and an overall system design of Hyper-G. Great care has been
taken to strictly separate the speci�cation of requirements from additional design
decisions and the description of the implementation model.

While most of today's Hypermedia systems are designed for a speci�c purpose,
Hyper-G is designed as a general-purpose Hypermedia system that can be used for
a number of applications. Only relatively few 'orthogonal' concepts are combined
in a clear design to achieve di�erent features found in di�erent special-purpose Hy-
permedia systems.

E.g., the concept of 'Associative Link Following' of static links resembles the idea
of bi-directional links found in the Intermedia system. 'Dynamic Links' integrate
database queries within the Hypermedia metaphor. 'Associative Link Following' and
'Dynamic Links' combined yield the 'full text search' facility found in some Hyperme-
dia systems related to electronic publishing, without the need for another indepen-
dent concept. The 'Remote Database' concept combined with 'Dynamic Links' al-
lows to impose Hypermedia structure on non-Hypermedia, remote databases, which
is a step towards the global Hypermedia and electronic publishing system envisioned
by Ted Nelson [136]. In contrast, almost all current Hypermedia systems are limited
to working with local data [139] that is under control of the Hypermedia system.

The failry clear separation between the user interface and the underlying Hyperme-
dia engine which I have achieved allows to run Hyper-G with a number of user in-
terface metaphors, which is desirable for a general-purpose Hypermedia system that
is to be used in diverse environments by di�erent kinds of users. To my knowledge,
all current Hypermedia systems stick to a speci�c user interface metaphor, and can
therefore be considered more or less special-purpose systems.

I speci�cally designed Hyper-G as a large-scale Hypermedia system. High-level

6

2.1. OVERVIEW 7

navigation tools and search strategies, a multi-lingual Hypermedia concept, new
user identi�cation notions and communication facilities ease the use of Hyper-G
in an international, multi-user environment. My implementation model allows to
implement Hyper-G in a network of standard UNIX workstations, and is speci�cally
designed for extensibility of the system (e.g., new document types, new user interface
metaphors).

2.1 Overview

Generally, the term Hypermedia refers to a combination of two other terms that
have been used quite loosely in the past 20 years for many di�erent collections of
features: Hypertext and Multimedia .

The basic idea of Hypertext is not exactly a new one: The term, coined by Ted
Nelson in the 1960's [135], describes a vast network of text fragments linked together,
an electronic writing and reading system that uses the power of the computer for
more than editing and display. However, the idea can be traced back to the 1940's.
Vannevar Bush, President Roosevelt's director of the O�ce of Scienti�c Research
of Development, is usually credited with �rst describing a Hypertext system in his
1945 article \As we may think" [16]1. He envisaged a machine for browsing and
making notes, and linking information by \associative trails", modeled after the
associative way of human thinking. In general, Hypertext is not so much a new idea
as an evolving concept of the possible applications of the computer.

In europe, Sam Fedida { the \father" of videotex { had similar visions concerning
large-scale, publicly available information systems [46].

Implementations of such large-scale information systems have been pioneered at in-
stitutions like Brown University (Intermedia [129, 189]), the University of Maryland
(Hyperties [163]), Xerox PARC (NoteCards [60]) and by Ted Nelson (Xanadu [136]).
More complete surveys can be found in [30], [52], [139] and [176].

Multimedia adds new facets to Hypertext. Although the term Multimedia is used
by a number of persons (and companies) with a number of di�erent meanings, the
following de�nition seems to be the greatest common denominator:

A Multimedia system supports at least three out of this list of data types:
Text, still image, video, and audio information.

1You probably won't be able to get the original. However, the article was reprinted in [15] and

[136].

8 CHAPTER 2. HYPERMEDIA

Hypermedia can be seen as the Hypertext paradigm plus Multimedia features. In the
last years, signi�cant research has been undertaken in this �eld. E.g., [123] lists some
1400 articles and books on related topics. Hypermedia research integrates methods
and ideas from information retrieval, user interface design, computer graphics, and
cognitive science. Although signi�cant progress has been made, a number of open
problems still remain.

Today's Hypermedia systems can roughly be divided into two groups: The large,
multi-user information retrieval systems (like the ones mentioned above), that rely
on special hardware and are not commercially available. And there are small but
popular single-user \Hypermedia" systems (e.g. HyperCard [185]), that lack a num-
ber of essential features, but are commercially available. As pointed out in [116],
these systems can not truly be regarded as Hypermedia systems, due to the lack of
communication features and the limitations on database size. Also, the user inter-
face metaphor of such systems is more targeted towards browsing knowledge in a
way predetermined by an author than to �nding facts [112].

2.2 The Design of Hyper-G

Hyper-G is the name of an ambitious Hypermedia project currently being carried
out as a joint e�ort by a number of institutes of the IIG (Institutes for Information-
Processing Graz) of the Technical University of Graz2 and the Austrian Computer
Society. Part of this research is carried out in cooperation with other research in-
stitutions, including Joanneum Research (Graz), the Memorial University of New-
foundland (St. John's), Acadia University of Nova Scotia (Wolfville), and the Uni-
versity of Colorado (Boulder).

Implementation of the full system is scheduled for 1995, but a prototype will be
implemented by end of 19923. A very simple prototype called Hypermedia Base

System (HBS) has been implemented on both PC and UNIX platforms.

Also, data acquisition is performed parallel to the design and implementation stages,
in order to �ll the system with real-world data from the beginning on, as one of
the aims of the Hyper-G development is to test user interface metaphors and search
strategies in very large Hypermedia systems.

2Yes, the 'G' in Hyper-G stands for Graz.

3Funding of this project by the Austrian Ministry of Science, grant 613.531/5-26/90, is gratefully

acknowledged.

2.2. THE DESIGN OF HYPER-G 9

2.2.1 Design Strategy

The forthcoming sections describe the Hyper-G system as well as the prototype
system in some detail. But they do not contain just a descriptive speci�cation, but
also the requirements and design decisions that led to certain system features. A
great e�ort has been undertaken to not mix up requirement and speci�cation.

The rest of this chapter is structured as follows:

1. Section 2.2.2 lists 'axiomatic' system requirements. These requirements were
gathered by comparing other Hypermedia systems and analysis (or require-
ment engineering) of their strengths and shortcomings [116]. From the begin-
ning on, requirements are classi�ed in �ve groups and hierarchically structured.

2. This set of requirements is then re�ned in section 2.2.4 on the basis of a number
of additional design decisions made in section 2.2.3.

3. This large set of requirements logically leads to a speci�cation of Hyper-G.
The speci�cation itself is split into:

(a) Functional descriptions of the processes involved and their intercommu-
nication (section 2.2.5).

(b) De�nitions of the data items the system will handle and the databases
needed to �nd them (section 2.2.6).

(c) The user's view of the system (section 2.2.7).

(d) The author's view (section 2.2.8).

(e) The system administration's view (section 2.2.9).

4. Eventually, a speci�cation of a Hyper-G prototype, based on priorities given
to the requirements, may be found in section 2.3.

However, it is not necessary to read this document in the order presented. For exam-
ple, if you are interested in the features of the prototype, but not in the requirements
and design decisions that led to them, you may skip the corresponding sections.

Of course, this strict division of requirements, design decisions, and descriptive spec-
i�cation introduces some redundancy to the text. E.g., you may read about access
rights in sections 2.2.2.4, 2.2.3.16, 2.2.4.3, 2.2.6.1, and more.

Part of the information is duplicated (e.g., where it is just one sentence), and a large
number of cross-references is contained within the text. Unfortunately, paper does
not o�er the same functionality as Hypertext (just click on the references), so page
numbers have been added to the cross-references where it seemed reasonable.

10 CHAPTER 2. HYPERMEDIA

Still the document remains di�cult to read. One personal experience I got from
writing this text is that ordinary text just isn't good enough to write technical
speci�cations. With all these cross-references, �gures, and tables it would have been
better to write is as a Hypertext from the beginning on. If I have not convinced you
by now, I hope that the forthcoming speci�cation of a �ne Hypermedia system will
do so. Let's start!

2.2.1.1 De�nition of Terms

Before we begin, however, table 2.1 de�nes some terms that will be commonly used
throughout this chapter, so we can rely on understood basic de�nitions. Other
de�nitions are supplied where needed.

2.2. THE DESIGN OF HYPER-G 11

System Will almost always mean the Hyper-G system. Includes all the
hardware and software of the run-time system (i.e. the system
the user sees), plus additional hard- and software for authors and
system administrations (tools).

User User of the system is the person that utilizes the run-time system,
e.g. to retrieve information.

Author Author is the person that creates information that is to be included
and may be accessed by the run-time system. It is the 'electronic'
author, the 'owner' of an object (e.g. in the case of a picture of
the 'Mona Lisa', the author would be the person that inserted that
picture into the System, rather than Leonardo da Vinci).

Editing Will mean preparation of information by the author. Information
may include textual, pictorial, sound, and other data.

Terminal The hardware the user is working on directly.

Session The period of time the user works with the system on a terminal.
Usually, the users have to log in (identify themselves to the system)
when starting a session, and log out to stop a session.

Document An item of information that the user may interact with (e.g.
look at it). Throughout the system, information is structured in
documents.

User State Conceptually, the system sees the users' work as changes of their
user states. The user state records such information on what doc-
uments the user is looking at, etc.

Database A storage mechanism for documents and other data items the sys-
tem needs.

Attribute A piece of information attached to documents. Used to �nd docu-
ments with certain attributes in the database.

Collection A set of documents that have the same set of attributes attached
to them. In some way, these documents belong together.

Link A connection between two documents. Links play an important
role in Hypermedia systems.

Annotation Sometimes, a user wants to (temporarily) become an author and
add information (private or public) to the system, attached to other
documents.

Tour A concept that allows to visit documents in a context supplied by
a tour author.

Table 2.1: De�nition of Terms

12 CHAPTER 2. HYPERMEDIA

2.2.2 Basic Requirements

This section contains a list of '�rst-generation' requirements for Hyper-G. They
are structured in �ve groups: General, User, Author, System and Implementation.
For ease of reference, a unique label is assigned to each requirement. This set of
basic requirements will be re�ned in section 2.2.4 on the basis of additional design
decisions made in section 2.2.3.

2.2.2.1 General Requirements

Req. G.1: The system should allow access to all kinds of information one
can think of (Multimedia Axiom).

Let us re�ne this to a set of more speci�c requirements:

Req. G.1.1: Information is organized in documents of a speci�c document
type. Document types include (but are not limited to):

Req. G.1.1.1: Textual Information
Req. G.1.1.2: Technical Drawings
Req. G.1.1.3: Raster Images
Req. G.1.1.4: Digitized Sound
Req. G.1.1.5: Digital Movies
Req. G.1.1.6: Animation
Req. G.1.1.7: Maps
Req. G.1.1.8: Electronic Mail, Bulletin Boards, Computer Conferencing
Req. G.1.1.9: Dialogs (e.g. Menus, Forms)

A system able to handle above document types is generally referred to as a multi-

media system. To put it simple, above requirements state that Hyper-G is such a
multimedia system. Above list is by no means complete; e.g., document types like
synthesized voice and music may be added in the future.

Req. G.2: Documents (Req. G.1.1) may be cross-referenced and ac-
cessed by links (Hypertext Axiom).

This means that Hyper-G adopts the well-known Hypertext paradigm. Require-
ments Req. G.1 together with Req. G.2 state that Hyper-G is what is known as
a Hypermedia system. More speci�c versions of Req. G.2 will be given in section
2.2.4.1 (page 35).

2.2. THE DESIGN OF HYPER-G 13

Req. G.3: Hyper-G provides access to very large amounts of data.

As stated in [35], Hyper-G is targeted to mega-quantities of documents and terra-
quantities of bytes. This leads to interesting problems not only for system design,
but { more important { for the users and the authors of such a large system [86].
An immediate consequence is

Req. G.3.1: Documents and links are maintained automatically.

Link maintenance involves such problems as deleting all links from or to a document
that is to be deleted, in order to avoid dangling references and to ensure database
integrity. Also, the system should assist the system administration in protecting the
database against obsolete or outdated documents and/or links.

Req. G.3.2: The mayority of the links is generated automatically.

Especially for text documents, a number of links can be generated automatically
either when inserting the document into the database, or at runtime. More on this
in section 2.2.3.4 (page 22).

A user related consequence (Req. U.3) of Req. G.3 is given in section 2.2.2.2
(page 13).

An author related consequence (Req. A.2) of Req. G.3 is found in section 2.2.2.3
(page 15).

A system related consequence (Req. S.3) of Req. G.3 is found in section 2.2.2.4
(page 15).

Req. G.4: The system should be easily extensible.

This is especially true for the set of supported document types and user interfaces
(Req. U.1.1) and has some e�ect on the implementation model (sections 2.2.5,
2.2.6).

2.2.2.2 User-related Requirements

Req. U.1: The system should be usable by untrained users as well as
expert users.

14 CHAPTER 2. HYPERMEDIA

In general, Hyper-G is likely to see a number of scenarios [87, 35, 121, 126]. One
is a university information system (section 4.1) based on Hyper-G where users are
expected to communicate with computers on a regular basis, another one is a so-
called viewseum (section 4.3) available to the general public. Hyper-G should adapt
to the needs of all user groups. Implications of this requirement are discussed in
section 2.2.4.2 (page 39).

Req. U.2: The system should o�er a choice of user languages.

This not only requires the user interface to work with a number of languages, but also
means support of multi-lingual documents (e.g. translations of the same document
provided by the author, or simple computer translations).

Req. U.3: The user is supported by high-level navigation tools.

Above requirement may also be seen as a consequence of Req. G.3 (large number
of documents). High-level navigation tools include use of user interface metaphors,
database queries, collections, tours and scripts. These concepts are discussed in
detail in sections 2.2.3 (page 17 and 2.2.4.2 (page 39).

Req. U.4: The system is con�gurable on a per-user basis. It remembers
a user's preferences between sessions.

This means that users may con�gure the system to adapt to their special needs (e.g.,
language preferences (see Req. U.2).). Moreover, this con�guration is retained by
the system until the next session. Of course, this implies that the system is able
to distinguish between users by some login procedure and keeps con�guration �les.
It also suggests use of user groups, access rights and so on. However, these are not
basic requirements and discussion is therefore postponed until section 2.2.4.2.

Req. U.5: At any time, the user may return to a previous user state.

This applies to all the previous states of an active session, which yields sort of
an undo function. As a special case, when entering a new session, the user may
return to where the previous session was left. Req. U.5 requires the system to
remember user states, keep user logs etc. Again, the details are related to the actual
implementation and are discussed in section 2.2.4.2.

Req. U.6: The system can be used anonymously.

2.2. THE DESIGN OF HYPER-G 15

An information system that is to be used by a large number of users on a regular
basis raises a data security problem. If users are known by name, the system might
be used to �nd out who looks for certain information, monitoring users working time,
etc. To avoid such problems from the beginning on, users may login anonymously, as
in the Austrian videotex system [118]. The modes semi-identi�ed and anonymously

identi�ed (section 2.2.3.15, page 32) still allow to perform most operations of the
system.

Req. U.7: Certain system features and information items are chargeable.

For example, printing a screen dump or saving it to disk may cost some (small)
amount of money. In addition, information providers may charge something for
the access to certain pieces of information, remote databases, etc. In conjunction
with Req. U.6 this implies that a rather tricky charging mechanism has to be
implemented.

2.2.2.3 Author-related Requirements

Req. A.1: Any user is a potential author.

The database may be manipulated by potentially every user, either by manipulating
documents or links (annotation). Of course, access rights control the user's ability
to change existing data items or create new ones (section 2.2.3.16, page 34).

Req. A.2: The author is supported by high-level information editing
tools.

These information editing tools divide into document preparation tools and link
editing tools. They are not part of the Hyper-G runtime system, so the details are
postponed to section 2.2.8.

2.2.2.4 System Requirements

This section describes basic requirements related to system administration.

Req. S.1: A number of terminals is attached to the system. On any
terminal a Hyper-G session may be started. The capabilities
of the terminals may di�er.

16 CHAPTER 2. HYPERMEDIA

That is, the terminals are not all the same. There may be terminals with special
user interfaces, communication features, hard/softcopy capabilities etc. As a conse-
quence, Hyper-G must not rely on the presence of speci�c terminal facilities.

Req. S.2: Access rights control whether a given user on a given terminal
may perform a certain function on an object.

After describing some design decisions related to access rights (section 2.2.3.16), this
concept is elaborated in more detail in section 2.2.4.3.

Req. S.3: The system should avoid uncontrolled growth of unimportant
or outdated information.

The system administration should be supported in �nding such information and
deleting it at regular intervals.

2.2.2.5 Implementation Requirements

Req. I.1: Access to information should be reasonably fast.

This requirement is somehow contradictory to Req. G.3 (large amount of data).
However, it is well-known that a response time larger than about 250 milliseconds
confuses users [19]. A lower response-time variance seems to be more important than
absolute response times [23]. Also, users are willing to accept, e.g., to wait a few
seconds for a database query, if the system supplies them with immediate feedback
of acceptance of the query. We have seen systems (e.g. videotex [46, 114, 115])
whose acceptance by the public has been dampened by less than optimal response
time.

Above requirement has signi�cant impact on the design of the databases (speed vs.
space tradeo�s) and the computers used. More on the database design may be found
in sections 2.2.4.4 (page 50) and 2.2.6.2.1 (page 70).

 Servers

 Workstations

 LAN

Core System

Hyper-G

2.2. THE DESIGN OF HYPER-G 17

2.2.3 Design Decisions

2.2.3.1 Distributed System

Requirements Req. G.3 (large amount of data) and Req. S.1 (number of termi-
nals) suggest to implement Hyper-G as a distributed system running concurrently
on a heterogeneous network of computers. To achieve high performance, Hyper-G
is split into concurrent processes (section 2.2.5, page 52) that may execute on a
number of machines simultaneously.

Also, the data is distributed among the machines (section 2.2.6, page 60). Data
includes documents of various types, links, log �les etc. The use of object-oriented
design eases the task of distribution of data and processes.

2.2.3.1.1 Core System

The Core System of Hyper-G will consist of a high-speed local area network (LAN)
of Hyper-G Servers and Workstations (see �gure 2.1).

Figure 2.1: The Hyper-G Core System

Core System

Hyper-G

Front-End

Terminals

Back-End

Databases

WAN
WAN

18 CHAPTER 2. HYPERMEDIA

Hyper-G Servers will typically be supplied with gigabytes of fast mass storage
(harddisks), but there may be special-purpose Hyper-G servers equipped with, e.g,
CD-ROMs, Video or Audio Discs or Tapes.

Workstations will not be all the same. Most of them will be standard graphic
workstations, but some of them may have additional audio/video capabilities or
special user interfaces.

2.2.3.1.2 Front-Ends

In addition, Hyper-G will be accessible from remote terminals over a wide area
network (WAN , see �gure 2.2). In most cases, this WAN will be slow (typically
dial-up phone lines or telematic services networks; up to 64 kbits/s), and the facilities
of the terminals will vary, so the access to certain types of documents will be limited.

Figure 2.2: Hyper-G and the World

2.2.3.1.3 Back-Ends

Also, it will not be feasible to keep all the data in the core system. Therefore,
Hyper-G will support access to remote databases (e.g. o�cial airline guide, phone

2.2. THE DESIGN OF HYPER-G 19

books, any kind of data that keeps changing), but this access will be hidden from
the user. In particular, that kind of data will be embedded into the user interface
metaphor (section 2.2.3.10, page 27) and will be accessible by links.

2.2.3.2 Software Environment

We decided to implement the Hyper-G core system within the following Software
Environment:

1. Operating System: UNIX4.

2. Graphical I/O: X Window System [141, 142, 143, 161], CGI [51, 73], Inter-
Views [97, 98].

3. Programming Language: C++ [169].

There are more standards that are used implicitly (e.g. Ethernet, TCP/IP, NFS,
SCSI) but handled inside UNIX, and therefore not visible to Hyper-G. Hyper-G
should not rely on these underlying standards; they can be changed (e.g. FDDI
instead of Ethernet) without e�ect on Hyper-G.

It should be noted that Hyper-G is not aimed at a single type of computer, nor at
a homogeneous network of computers, but at a heterogeneous network of di�erent
types of computers, possibly with di�erent user interface devices attached etc., as
implied by requirement Req. S.1.

2.2.3.3 Multimedia Documents vs. Document Clusters

A multimedia document is a single document consisting of information items of
various types; for example, an image glued into explanatory text (�gure 2.3). The
author of such a document controls the exact layout of the document. This paradigm
is used by most of the small Hypermedia systems (e.g. HyperCard [185]).

In contrast, a document cluster is actually a number of documents of possibly dif-
ferent document types that are semantically related (in our previous example the
image document and the explanatory text document). The individual documents
are linked by so-called cluster links that are provided by the author, thus creating
a document cluster (�gure 2.4). This approach is adopted by some existing large
Hypermedia systems, like the InterMedia system [129, 189]), NoteCards [60] and
Hyperties [163], and also by Hyper-G.

4UNIX is a trademark of AT&T Bell Laboratories

20 CHAPTER 2. HYPERMEDIA

Figure 2.3: A Multimedia Document (Window Dump)

With document clusters, the author's control of layout is limited (for example,
scrolling the text document does not a�ect the image document). On the other
hand, document clusters o�er a number of advantages:

� Document clusters may be managed by distributed processes (one kind of doc-
ument manager for every document type), possibly on a number of machines,
increasing performance.

� This concept (a documentmanager for every document type) makes the system
very extensible. Adding a new document type means adding a new document
manager, without a�ecting the rest of the system, as opposed to a single
multimedia document type with all the knowledge about all document types.

� The concept makes Hyper-G implementable by a number of individual pro-
grammers, programming and identifying with their 'personal' document man-
ager.

� There is no need for a single, complicated document standard (like ISO's O�ce
Document Architecture (ODA) [78], Standardized General Markup Language
(SGML) [79], Abstract Syntax Notation One (ASN.1) [76, 77] standards or

Hauptstadt des Bun-
deslandes Steier-
mark und zweitgroe-
sste Stadt Oester-
reichs. Sehenswuer-
digkeiten: Mittel-
alterlicher Stadt-
kern, Uhrturm (sie-
he Bild), Theater,
Oper, Museen, viele
Parks und Cafes.

GRAZ

Text (german)

Typical Document Cluster

Image

Sound

cluster links

Text (english)

Capital of the pro-
vince of Styria and
second largest city
of Austria. Touri-
stic attractions:
medieval city cen-
ter, clock-tower,
(see picture) over-
looking city, thea-
ter, opera, variety
of museums. Excel-

GRAZ

2.2. THE DESIGN OF HYPER-G 21

Figure 2.4: A Typical Document Cluster

DEC's Compound Document Architecture (CDA) [36]) that covers all the
document types and hinders extension [13].

� This concept eases implementation of multilingual documents. An example
application of a document cluster may be a picture with associated descriptions
of the picture in di�erent languages, either as text documents or as voice
documents.

Of course, this approach has some impact on the user interface, too. As opposed to
multimedia documents, where �gures are directly glued into the text by the author,
in the case of document clusters the user would �nd a 'see �gure x' in the text (like
in most books, by the way). Depending on the particular user interface, the user
would have to click on this message, or the �gure would be displayed automatically
beneath the text. Scrolling or reformatting the text would not a�ect the �gure.
A certain user interface metaphor may give the user the opportunity to move the
�gure away or may explicitly forbid to do so, so that document clusters will look
like multimedia documents.

22 CHAPTER 2. HYPERMEDIA

2.2.3.4 Dynamic Links

As required by Req. G.3.2, Hyper-G will support automatic link generation. Au-
tomatic generation of Hypertext links has already been demonstrated in the case of
encyclopedias [133] and structured text like technical books [57].

In a large Hypermedia system with a number of general-purpose and specialized
encyclopedias and dictionaries (such as the Oxford English Dictionary [12, 154] or
the Duden for German), it is pretty likely that, for any word the user sees on the
screen, there is a document explaining at least the meaning of that word. Because
of automatic link generation, there will be a link attached to that word.

However, if there is a link from (almost) every word, it does not make too much sense
to mark all these words as 'clickable' (exact meaning depends on user interface).
The users are simply allowed to click on any word on the screen. In most cases, they
will get information on that word by doing so.

If we assume fast database access, we can also postpone the generation of these
links to runtime, i.e. the moment of the user's click. The system would respond by
performing a database query, looking for entries of the clicked word. If found, the
associated document is presented. This dynamic link generation o�ers the following
advantages:

� It reduces the number of (static) links, reducing not only storage requirements,
but also link maintenance. For example, when a document is deleted, the
document is just no longer found in the database, so that no dynamic links to
the document are possible any more. Vice versa, no words in the document
just deleted can be clicked any more, so the 'outgoing' links are also destroyed
automatically. Also, when a new document is inserted, it is automatically
linked with all the other documents already in the database or to be added in
the future.

� The user may de�ne an active list of databases to be searched for links, re-
ducing the number of unwanted links (link �ltering).

� Access to remote databases in a way consistent with the Hypertext axiom
(Req. G.2), i.e. by links, is only possible with dynamic links. Because the
information in the remote database may change at any time, no maintenance
of static links to or from a remote database is possible.

Hyper-G supports automatic, dynamic generation and maintenance of links. Of
course there will be user-de�ned links, typically attached to graphical, video and
audio documents. In addition, Hyper-G supports automatic, static links that may
be found using algorithms too complex for runtime execution.

2.2. THE DESIGN OF HYPER-G 23

2.2.3.5 Associative Link Following

Vannevar Bush is usually credited with �rst describing a Hypertext-like system
called memex in his 1945 article \As we may think" [15, 16]. He speculated to
model an information system by mimicking the operation of the human mind (see
also [30]):

\The human mind . . . operates by association. [. . .] One cannot hope to

equal the speed and exibility with which the mind follows an associative

trail, but it should be possible to beat the mind decisively in regard to the

permanence and clarity of the items resurrected from storage."

And indeed, associative searching seems to be a major issue in Hypertext and Hy-
permedia systems, and links to be the implementation of Bush's 'associative trail'.
However, the uni-directional links found in most of today's Hypermedia systems
(e.g. HyperCard [185]), cannot be called fully associative. Consider the following
example:

In a document cluster 'Austria', there is a link to document cluster 'Vienna', e.g.
a static link originating from the appropriate location in the map of Austria, or a
dynamic link originating from the word 'Vienna' in a text on Austria. Now let us
assume that the user got to cluster 'Vienna' somehow, perhaps by a database query
(section 2.2.3.13, page 30). Typical questions the user might ask are:

� Where is Vienna? Answer: Show cluster 'Austria' (with map highlighting
Vienna).

� What is Vienna? Answer: Show cluster 'Austria' (with text stating that
\Vienna is the capital of Austria".

� What other documents (document clusters) refer to 'Vienna'?

In other words, the user would like to have the ability to trace links backward to the
source when being at the target. Above questions may be generalized to \Show me
the documents with links to the current document." This 'associative search' may
be considered the opposite of conventional (forward) link following.

Hyper-G will support both forward and backward (associative) link following. Note
that there are no new links or link types involved; rather the user is given the choice
of how to use them. For the implementation, this has the following consequences:

� Static links are kept in a database that can be searched equally fast for link
source and destination. Associative static links allow to �nd all documents
that (statically) refer to the current document.

24 CHAPTER 2. HYPERMEDIA

� To support associative dynamic links, appropriate data structures that allow
the fast full-text search of text documents have to be implemented (section
2.2.6.2.1, page 70). Associative dynamic links generate answers to the question
\What other documents contain the word I am just clicking on?"

Things get more complicated when considering anchors (section 2.2.3.7, page 24).

2.2.3.6 Link Priority

Given the di�erent link generation methods described above, the relevance of links
will vary. A high link relevance means that with a high probability the user may get
to relevant information following that link. We get the following hierarchy of link
relevance (ordered by decreasing relevance):

1. Cluster link

2. User de�ned link

(a) De�ned by the same user (e.g. annotation)

(b) De�ned by the author of the document

(c) De�ned by system administration

(d) De�ned by some other user

3. Automatically generated link

(a) Static link

(b) Dynamic link

When there are a number of links to choose from, the system o�ers the user the link
with the highest relevance, so link relevance may also be regarded as link priority .
Alternatively, the user may get a (sorted by priority) list of links to choose from.
Also, it may only be necessary to look for dynamic links when there are no links of
higher priority or the user is not satis�ed with them. Note that choosing forward or
backward link following (section 2.2.3.5, page 23) does not a�ect link relevance.

2.2.3.7 Links and Anchors

Conceptually, a link is a connection between two documents. Links are directed, i.e.
there is a source document and a destination document. Note that this distinction
does not prohibit backward (associative) link following (section 2.2.3.5, page 23).

2.2. THE DESIGN OF HYPER-G 25

However, we do not always want to link whole documents, but rather a part of a
source document (e.g. a word, an area of a picture) to a destination document or a
part of it (e.g. a paragraph, a point in a map). This document part is described by
a so-called anchor . There are source and destination anchors.

When linking to a destination anchor, the system should try to position the destina-
tion document in such a way that the destination anchor is visible. E.g., in the case
of a destination paragraph in a text document, the document should be scrolled so
that the beginning of the paragraph is visible. In the case of a destination point in
a map the map should be positioned so that the point is in the center of the visible
portion of the map5.

Conceptually, anchors in Hyper-G are parts of the links rather than part of the
documents, so that even users without the right to modify the document may tie
links to them (annotation), if they have the right to do that. However, the anchor
description may be used to present a visual representation of the link on top of the
document (e.g. an area to click on). As anchors de�ne a certain part of a document,
the anchor description can become rather complex:

� In text documents, an anchor will most likely be a single word, a sequence of
words, or a paragraph.

� In image documents, it might be a rectangular area of the image, a point in
the image, or a generic polygon.

� In an object-oriented graphic document, it might be a group of objects (i.e. a
segment).

� An anchor of an audio document could be de�ned by start and end time.
These marks are especially useful for playing only a certain section of the
audio document (when used as destination anchor), and for synchronizing
sound with other documents (when used as a source anchor; see section 3.3.4
on page 114).

� Anchors in animation documents could be far more complicated, as they could
be moving with respect to time, following a complex path.

Also, the visual appearence of the anchor may vary with the type of the destination
document. This feature is used to lead the user to 'rare information', such as video
clips, animation, sound, and images, and is most important in the early phase of
Hyper-G. At a later stage, e.g., when high-quality images are not so rare any more,
it may become partially obsolete.

5In the case of backward link following, the word 'destination' in this paragraph is to be replaced

by 'source'.

OK

Please type
answer:

No,
that’s
wrong!

Yes,
you’re
right!

lin
k

#1

link #2

branch anchor

Dialog

Source
Cluster

Destination
Clusters

Example Use of

Active Anchors

26 CHAPTER 2. HYPERMEDIA

An anchor that links to a document (cluster) already seen during the current session
is shown in a special way (e.g. color) to avoid unwanted re-visits of the same
document.

In addition, anchors may be active anchors, i.e. there is a piece of code associated
with them that is executed when the anchor is activated. An example of Hyper-G's
pre-de�ned active anchors is the branch anchor : Of course, it is possible to tie a
number of links to an anchor. The branch anchor takes an integer as argument and
uses it to choose a link to follow from the set of attached links (see �gure 2.5).

Figure 2.5: Active Anchors: The Branch Anchor

Observe the following:

� Dialogs (e.g. Menus, Answer Judging, Database queries) are most naturally
implemented using active anchors.

� Anchors work with all link types (section 2.2.3.6, page 24). As a special case,
active anchors that generate dynamic links (section 2.2.3.4, page 22) can be
used to implement forms for database queries (section 2.2.3.13, page 30).

� As active anchors require the execution of code, their de�nition is not easy.
However, there are a number of pre-de�ned active anchors supplied by Hyper-
G. These include anchors for dialogs and special e�ects (active destination
anchors) for the display of documents.

2.2. THE DESIGN OF HYPER-G 27

2.2.3.8 Annotation

We may distinguish between two types of annotations:

1. The user creates a new document, and links it to an existing document.

2. The user only creates a new link (including anchors) between existing docu-
ments.

Note that in Hyper-G there is no special document type 'annotation'. Rather,
the links (like all Hyper-G objects) carry information on who created the link (link
author). The annotations of user xyz are simply the links xyz created. Because there
is no special document type, annotations may be of any type, including graphical,
audio or video annotations.

Truly anonymous users may not create annotations; this feature is reserved to fully
identi�ed, semi-identi�ed and anonymously identi�ed users (section 2.2.3.15, page
32).

2.2.3.9 Navigation Tools

Users of large Hypermedia systems experience navigation problems, including: get-
ting lost in \Hyper-space"; having di�culty gaining an overview; not being able to
�nd information that is known to exist; determining how much information on a
given topic exists; how much of it has been seen and how much is left [139, 138].
Typical solutions that work well on small systems fail completely when applied to
large systems. Figure 2.6 (from [30]) shows an experimental implementation of a
graphical browser displaying a global map in the InterMedia [129, 189] system. The
display shows only 80 documents out of some 1000 total documents, so one can eas-
ily imagine what happens in a mega-document system...

Hyper-G will use other methods to aid the user's navigation, namely the use of user
interface metaphors, collections, tours, and database queries.

2.2.3.10 User Interface Metaphors

Hyper-G will not adopt one speci�c user interface metaphor. Rather, it will serve
as experimental playground to test a variety of Hypermedia presentation metaphors
[35]. It should be even possible to con�gure the preferred presentation metaphor on
a per-user basis or even switch metaphors in the middle of a session or to look at
the same set of documents using di�erent metaphors at the same time.

28 CHAPTER 2. HYPERMEDIA

Figure 2.6: Graphical Browser of the InterMedia System

Therefore, the system has to be designed in a way totally independent of the user
interface. The internal functions of Hyper-G have to be separated clearly from user
interface functions. Also, this allows to support very di�erent and unorthodox kinds
of user interfaces to extract information from the system, e.g. HOTACT [120].

2.2.3.11 Collections

In order to ease the use of the system by untrained users (Req. U.1) the documents
of Hyper-G are arranged in so-called collections. Collections group together docu-
ments or collections of related content (note the recursive de�nition). This yields a
hierarchical structure of collections (with 'subcollections'). However, this structure
is not a tree, but an acyclic directed graph, i.e. a collection may be a subcollection
of a number of collections. For example, the collection 'Biochemistry' might be a
subcollection of collection 'Chemistry' as well as of 'Biology' (see �gure 2.7).

This collection { subcollection relation eases the user's navigation. E.g., at any
time the current position in the collection hierarchy can be displayed, the user may
'descend' or 'ascend' in the hierarchy, �nding related collections.

ChemistryBiology

Biochemistry Organic Ch. Anorganic Ch.

Natural Sciences

Zoology

from root collection

"descend"

"ascend"

A typical

Collection Hierarchy

2.2. THE DESIGN OF HYPER-G 29

Figure 2.7: A Typical Collection Hierarchy

2.2.3.12 Tours

In addition to the collection concept, the user has the possibility to go on 'guided
tours' through the information network that have been provided by some author
(potentially any user). Tours do not care about the hierarchical collection structure,
but link documents together in an arbitrary way. Tours do not have to be linear lists
of documents, but may use the full exibility of a Hypermedia system. Computer
aided instruction is an example application of the tour concept [124, 170, 171].

Two useful applications of the tour concept would be:

� Tours that might also be called 'lessons' in CAI terms. This kind of tours
will typically be authored by some expert in the �eld, logically structured
and contain a number of cross-references to other tours (lessons) and Hyper-G
databases. In fact, the over 700 lessons of the COSTOC project [110] cover-
ing topics ranging from medicine, ecology, and natural sciences to computer
science, will be transformed (to Hyper-COSTOC [70]) and become an integral
part of the Hyper-G database.

� Other tours may be made by any user, linking together document clusters of
interest, so the user can easily �nd them again in future session, very similar
to the 'associative trail' of Bush [16]. These tours may be intended for private

30 CHAPTER 2. HYPERMEDIA

use only, but may also be made available to the public or speci�c user groups.
Typical tours of this class might be \my favorite impressionist paintings" or
\some interesting features of UNIX".

Tours may be implemented by links (very much like annotations) and by script
languages, and may 'overlap', i.e. documents may be part of a number of tours,
'sub-tours' may be used by a number of tours. At such documents, the user may be
given the opportunity to 'switch' tours. Within tours, the user is aided by naviga-
tion facilities that are not available at the global Hypermedia level (e.g. graphical
representation of the tour that is supplied by the author of the tour, special high-
lighting of links to information yet unseen, etc.).

2.2.3.13 Database Queries

Database queries allow for rapid access to speci�c information. Hyper-G supports
two kinds of Database queries.

� Key queries are most valuable at the beginning of a session. Key queries
are simple, possibly AND-connective pre�x queries that are passed to a user-
de�ned list of active databases. Using key queries, the user may �nd out very
fast about existing information on a given topic.

� Form queries are collection-speci�c. For example, the collection '�ne art',
subcollection 'paintings' may allow to �ll out forms with �elds painter, name
of picture, year, style, theme, and museum, so that the user would easily �nd
all paintings of Leonardo da Vinci that are on display in the Louvre. Form
queries may be very complex dialogs, including incremental form-�lling (ex-
forms), i.e. the answer to the query dynamically appears as the form is �lled
out.

2.2.3.14 Multilingual Hypermedia

According to Req. U.2 Hyper-G is a multilingual system. This implies that:

� The documents themselves may be multilingual, i.e. document clusters (sec-
tion 2.2.3.3, page 19) that consist of several documents, storing approximately
the same information in di�erent languages. This obviously applies to text
and voice documents, but may also be required for pictures, �lms, animation
etc. in special situations.

2.2. THE DESIGN OF HYPER-G 31

� Special links between these documents (so-called cluster links) allow the run-
time system to choose from available languages based on the user's preferences
(Req. U.4).

� The user interface of the runtime system is available in a number of languages,
too.

� The user may specify an ordered list of language preferences (e.g. 'Hungarian'
{ 'German' { 'English'). This means that if a Hungarian version of a document
is available, show it, else show the German version, else the English one. If
none of the user's list is available, the system may display an appropriate error
message, or display whatever it has.

� The mechanism described above may be temporarily overridden, e.g. to see
the document in its original language, or to see more than one version at the
same time.

Further complications arise with the use of dynamic links. Suppose the user has
chosen language preference 'Hungarian' { 'German' { 'English'. Now, for some
reason, a German text is on the screen. The user might click on any word, which
will most probably be a German word, e.g. 'Rechner' (computer), so a simple
dynamic link (as described in section 2.2.3.4, page 22) will most probably �nd only
German documents that contain the word 'Rechner' as keyword. In order to get
existing Hungarian documents on 'komputer' (the Hungarian word for computer) as
well, there are two solutions:

� We could assume that all documents on 'Rechner' of all languages are linked
by cluster links, creating a document cluster (section 2.2.3.3, page 19) holding
equivalent documents, but in di�erent languages. When, in our example, the
runtime system gets to the German document on 'Rechner', it would see an
equivalent Hungarian document on 'komputer' (if it exists) and display that
instead. Although this solution may be applicable to small amounts of data
(e.g. a single tour), where the author creates the cluster links 'by hand', this
approach does not generalize well, because of two reasons:

{ For large amounts of data (e.g. a number of encyclopedias in a number of
languages), it is too much work to look for equivalent documents manu-
ally. On the other hand, the decision whether two documents in di�erent
languages are 'equivalent' is very hard to do for machines.

{ If in our example a German document on 'Rechner' does not exist, the
runtime system would never �nd the cluster with documents on 'kom-
puter' and 'computer'. Still the user would want to see the 'komputer'
or else the 'computer' document, if one exists.

32 CHAPTER 2. HYPERMEDIA

� In order to solve this problem, the Hyper-G database will contain some trans-
lation mechanisms (translation programs, dictionaries) to translate the word
'Rechner' to Hungarian before searching the database. Of course, this trans-
lation process introduces further 'blur' to the database query. For example,
'Rechner' translates to 'computer', but also 'calculator', 'arithmetician' and
'reckoner'. Without regard to the context and background knowledge, the sys-
tem is not able to decide which translation is the most 'equivalent' one. This
is a general problem of automatic translators.

To make things even more complicated, in order to support n languages and
to be able to translate from any language to any other language, we would
need n(n � 1) translators or dictionaries. A possibility would be to translate
�rst from the source language to an intermediate language (e.g. English) and
then from that language to the target language. This way we would need
only 2(n � 1) translators. In our example, we would �rst translate 'Rechner'
to English, and the resulting words ('computer', 'calculator', 'arithmetician'
and 'reckoner') to Hungarian. Of course, this translation would be even more
inaccurate.

Vice versa, it is possible that two German words (e.g. \Taste" { the kind of
key that you press on a keyboard { and \Schl�ussel" { the kind of key that you
use to lock doors) translate to the same English word (key). As a result, to
the surprise of a German-speaking user looking for information on \Taste",
information on \Schl�ussel" may be returned instead. The usual solution is to
have additional attributes in the intermediate language (e.g., key (computer)
and key (door)).

With Hyper-G we will have the opportunity to experiment with both approaches. To
our knowledge, Hyper-G will be the �rst Hypermedia system supporting multilingual
documents.

Of course, languages like chinese, japanese, arabic etc. impose even more problems.
For example, a large number of fonts has to be supported, writing is not restricted
to the usual \from left to right, from top to bottom" way, and more.

2.2.3.15 User Identi�cation Modes

As stated by Req. U.1, the system can be use anonymously. This is to avoid
the \Big Brother" scenario possibly associated with large information systems [118].
On the other hand, certain system features (e.g. user-speci�c system con�guration)
are impossible or undesirable (e.g. anonymous authoring) if the user remains truly
anonymous. In order to combine advantages of both identi�ed and anonymous user
modes, Hyper-G supports four identi�cation modes:

2.2. THE DESIGN OF HYPER-G 33

1. Identi�ed: In this mode, the identity (name, address, etc.) of users is known
not only to the system, but also to other users. E.g., when you receive mail or
read annotations or documents from identi�ed users, you know who they are.
Users have to log in supplying user name and passowrd. Obviously, monitoring
of users' actions is possible in this mode.

2. Semi-Identi�ed: The user may select a pseudonym (provided that no
other user has already chosen the same name) and a password in identi�ed
mode. Subsequently, the user may use semi-identi�ed mode by supplying the
pseudonym plus password. This means that the user is still known to the sys-
tem by full name, however, other users see only the pseudonym when reading
annotations, mail, etc. A user may also use more than one pseudonym.

The fact that the user is known to the system makes user monitoring possi-
ble. However, it retains users from misuse of the communication facilities of
the system (as shown by our experience with a public mailbox accessible by
the austrian videotex system), and requires only minimal software extensions.
Also, accounting may be done in the same way as for identi�ed users.

3. Anonymously Identi�ed: This mode is simlilar to the semi-identi�ed mode,
i.e. users are identi�ed by pseudonyms and passwords. However, the identity of
anonymously identi�ed users is not known to the system. E.g., when logging
in at a terminal, the user may either enter a valid pseudonym and password
or select (or let the system generate) a new combination6.

The advantage of this mode compared to anonymous mode is that the system
is not able to tell who the user really is (no \Big Brother"), but recognize
the user in forthcoming sessions, which allows to store user preferences and
con�gurations and allows private write operations (i.e. modi�cations of the
database visible only to the same user, e.g. private annotations). However,
public writes (i.e. changes to the database visible by other users) are disabled
in this identi�cation mode.

Accounting is still possible in this mode by use of anonymous accounts, i.e.
the user pays a certain amount to be added to a certain pseudonym's account.

4. Anonymous: This mode will be used where a user identi�cation is too com-
plicated and time-consuming for the job to be done (e.g. at public terminals,
museums. . .). No user preferences or con�gurations nor any write operations
are possible in this mode. The user's and con�guration and rights are deter-
mined by the terminal pro�le. However, accounting is still possible at termi-
nals equipped with special hardware to accept tokens, coins, IC-cards and the
like.

Also, system monitoring for system administration and tuning purposes is
possible in all identi�cation modes.

6Of course, passwords may be changed by the user at any time, supplying the old password.

34 CHAPTER 2. HYPERMEDIA

Identi�cation System Private User Public
Mode Monitoring

Accounting
Write Monitoring Write

Identi�ed YES YES YES YES YES

Semi-Identi�ed YES YES YES YES YES

Anonymously
Identi�ed

YES YES YES NO NO

Anonymous YES YESa NO NO NO

aSpecial hardware required.

Table 2.2: Supported Functions of User Identi�cation Modes

Table 2.2 summarizes the possibilities of the four identi�cation modes. Note that
users may access the system in any desired mode. This enables users to use anony-
mous or anonymously identi�ed mode most of the time, and switch to other modes
only when necessary (e.g. for a public write operation).

2.2.3.16 Access Rights

As mentioned earlier, every user is also a potential author. The extent to which a
user is allowed to modify the database is controlled by access rights. A user may
belong to a number of user groups, each group being granted particular rights to do
something with some portion of the database.

In addition, there are rights associated with the individual terminals and the pieces
of information (documents, links etc.) The right to perform a particular function
on a particular data item is deducted from the rights associated with the user, the
terminal, and the data item itself. A more speci�c description may be found in
section 2.2.4.3 on page 48.

2.2. THE DESIGN OF HYPER-G 35

2.2.4 Implied Requirements

This section contains additional requirements that are implied by the basic require-
ments of section 2.2.2 and the design decisions made in section 2.2.3. Again, they
are structured in �ve groups: General, User, Author, System and Implementation.
Unique labels are assigned to the following requirements in such a way that, if re-
quirement b is implied by basic requirement a, the label of a is a pre�x of the label
of b.

2.2.4.1 General Requirements

Basic Requirement Req. G.1 introduces the notion of documents. The design
decisions made in section 2.2.3.3 and �gure 2.4, page 21) suggest the following
de�nition:

Req. G.1.2: Document Clusters are groups of documents that are seman-
tically equivalent or related.

Examples of \semantically equivalent or related" documents are:

� A text document in German and the English translation.

� A text document and a sound document containing the voice of someone read-
ing the text document.

� A picture and the description of the picture.

A special type of link (cluster link, see Req. G.2.4) is used to link the individual
documents of a document cluster.

Req. G.1.3: Documents, as well as links, collections, tours etc. are sub-
classes of the class Hyper-G object . All Hyper-G objects (and
its subclasses) store attributes in addition to the information.
These attributes include:

Req. G.1.3.1: Author and User Group.
Req. G.1.3.2: Creation/Modi�cation/Access/Expiration time.
Req. G.1.3.3: Language.
Req. G.1.3.4: Rights for object's functions, for author, group and world .
Req. G.1.3.5: Price for object's functions, for group and world.

36 CHAPTER 2. HYPERMEDIA

Basic Requirement Req. G.2 (Hypertext Axiom) introduces links. The design
decisions made in sections 2.2.3.7 (page 24) are used to re�ne this requirement to:

Req. G.2.1: The user is o�ered a visual representation of the link, called
anchor . The user may 'activate' the link by activating the
corresponding anchor.

Of course, the actual meaning of 'activate' depends on the user interface. Typically,
the user will point to the anchor using some pointing device and then activate it by
pressing a button. However, other means of activation are possible with unorthodox
user interfaces (section 4.3.1, page 129).

Req. G.2.1.1: Anchors belong to links rather than documents. Creation,
modi�cation or deletion of anchors is not regarded as docu-
ment modi�cation.

This implies that even users that have no right to modify a document may create
links (with anchors) from/to that document, if they are granted the right to create
links (annotation).

Req. G.2.1.2: The visual appearance of an anchor depends on the destina-
tion document type, and on whether the destination docu-
ment has already been visited during the active session.

This signi�cantly reduces the number of unwanted re-visits of the same document
in a session. Also, the special appearence of anchors leading to not-so-common
document types actually leads the user to such 'rare information' (e.g. video clips,
animation, sound, and images). This feature is most important in the early phase
of Hyper-G, where we want to make it easy for users to �nd such document types.
At a later stage, e.g., when high-quality images are not so rare any more, it may
become partially obsolete.

The concept of forward and backward (associative) link following described in section
2.2.3.5 (page 23) motivates the following requirements.

Req. G.2.2: Links are directed, i.e. there are source and destination an-
chors. However, Hyper-G supports forward and backward link
following.

2.2. THE DESIGN OF HYPER-G 37

Req. G.2.2.1: When forward following a link (i.e. source to destination), on
activating the source anchor, the system will activate the des-
tination document in such a way that the destination anchor
is visible (if possible).

An example would be a paragraph in a destination text document that is scrolled
so that at least the beginning of the paragraph is visible.

Req. G.2.2.2: When backward following a link (i.e. destination to source),
on activating the destination anchor, the system will activate
the source document in such a way that the source anchor is
visible (if possible).

An example of this would be a part of a map that is scrolled such that the source
anchor linking to the destination document (a more detailed map) is centered in the
display window.

Req. G.2.3: Every document has a default anchor associated with it. The
default anchor covers the whole document and can be used
for both the source and the destination of links.

The default anchor is used to link whole documents, e.g. as destination or when
using cluster links (see Req. G.2.4).

Links can be classi�ed according to a number of classi�cation schemes. The following
requirements specify the types of links distinguished by Hyper-G.

Req. G.2.4: Hyper-G supports cluster links and referential links. Cluster
links are used to tightly couple the individual documents of
document clusters.

Cluster links are always user de�ned, as the semantic relation between two docu-
ments can not reasonably be detected automatically. However, referential links may
be further subdivided:

Req. G.2.4.1: Hyper-G supports user de�ned links as well as automatically
generated links.

Req. G.2.4.1.1: Automatically generated links may be pre-generated (static)
or generated on demand (dynamic).

Link

Referential

User defined

Automatic

Other User

Sys. Adm.

Author

Same User

Static

Dynamic

Cluster

lin
k

pr
io

rit
y

hi
gh

lo
w

38 CHAPTER 2. HYPERMEDIA

Dynamic links are generated using hidden database key queries (section 2.2.4.2,
page 39). The user may specify a list of active databases that are searched (link
�ltering), as required by Req. U.3.4.1.1.

Note that according to above de�nition user-de�ned links as well as cluster links
are always static. Figure 2.8 gives an overview of the basic link types supported
by Hyper-G. The set of link types is extensible, which may be necessary for certain
applications such as Hyper-Animation (section 3.5.1, page 117).

Figure 2.8: Basic Link Types and their Relative Priority

Req. G.2.5: A Link Priority is associated with any Hyper-G link. The
link priority is used to reduce the number of links presented
to the user.

Of course, the actual meaning of \priority" will vary with the user interface. In par-
ticular, a user interface may choose to always follow cluster links (highest priority)
without user interference, i.e. to display a whole document cluster at a time. Also,
a user interface may choose not to generate dynamic links (lowest priority) when
there are any higher-priority links available. Figure 2.8 shows the relative priority
assigned to the basic link types of Hyper-G.

2.2. THE DESIGN OF HYPER-G 39

Req. G.2.6: Active Anchors have an associated piece of code that is ex-
ecuted when the anchor is activated. Hyper-G supports a
number of pre-de�ned active anchors for dialog documents
and special e�ects.

Active anchors have been discussed in section 2.2.3.7 (page 24). They are most
useful with dialog documents (e.g. answer judging) and for special e�ects (e.g. a
special kind of destination anchor might 'fade out' the source document and 'fade
in' the destination document.).

RequirementG.3.1 (Documents and links are maintained automatically) motivates
the following:

Req. G.3.1.1: All Hyper-G objects have an Expiration Date associated with
them. Hyper-G objects age. When the expiration date is
reached, the object may be deleted.

This is to protect the database from outdated or obsolete information. A typical
expiration time of a user-supplied document might be six months. Two months
before expiration, the user (i.e. the author of the document) is noti�ed (by means
of e-mail) and may extend this period. If no response is received, the object may be
deleted (and with it all associated links).

Of course, some objects may be given a very long life time by the system adminis-
tration. Also, additional factors such as use count and time of last access may be
used to decide on whether an object is to be deleted (section 2.2.9, page 81).

Req. G.3.2.1: Whenever a new document is inserted, (static) links are gen-
erated automatically.

This is especially useful for annotations: A new annotation of a user is automat-
ically linked to other documents, possibly annotations of other users. An o�-line
communication between users and authors starts.

2.2.4.2 User-related Requirements

Basic RequirementReq. U.1 states that Hyper-G shall be usable by untrained users
as well as expert users. While expert users may be expected to be familiar with the
user interfaces of today's computers, the casual user must not. Therefore, Hyper-G
can be operated using a number of di�erent user interfaces (see also section 4.3.1,
page 129).

40 CHAPTER 2. HYPERMEDIA

Req. U.1.1: Users control the system with user interface devices suited to
their background knowledge and the application.

Interface Device User Type Typical Application section page

Keyboard Home User Remote terminal access 2.2.3.1.2 18

Keyboard & Mouse Expert Univ. Information System 4.1 121

Touch-Screen Visitor Viewseum 4.3 128

Home-Trainer Visitor HOTACT 4.3.1.3 130

3D input/output Visitor Advanced 3D-Applications 4.3.4 140

Table 2.3: Typical User Interfaces, Users and Applications

Table 2.3 shows some typical combinations of user interface device, user type, and
application.

Requirement Req. U.2 (\Hyper-G is a multilingual system") may be re�ned using
the design decisions of section 2.2.3.3 (page 19 and 2.2.3.14 (page 30):

Req. U.2.1: The user may specify an ordered list of language preferences.

Req. U.2.2: A document cluster may include semantically equivalent doc-
uments that di�er only in the Language attribute. A user
interface may use this information and the user's preferences
to select which document to show.

Req. U.2.3: The user interface of the runtime system is available in a num-
ber of languages.

Req. U.2.4: The language strategy of the user interface can be temporarily
overridden.

The last requirement is important in situations where the user wants to see the
original version of a document. E.g, when looking at the English translation of
a German poem, the user may wish to see the original German version even if the
perferred language is English, or even see both versions at the same time.

2.2. THE DESIGN OF HYPER-G 41

The Hyper-G user is supported by high-level navigation tools (Req. G.3). These
tools include user interface metaphors (section 2.2.3.10, page 27), database queries
(section 2.2.3.13, page 30), collections (section 2.2.3.11, page 28), and tours (section
2.2.3.12, page 29). Let's deal with user interface metaphors �rst:

Req. U.3.1: A variety of user interface metaphors is o�ered, including:

Req. U.3.1.1: Simple Hypermedia (section 2.3.3)
Req. U.3.1.2: Desk-Top (Xerox' Star [81], Apple Macintosh)
Req. U.3.1.3: Stack (HyperCard [185])
Req. U.3.1.4: Book [10]
Req. U.3.1.5: Holiday Travel [61]
Req. U.3.1.6: Library [35, 138]

The list of supported user interface metaphors is extensible, as the user interface is
built upon an underlying 'Hyper-G Kernel' that supports common functions (section
2.2.5, page 52).

Req. U.3.1.7: Most User Interface Metaphors support simple navigation
functions, such as undo, redo, help, drop/goto book-mark,

show copyright, show links, show annotations, show collec-

tion, show tours...

Other means to aid the user's navigation are collections:

Req. U.3.2: Information is structured in Collections. A collection is a set
of documents or other collections ('subcollections').

This recursive de�nition yields a hierarchical structure of collections:

Req. U.3.2.1: The collection hierarchy is an acyclic directed graph. There
are a number of 'root' collections.

The collection structure has been presented in section 2.2.3.11 (page 28). To put it
simple, 'acyclic directed graph' means that the terms 'ascending' and 'descending'
the structure are well de�ned like in a tree, however, a collection may be a subcol-
lection of a number of collections.

42 CHAPTER 2. HYPERMEDIA

Req. U.3.2.2: Any document in the system is a member of at least one
collection. The user may �nd the collection(s) a document
belongs to, get a graphical representation of the collection
hierarchy at that point, 'ascend' or 'descend' the hierarchy,
and �nd other documents belonging to the collection.

Note that because of the logical de�nition of the collection hierarchy, and because
of the relatively small number of collections, graphical browsing of the collection
hierarchy seems feasible.

Tours are described in section 2.2.3.12 (page 29) and motivate the following require-
ments:

Req. U.3.3: Guided Tours allow to traverse the information network in a
way speci�ed by the author (of the tour). However, tours do
not have to be a linear list of document clusters to be visited,
but may utilize the full exibility of the Hypermedia system.

Req. U.3.3.1: Document clusters may be visited by a number of tours.
When the user follows tour a and visits a document clus-
ter that is also visited by tour b, the user may switch tours at
this point.

That is, the user can get a list of the tours visiting that document cluster, and
may choose a tour to follow. However, at some later point, the user should have
the opportunity to continue the original tour. It turns out that requirement Req.
U.3.3.1 leads to the concept of labeled links, i.e. links that are labeled with the
tour name (section 2.2.6.1.5, page 67).

Especially in the case of educational tours the user should be supported in making
sure that nothing has been overlooked:

Req. U.3.3.2: The user is o�ered information on what parts of the tour have
already be seen and what parts have not.

In addition to the database queries that are made behind the scenes when generating
dynamic links, Hyper-G o�ers user controlled database queries (section 2.2.3.13,
page 30):

2.2. THE DESIGN OF HYPER-G 43

Req. U.3.4: Hyper-G supports Database Queries to allow fast access to
relevant information.

Two types of queries may be distinguished:

Req. U.3.4.1: Key Queries allow for pre�x search in the database(s).

This type of query is most useful at the beginning of a session, when the user wants
to gain an overview of what is in the database(s) related to a given topic (keyword).
Key queries may be combined by 'and', 'or' and 'not' operators.

Req. U.3.4.1.1: The user may specify a list of active databases. Only these
databases are searched.

This not only increases speed, but also reduces the number of unwanted links (link
�ltering). Note that dynamic links are done by key queries, too, so that the list of
active databases also applies to the generation of dynamic links.

The databases correspond to the collections of Req. U.3.2. Thus, a 'meta-
collection' containing all collections allows to search for whole collections instead
of individual documents, if this meta-collection is the only active database. Simi-
larly, a collection containing all the tours lets the user search for tours with a certain
associated keyword instead of individual documents which may be part of the tours.

Req. U.3.4.1.2: The system allows for inexact match key queries.

This may be done in two ways:

� Either the user may specify a kind of regular expression to be searched for, or

� The system itself tolerates a certain amount of spelling errors (e.g. \naboleon"
should �nd \Napoleon").

Hyper-G will o�er both approaches. In addition, the use of synonym databases and
hierarchical synonym classi�cation schemes will be investigated.

Req. U.3.4.2: Form Queries are more exible, but collection-speci�c que-
ries. The user is allowed to �ll out a form with a number of
attributes that may be combined to perform complex queries.
Forms may be �lled out iteratively, showing after each incre-
mental step the quantity of information found and hints on
how to continue.

44 CHAPTER 2. HYPERMEDIA

As stated in section 2.2.3.7 (page 24), the user interface for database queries (espe-
cially form queries) is most easily made by dialog documents with active anchors.

Basic requirement Req U.4 (\The system is con�gurable on a per-user basis...")
motivates:

Req. U.4.1: The system maintains a user pro�le, describing:

Req. U.4.1.1: Security Data (User name, user group(s), account number,
password, access rights

Req. U.4.1.2: The user's system entry point (login menu, starting collection)
Req. U.4.1.3: The user's language preferences
Req. U.4.1.4: Preferred user interface metaphor
Req. U.4.1.5: Preferred user interface metaphor's options
Req. U.4.1.6: User logging (full/system/o�)
Req. U.4.1.7: Default active databases for queries
Req. U.4.1.8: Whether user may change pro�le

A few explanations are necessary:

The security data is used to identify the user. However, the system may also be
used anonymously (Req. U.6), in which case the default user pro�le of the user's
terminal is applied. Of course, anonymous users cannot alter the con�guration7.

In principle, the user's system entry point might be any Hyper-G object. However,
to de�ne a root-level collection (remember, the collection hierarchy may have more
than one root) or a dialog document that performs a database query would be
reasonable.

The user's language preference is an ordered list of languages (Req. U.2.1). The
selection 'Hungarian' { 'German' { 'English', for example, means that if a Hungarian
version of a document is available, show it, else show the German version, else
the English one. If none of the user's list is available, the system may display
an appropriate error message, or display whatever it has. Also, the user interface
language is to be set to the language of the �rst choice, if possible.

The preferred user interface metaphor's options are further options speci�c to the
preferred user interface metaphor . For example, the user may specify to prefer
short versions instead of long versions of text or voice documents, if semantically
equivalent versions are available in a document cluster; or to prefer hearing a voice
document rather than reading a semantically equivalent text document. In addition,
preferred document managers (section 2.2.5.2, page 56) that should be used to

7However, semi-identi�ed and anonymously identi�ed users potentially can (section 2.2.3.15,

page 32).

2.2. THE DESIGN OF HYPER-G 45

display certain document types can be speci�ed. An interface metaphor might even
allow to con�gure the exact layout (position, size) of the various windows.

User logging (Req. U.5.1) can be turned to 'full' (full user state logged), 'system'
(only the items necessary for Req. U.5.1.2 logged) or 'o�'.

As we shall see, the list of active databases is actually a list of active collections, to
which queries are to be passed.

Basic Requirement Req. U.5 (\... user may return to a previous user state")
requires the system to keep user logs:

Req. U.5.1: For every user, the system maintains a user log. The log stores
a sequence of user states.

The log enables the system to perform a sort of Undo function, i.e. to return to
a previous state (Req. U.5). The user state records all information necessary to
do this. In addition, some graphical representation of the user's path through the
information network may be displayed (history).

Req. U.5.1.1: Identi�ed, semi-identi�ed and anonymously identi�ed users
may also navigate backwards to the user states of previous
sessions.

This is done by having persistent user logs, i.e. by saving the user log across sessions.
Of course, this feature is not available for anonymous users.

Req. U.5.1.2: User logs may be used by authors and/or system administra-
tors to maintain the database.

Sometimes, users get stuck because of misleading or missing links, etc. The user
logs may be used to �nd such weaknesses of the database. Not all the information
of the user state is required to be logged ('User logging' set to 'system' would be
su�cient (Req. U.4.1.6).). For example, only unsuccessful database queries need
to be logged for this purpose. In particular, anonymous users may be traced also.

In addition to the identi�ed and anonymous user mode (Req. U.6), Hyper-G
supports two more identi�cation modes:

46 CHAPTER 2. HYPERMEDIA

Req. U.6.1: The system may be used in Semi-Identi�ed Mode. In this
mode, the real identity of the user is known to the system,
but not to other users.

Req. U.6.2: The system may be used in Anonymously Identi�ed Mode. In
this mode, the real identity of the user is not known to the
system. However, the user's pseudo-identity persists across
sessions.

Advantages and disadvantages of the four user identi�cation modes have been dis-
cussed in section 2.2.3.15 (page 32).

Requirement Req. U.7 states that certain system features and/or information
items are chargeable.

Req. U.7.1: Any Hyper-G object may be priced. The price is speci�ed
by the author of the object (Req. G.1.3.5). The system
automatically tells the user in advance the price of the object
to be accessed, if its greater than zero.

In order to charge both identi�ed and anonymous users, Hyper-G supports two
charging schemes:

Req. U.7.2: Hyper-G maintains user accounts for identi�ed, semi-identi-
�ed and anonymously identi�ed users. Whenever a priced
object is shown, the object's costs are deducted from the user's
account.

In theory, objects may also have a negative price, in which case the amount is
added to the user's account. Identi�ed and semi-identi�ed users may be allowed to
overdraw their account, and will receive an invoice at regular intervals.

Req. U.7.3: At special terminals, anonymous users may be charged also.

This is done by letting the users (anonymously) buy tokens of a certain value, and
then deduct from that value until the remaining value on the token reaches zero.
Tokens will typically be credit card-like magnetic cards or IC-cards. Of course,
anonymous and anonymously identi�ed users are not allowed to overdraw their ac-
count.

2.2. THE DESIGN OF HYPER-G 47

2.2.4.3 System Requirements

Req. S.1.1: For each terminal, there is a terminal pro�le, describing:

Req. S.1.1.1: Terminal facilities, such as:
Req. S.1.1.1.1: Input Devices
Req. S.1.1.1.2: Voice I/O capability
Req. S.1.1.1.3: Digital Sound I/O capability
Req. S.1.1.1.4: Digital Video I/O capability
Req. S.1.1.1.5: Hardcopy capability
Req. S.1.1.1.6: Softcopy (diskette) capability
Req. S.1.1.1.7: Communication capabilities (E-Mail, conferencing)
Req. S.1.1.1.8: Charging of anonymous users

Req. S.1.1.2: Security information, such as:
Req. S.1.1.2.1: The terminal's access rights (operations allowed on this

terminal)
Req. S.1.1.2.2: The rights of anonymous users at this terminal

Req. S.1.1.3: The prices of speci�c terminal facilities

Again, a few explanations are in order:

Useful combinations of Input Devices are listed in table 2.3 (page 40). Some termi-
nals may be equipped with hardcopy or softcopy devices ('softcopy' means that the
user/visitor can take a diskette back home with selected documents on it).

Hard- and Softcopy facilities are usually priced (Req. S.1.1.3). The charging
of anonymous users may be done using tokens, coins, or terminals equipped with
magnetic or IC-Card readers or similar devices (Req. U.7.3). No such hardware is
neccessary for anonymously identi�ed users (section 2.2.3.15, page 32), as they can
be charged by prepayment.

RequirementReq. S.2 states that access rights control whether a certain user on a
certain terminal may access a certain object. Considering the design decisions made
(section 2.2.3.16, page 34) and implied requirementsReq. G.1.3.4,Req. U.4.1.1,
and Req. S.1.1.2, we can further re�ne this concept:

48 CHAPTER 2. HYPERMEDIA

Req. S.2.1: The right of a certain user on a certain terminal to perform
a speci�c function of certain Hyper-G object is deduced from
the object's protection bits (for author, group and world ,
Req. G.1.3.4), the user's rights Req. U.4.1.1 and the
terminal's access rights Req. S.1.1.2.1. Anonymous users
get the terminal's default right (Req. S.1.1.2.2). Users of
user group system may override rights.

To be speci�c, the user's right to perform a certain operation is calculated in the
following way: For any operation (e.g. read, write, print, copy, link to, link from;
described in section 2.2.6.1, page 60) there is an associated bit, say bit number i.
If it's set to '1', this means \allowed", a '0' means \not allowed". These protection
bits are stored together with the following entities:

� Any Hyper-G object holds protection bits for:

{ Author (object.author.bits)

{ Group (object.group.bits)

{ World (object.world.bits)

� Protection bits are associated with every user (user.bits).

� Access rights are also associated with terminals (terminal.bits).

In addition, a user may be a member of a number of user groups (user 2 Gi).
Members of group system may override any protection bits with exception of termi-
nal.bits, i.e. system administration can only be done from a subset of the terminals
as an additional security measure. Also, if for example a terminal does not support
printing, it does not make too much sense to insist on your right to print something.
With these prerequisites in mind, the protection algorithm looks like shown in �g-
ure 2.9.

This protection scheme is somewhat similar to the UNIX approach, but with the
following modi�cations:

� There are terminal protection bits. This serves for two reasons:

{ The terminal's protection bits are taken into account for all users, in-
cluding the system administration. This means that the system adminis-
trators may login at any terminal, however, the speci�c rights needed to
perform system administration (e.g. the right to delete objects) are only
granted at speci�c terminals.

2.2. THE DESIGN OF HYPER-G 49

if user 2 system

then bits := terminal.bits

else if user = object.author

then bits := object.author.bits and user.bits and terminal.bits

else if user 2 object.group

then bits := object.group.bits and user.bits and terminal.bits

else bits := object.world.bits and user.bits and terminal.bits

if (bits and 2i) 6= 0
then /* function #i allowed */

else /* function #i not allowed */

Figure 2.9: Hyper-G Protection Scheme

{ The protection bits also specify certain functions to do with the docu-
ment that are not available at all terminals, e.g. hardcopying. A termi-
nal that does not support that speci�c function would set the according
protection bit to \not allowed", overriding any di�erent settings of user
and/or document protection bits.

� The users themselves have protection bits associated with them. This may
be used to speci�cally deny certain rights from a user. For example, for some
reason a user may be (temporarily) denied the right to annotate something,
without the need to change the rights of the objects or modify user groups.

� The system may be used anonymously, in which case users get their rights
from the terminal pro�le (Req. S.1.1.2.2).

As stated in Req. G.1.3.5, a Hyper-G object has a price associated with a partic-
ular function (e.g. read, hardcopy, softcopy, link to, link from) for group and world
(of course, if the corresponding function is prohibited by the associated protection
bit, the 'price tag' is meaningless; also, the price for the author is always zero). Cal-
culation of the price to be paid by a speci�c user is done similar to the protection
scheme described above. If the user is a member of the speci�ed user group, the
'group' price tag is used, else the 'world' price is to be paid.

A typical application would be to specify that linking-to an object (e.g. using it in
a tour) costs amount w for anybody except users of group mybestfriends, which pay
amount g.

It should be noted that variable-length lists have been avoided in the design of
Hyper-G object's attributes, because of their implementation overhead associated
with database design. As a consequence, in order to distinguish between a number
of user groups, more database objects pointing to the same piece of information

50 CHAPTER 2. HYPERMEDIA

(e.g. document) have to be established. In our above example, in order to let users
of user group mysecondbestfriends pay amount g1, a second Hyper-G object with
'group' set to mysecondbestfriends has to be created.

Also, the terminal has prices associated with certain functions, which are added to
the price determined by the object (e.g., the price for a hardcopy is calculated by
the price the author speci�ed plus the price the terminal's price for a copy). However,
the amount collected for using the Hyper-G object is transferred to the author, while
the amount collected by the terminal is for the system (administration).

So, as a conclusion:

Req. S.2.2: The price to be paid for a certain function on a certain object
at a certain terminal is determined by the object's price tags
(for group or world , Req. G.1.3.5) and the terminal's price
for that particular function.

2.2.4.4 Implementation Requirements

From the design decisions and requirements of previous sections it is quite obvious
that Hyper-G will use a set of databases to store its documents, links, anchors etc.
Because Hyper-G's data items are structured in an object-oriented way (e.g. they
are all derived from a class 'Hyper-G object') it would be best to use object-oriented
databases to do the job. Unfortunately, only experimental object-oriented database
systems suitable for our purposes exist at this time. Also, a standard relational
database system would turn out to be too slow to handle the huge number of objects
Hyper-G developed for. In addition, there are legal problems associated with the use
of commercial database systems. Hence we decided to build our own (simple, but
speedy) database management system customized to the special needs of Hyper-G.

In fact, Hyper-G will use two kinds of databases (some arguments for this split are
discussed in sections 2.2.5 (page 52) and 2.2.6 (page 60)):

Req. I.1.1: The Keys & Attributes Database (KAD) holds the keys and
attributes of all Hyper-G objects. In order to gain speed, the
database is split into specialized databases holding:

Req. I.1.1.1: documents
Req. I.1.1.2: links
Req. I.1.1.3: anchors
Req. I.1.1.4: collections
Req. I.1.1.5: tours

2.2. THE DESIGN OF HYPER-G 51

The attributes stored with each object are listed under Req. G.1.3. The keys
are used to search for the object using the simple key queries described under Req.
U.3.1.4 as well as to link the links to the anchors and the anchors to the documents.
The KAD will be implemented using simple text �les with inverted indices. It does
not contain documents, only pointers to the documents are stored.

The documents themselves are stored as part of a collection database. While some-
times this collection database will just contain pointers to the actual documents
(e.g. to raster images), text documents (e.g. the entries of an encyclopedia) might
be grouped together in one �le, as this allows a collection-wide full text search that
is needed for associative dynamic links (section 2.2.3.5, page 23) and form queries
(section 2.2.3.13, page 30). Also, the graphical appearance of anchors is stored to-
gether with the documents, while their attributes are stored in the KAD.

Req. I.1.2: The documents and anchors are stored in collection databases,
while their keys and attribute are held in the KAD. The actual
layout of the databases will vary with the type of collection.
The collection supports collection-wide full-text search (if ap-
plicable) and/or form queries.

Note that the notion that the collection itself performs this actions and the exact
layout of the database is not to be known outside conforms to the object-oriented
design principles of encapsulation and data hiding.

Req. I.1.3: The databases themselves ensure database integrity.

For example, if a document is to be deleted, also the anchors of the document as well
as the links to/from that anchors are deleted. This facilitates database maintenance
as required by Req. G.3.1 and Req. S.3.

As stated in section 2.2.3.1.3 and shown in �gure 2.2 (page 18, Hyper-G allows
access to remote databases.

Req. I.2: Hyper-G supports access to remote databases. Access to such
databases shall be hidden from the user.

This means that users areconfronted with a consistent user interface metaphor
throughout the system, so that they would not be able to tell whether an infor-
mation item is retrieved from a local or remote database (except, perhaps, because
of a delay when retrieving remote information). More on this in section 2.2.6.2.3
(page 74).

52 CHAPTER 2. HYPERMEDIA

2.2.5 Process Distribution

As discussed in section 2.2.3.1 (page 17) Hyper-G will be developed as a distributed
system, running concurrently on a heterogeneous network of computers. For the
sake of simplicity we will distinguish between workstations and Hyper-G servers,
although the distinction is somewhat arbitrary, as modern UNIX workstations may
also accomplish the tasks that we will associate with Hyper-G servers.

Hyper-G servers and workstations are interconnected by a high-speed local area net-
work (LAN), with optional front-ends (terminals) and back-ends (remote databases).
In this section, we will concentrate on the core system (see �gure 2.1 on page 17),
and forget about front- and back-ends.

Communication between Hyper-G servers and workstations is done via the X proto-
col [141], i.e. the workstations run X Servers8 and the Hyper-G servers run X clients.
On the Hyper-G server side, in most cases we do not access the Xlib [142, 143] di-
rectly, but use InterViews [97, 98] { an object-oriented user interface toolkit written
in C++ [169] { instead.

The Hyper-G server itself consists of a number of Server Processes (�gure 2.10) that
communicate via message passing and may be distributed among a number of server
machines. This split into di�erent processes o�ers a number of advantages:

� The processes may run concurrently on di�erent machines, increasing perfor-
mance.

� Certain processes may run on specialized server machines (e.g. database server,
'video server' equipped with real-time digitizing hardware).

� It makes Hyper-G implementable by a number of individual programmers that
implement a single process without needing a lot of knowledge about other
processes. This aspect is also due to object-oriented design principles (section
2.2.6.1.1, page 61).

� As we will see, each document type is handled by a specialized process. This
allows for painless extension of the set of supported objects (Req. G.4) and
the implementation of document clusters.

As shown in �gure 2.10, Hyper-G consists of the following groups of processes:

1. The Session/Interface Manager (S/IM) controls the session and user in-
terface.

8Sorry about this terminology, but thats the way it is...

X11 Window System & Window Manager

Session /
Interface
Manager

DBM DBM DBM DBM

Sound

Image SoundText

Document Managers

Ency-
clop.

Raster
Images

Database
Managers

Keys &

Attributes

Database

Document / Collection Databases

Workstations

Server Processes

2.2. THE DESIGN OF HYPER-G 53

Figure 2.10: Server Processes

2. Document Managers (one for each document type) control the display and
manipulation (e.g. scrolling) of the documents of corresponding type as well
as anchors tied to that document.

3. A number of Database Managers (DBM) implement the interface to the
corresponding databases.

The following sections discuss these modules of Hyper-G in more detail.

2.2.5.1 Session/Interface Manager

The Session/Interface Manager (S/IM) accomplishes two closely related tasks:

1. It controls the entire Hyper-G session, involving the following sub-tasks:

54 CHAPTER 2. HYPERMEDIA

(a) It starts and controls the other processes (document managers and
database managers) via remote procedure calls (RPC) [31].

(b) It decides on the documents of a document cluster that are to be dis-
played. This decision is based on the user's preferred user interface

metaphor (Req. U.4.1.4 and preferred user interface metaphor's op-

tions (Req. U.4.1.5) of the user pro�le (Req. U.4.1, page 44). For
example, the user may specify to prefer short versions instead of long
versions of text or voice documents, if possible, or to prefer hearing a
voice document rather than having to read text document. The cluster
links stored in the KAD are used to �nd the individual documents of a
document cluster.

(c) When a document is to be 'executed' (e.g. displayed), the S/IM may
either start a new document manager or re-use an existing one (again
depending on the user interface metaphor). Which document manager is
to be used is determined in the following way:

The KAD (Req. I.1.1) stores the document type of each document. This
document type is taken as an index into the Document Manager Table

(DMT) to select an appropriate document manager for that document.
Depending on the user interface metaphor and the user's and terminal's
rights, the DMT may be user-con�gurable (Req. U.4.1.5), i.e. the user
may tell the S/IM which document manager to use for documents of a
speci�c document type. Also, the document managers may be started
with con�gurable parameters.

(d) It implements link following, using the information provided by the KAD
(section 2.2.6.2.1, page 70). To be speci�c, the link and attribute concepts
of Hyper-G are realized as follows:

i. Static Links: When the user clicks on a source anchor (section
2.2.3.7, page 24) of a document, the corresponding document man-
ager returns the anchor ID to the S/IM, which in turn uses the link-
anchor relation of the KAD (via a DBM) to �nd the links attached to
that anchor. If there is more than one link, the link priority (section
2.2.3.6, page 24) or user interaction may be used to select a single
link to follow.
Once the link is identi�ed, the corresponding destination anchor

is known and used to �nd the destination document using the
document-anchor relation of the KAD. The new document is part
af a document cluster, which is then displayed as described under
1b.

ii. Associative (backward) link following (section 2.2.3.5, page 23)
of static links: Just exchange the words 'source' and 'destination' in
the preceding paragraphs.

iii. Dynamic Links (forward and backward following): When the user
clicks on a word, a database query (described under 1e) is performed.
The result is a document ID, which is then used to branch to the

2.2. THE DESIGN OF HYPER-G 55

corresponding document cluster. There are no links and anchors
involved.

iv. Active Anchors: When a document (e.g. a dialog document) con-
tains active anchors, the code associated with them is executed by
the corresponding document manager. The result is always an an-
chor ID, which is returned to the S/IM. The S/IM sees no di�erence
to an ordinary static link, so it is treated as described under 1(d)i.

(e) It performs Database Queries both as a part of dynamic link generation
and under user control (section 2.2.3.13, page 30) . Depending on the
desired operation, two kinds of low-level database queries have to be
performed:

i. Forward dynamic link generation and key queries (Req.
U.3.4.1) require the document database (Req. I.1.1.1) of the KAD
to be searched for a document that has the search string in its key
list. The user may restrict the search to documents of speci�c col-
lections (Req. U.3.4.1.1).

ii. Backward dynamic link generation and form queries require
collection-speci�c database queries, and are therefore passed to the
collections, which in turn use the corresponding collection database
to perform the search. In general, this kind of query will be slower
than a search in the KAD (in the case of a collection of text doc-
uments { e.g. an encyclopedia { a full-text search is required), but
because of process distribution can be performed in parallel on a
number of collections, if the corresponding DBMs are executing on
di�erent machines.

(f) It checks the access rights of a user to perform speci�c functions on an
object (Req. S.2.1), based on the algorithm shown in �gure 2.9 on page
49.

(g) It maintains the user accounts (Req. S.2.2).

2. It implements the user interface. In particular,

(a) It implements the user interface metaphor (Req. U.3.1), based on the
user's preferences (Req. U.4.1.4).

(b) It controls the various input and output devices (Req. U.1.1).

(c) It allows simple navigation functions, such as undo, redo, help, drop/goto
book-mark, show copyright etc.

(d) It allows to display (a subset of) the collection hierarchy, relative to the
'current' collection, and to navigate within the collection hierarchy.

(e) It allows the user to go on guided tours (section 2.2.3.12, page 29) and
switch between tours.

(f) It lets users con�gure their user pro�les (Req. U.4.1).

(g) It maintains the user logs, which may be used for navigation (history)
and system administration.

56 CHAPTER 2. HYPERMEDIA

2.2.5.2 Document Managers

The document managers are responsible for the display and manipulation (e.g.
scrolling, zooming etc.) of the individual documents. In addition, they handle
the appearance and activation of anchors tied to the documents. The important
point is that for the S/IM the document managers look all the same, i.e. the private
data of the documents and anchors is hidden from the S/IM. This allows to extend
and/or change the set of supported document types, the way the documents and
anchors are stored etc. by changing only the document manager or corresponding
database manager without impact on the rest of the system.

In Hyper-G, every document is a member of at least one collection (Req. U.3.2.2).
Every collection has a speci�c database manager (DBM) associated with it. For
example, an encyclopedia collection consisting of thousands of text documents will
usually be stored as a single text �le with associated index �les to speed up searching.
However, the corresponding DBM will present only one document at a time to the
text document manager. Again, changing the underlying data representation would
only a�ect the DBM and leave the rest of the system unchanged.

By now it should be obvious that the design of Hyper-G relies heavily on the object-
oriented design principles of abstraction and encapsulation [32]. In addition, the im-
plementation of document managers utilizes the concepts of inheritance and poly-

morphism . To put it simple, from outside the document managers look all the same
(i.e. they implement the same set of methods), but internally they are inherited
from a generic class DocumentManager. The virtual methods of this class get called
from outside and are passed on to the real document manager that actually imple-
ments the method. Table 2.4 lists the most important and public virtual methods
of class DocumentManager, corresponding to the functions that can be performed
with a document.

Note that the base class DocumentManager contains no methods to manipulate
the document itself or the attached anchors. Because of the great di�erences of
the document types, these methods are incorporated into the individual document
managers and are used by editing tools that are specialized for speci�c document
types. The functions copy, link to, link from etc. can be performed in the KAD
without interference with the document manager.

Also, there is no method to poll the state of attached anchors. Rather, the document
manager communicates asynchronously with the S/IM in case of an anchor being
activated. It calls S/IM's method

void ActivateAnchor(AnchorID, int mode)

to tell the S/IM that an anchor was activated. The 'mode' ag can be used to
distinguish between modes of activation, e.g. single or double click, left or right
mouse button, etc.

2.2. THE DESIGN OF HYPER-G 57

Method Comments

int ReadDocument(Path) Identify the 'current document'. If a current doc-
ument is already read in, it is replaced by the
new one. Depending on document type, su�xes
may be used to specify portions of a �le (e.g. �le
pointer o�set).

int Execute(AnchorID) 'Executes' the current document. With standard
document types, this will just display the docu-
ment so that the given anchor is visible. E.g., with
sound documents, this will (re-)start the sound
at the given anchor. If AnchorID is nil, the whole
document is to be executed.

int SetState(AnchorID,state) Sets the state of an anchor. State bits include
visible/invisible, clickable, color, etc.

int SetGeometry(char*) Allows to move and/or resize the window of the
document manager from outside. E.g. the string
\640x480+20-10" will resize the window to 640�
480 and position it at 20 pixels from the left and
10 pixels from the bottom.

char* GetGeometry() Returns the position and size of the document
manager's window.

int Iconify() Tells the document manager to iconify itself.

int DeIconify() Tells the document manager to deiconify itself.

char* HardCopy(char*) Returns PostScript [1] code that contains a print-
able representation of the document. Options may
be passed.

char* SoftCopy(char*) Returns an encoding of the document suited for
saving on user disks. Options may control the
target format.

int Terminate() Terminates the document manager.

Table 2.4: Public Virtual Methods of Class DocumentManager (C++ -like notation)

2.2.5.3 Database Managers

Database Managers allow to access databases without too much knowledge about
the actual data layout. There are a number of database managers, namely the Keys
& Attributes Database Manager (KADBM) and the Collection Database Managers

(CDBMs). They all are inherited from a generic database manager class Database-
Manager .

58 CHAPTER 2. HYPERMEDIA

Method Comments

Links* GetLinkBySrc(AnchorID) Uses the anchor-link relation of the
KAD to �nd the link corresponding to
the passed source anchor. Returns a
list of link objects (section 2.2.6.1.4,
page 65).

Links* GetLinkByDest(AnchorID) Same as above, but the passed anchor is
interpreted as destination anchor (used
for backward link following).

Document* GetDocBySrc(AnchorID) Uses the document-anchor relation of
the KAD to �nd the document that
contains the passed anchor as source
anchor. Returns pointer to document
object (section 2.2.6.1.2, page 62).

Document* GetDocByDest(AnchorID) Same as above, but the passed anchor
is interpreted as destination anchor.

DocList* GetDocByKey(char*) Searches the document database for
documents with the passed key in their
key list. Returns a list of document
objects.

DocList* GetDocCluster(DocumentID) Returns a list of all document objects
that are semantically equivalent with
the passed document by examining the
link database.

AnchorList* GetAnchors(DocumentID) Uses the document-anchor relation of
the KAD to �nd all the anchors at-
tached to a given document. Returns a
list of anchor objects (section 2.2.6.1.3,
page 65).

Table 2.5: Public Methods of Class KADBM used by S/IM

Table 2.5 lists the methods o�ered by the KADBM that are used by the S/IM to
perform link following and database queries. Of course, there are more functions
that are used to create and modify Hyper-G objects.

The methods of the individual collection database managers vary according to the
type of collection. However, this is not a serious drawback because the only other
processes that need to communicate with the collection database are the corre-
sponding document manager and dialog documents performing collection database
queries. The S/IM requires only one method of the collection database managers
(table 2.6).

2.2. THE DESIGN OF HYPER-G 59

Method Comments

DocIDList* FindDocument(char*) Searches the collection database for docu-
ments that contain the passed string. Re-
turns a list of document IDs (used for back-
ward following dynamic links).

Table 2.6: Public Virtual Methods of Class CDBM used by S/IM

Care has to be taken in the implementation that the database manager code is
reentrant, so that it can be used by a number of other processes simultaneously.
This is most easily done by o�ering only atomic functions, i.e. no information
(including state information) is to be preserved by the document manager between
function calls.

60 CHAPTER 2. HYPERMEDIA

2.2.6 Data Distribution

Figure 2.10 (page 53) shows not only the distribution of Hyper-G processes, but also
the distribution of Hyper-G's databases. In general, three types of data are stored
in separate databases:

1. Keys and attributes common to all Hyper-G objects are stored in the KAD
(section 2.2.6.2.1, page 70). Only the S/IM is allowed to access the KAD by
using the KADBM (section 2.2.5.3, page 57). This way, structural changes in
the KAD (e.g. changing data structures and algorithms) require changes in the
KADBM only. Changes in the contents of the KAD (e.g. additional attributes)
are reected by changes of the S/IM. No other processes are concerned.

2. Collection-speci�c data may be stored in collection-speci�c databases, that are
accessed via CDBMs (section 2.2.5.3, page 57). These CDBMs are accessed by
the S/IM in order to perform full-text searches (table 2.6 on page 59) and
by collection-speci�c dialog documents that may perform more complicated
queries on the collection (e.g. in a geographical collection, the distance between
two locations may be computed and used to query the database; in order to do
so special attributes { degrees of latitude and longitude { have to be contained
in the collection-speci�c database). Again, changes in the collection-speci�c
database a�ect only the corresponding CDBM and the dialog object.

3. The document itself is passed to the document manager without interpretation
by the CDBM. Conceptually, it is contained in the collection's database as
a binary large object (BLOB), while in reality the database will just contain
a pointer (e.g. a �lename) to the document and pass it to the document
manager. Only the document manager needs to know about the format of the
document, restricting changes in the document format to a�ect the document
manager's code.

2.2.6.1 Hyper-G Objects

Documents, as well as links, anchors, collections, tours etc. are subclasses of a base
class called Hyper-G object (Req. G.1.3). The keys and attributes of Hyper-G
objects are stored in the KAD. Table 2.7 lists the data items a Hyper-G object
consists of (and hence are stored with any instance of a derived object class).

The actual representation of the individual data items of table 2.7 (e.g., whether
times are stored as seconds past midnight on January 1st 1970, or in a speci�c string
format) a�ects only the KADBM and is of no signi�cance to the rest of the system.
In a �rst version, all databases are implemented as simple text �les, so the data
items are all represented as strings. Figure 2.12 (page 64) lists an example entry of

2.2. THE DESIGN OF HYPER-G 61

Data Item Comments

ObjectID A unique identi�cation of the object. When referencing to an
object of a derived class, e.g. document, we will call this ID
DocumentID to emphasize that it identi�es a document.

Type Type of the object. Currently one of document, anchor, link,
collection and tour .

Author The electronic author (owner) of the object.

Group A user group this object is assigned to. Users of this group may
perform certain functions on the object, as speci�ed by the rights
�eld.

TimeCreated The time when the object was created.

TimeModi�ed The time when the object was modi�ed for the last time.

TimeAccess The time of the last access to the object.

TimeExpire Expiration date of the object (Req. G.3.1.1)

Accessed The number of accesses (read or write) to the object.

Language The language of the object (if applicable).

BitsAuthor The access rights for the author of the object (see Req.S.2.1,
page 48).

BitsGroup The access rights for the users of user group Group (see above).

BitsWorld The access rights for the users that are neither the author of the
object nor members of user group Group.

PriceGroup The prices of individual functions for members of user group
Group.

PriceWorld The prices of individual functions for users not member of user
group Group.

Table 2.7: Keys and Attributes of Class Hyper-G Object

the document database. Note that the �le format can be changed at any time to
increase speed or reduce storage requirements by just changing the KADBM.

2.2.6.1.1 Object-Oriented Design Principles

To the reader familiar with the paradigm of object-oriented programming it must be
quite obvious that an object-oriented approach is ideally suited to the task of imple-

Tour

Hyper-G Object

Document LinkCollectionAnchor

Time-Dependent DialogTextPicture

ImageDrawing Map Sound Animation Movie FormMenu

Class

Hierarchy

62 CHAPTER 2. HYPERMEDIA

menting a Hypermedia system like Hyper-G 9. The design principles of abstraction
and encapsulation have already been discussed in previous sections (section 2.2.5.2,
page 56). This and the following section are concerned with inheritance.

To put it simple, inheritance means that a class can be derived from another class
(the so-called base class) and automatically inherits the variables and methods of the
base class. In addition, more variables and methods may be de�ned, and methods of
the base class may be rede�ned in the derived class. By applying this concept
recursively, a class hierarchy grows. Figure 2.11 shows part of Hyper-G's class
hierarchy derived from the base class Hyper-G Object .

Figure 2.11: Part of the Hyper-G Object Class Hierarchy

As mentioned earlier, Hyper-G will be implemented in C++. C++ supports multiple
inheritance, which allows to inherit from a number of base classes. However, this
feature will be used rarely in order to keep the class hierarchy simple. The class
hierarchy as shown in �gure 2.11 applies to both the data stored in the KAD, as
well as to the code in the S/IM and document managers.

2.2.6.1.2 Documents

9A comprehensive discussion of the advantages of object-oriented design and object-oriented

programming languages is beyond the scope of this document. For in-depth information the reader

is referred to [32, 169, 181] and [182].

2.2. THE DESIGN OF HYPER-G 63

As shown in �gure 2.11, the class Document is inherited from the base class Hyper-
G Object , i.e. in incorporates all the attributes of Hyper-G objects (table 2.7).
Also, class Document is a base class for the individual document types, i.e. only
information common to all document types is part of class Document.

Data Item Comments

DocumentType Used by the S/IM to determine the corresponding document
manager.

Name Name of the document; This �eld is treated as a primary key

by the KADBM and S/IM. Names of documents need not be
unique; the �eld should be set to an expression that most ac-
curately describes the contents of the document.

Keywords Additional keywords used by the KADBM to perform key
queries (together with the Name �eld.

Path A �le name that tells the document manager where to �nd the
document. Depending on document type, su�xes may be used
to specify portions of a �le (e.g. �le pointer o�set).

Title A short title of the document (1 line) that may be used by the
S/IM to give the user an overview of documents found as a
result of a database query, etc.

Rights Legal information (e.g. copyright, if applicable).

Table 2.8: Keys and Attributes of Class Document

Table 2.8 shows attributes common to all document type. Only those and the
attributes of table 2.7 are stored in the KAD and can be used by the S/IM to
perform system-wide searches for document, with the exception of full-text searches
that are handled by the CDBMs (section 2.2.5.3, page 57). Figure 2.12 lists an
example entry of the document database of the KAD, describing an entry of an
encyclopedia on the city of Graz. Observe the following:

� For the sake of simplicity, and according to the UNIX philosophy, Hyper-G
databases will be stored as simple text �les. However, it may turn out in a
later stage of implementation that a change in the format is necessary (e.g.
due to speed or storage requirements). Fortunately, changes in the database
formats are reected only in changes in the corresponding database managers
and do not inuence the rest of the system.

� Attributes are stored as \<attributename>=<attributevalue>" pairs, allow-
ing a variable number of attributes for each data set. To illustrate this, in
�gure 2.12 attribute TimeModi�ed is missing (we assume the object stores has
never been modi�ed).

64 CHAPTER 2. HYPERMEDIA

ObjectID=0x30127880

Type=document

Author=hmuelner

Group=iicm

TimeCreated=91/01/10 09:30:01

TimeAccess=91/02/25 22:01:17

Accessed=215

Language=German

BitsAuthor=RWTFHS

BitsGroup=RTFHS

BitsWorld=RS

PriceGroup=TF:0.1,HS:1

PriceWorld=S:2

DocumentType=text

Name=Graz

Keywords=Styria,Austria,City

Path=/usr/iicm/Hyper_g/data/encyclopedias/meyer:0x00020450

Title=Graz (Meyer's Encyclopedia)

Rights=Meyer Verlag

Figure 2.12: An Example Document Object

� In �gure 2.12, the attribute BitsAuthor:RWTFHS speci�es that the author
has the right to read, write, link to, link from, hardcopy and softcopy the
document, respectively. Again, the clear-text format allows for easy extension
of the set of rights.

� The attribute PriceGroup=TF:0.1,HS:1 specify that members of user group
iicm pay 0.1 units for linking to and from the object (e.g. by incorporating it
into a tour), and 1 unit for hard- and softcopying. Other users pay 2 units for
softcopying. Of course, it makes no sense to specify prices for operations that
are not allowed by the corresponding rights attribute.

In addition documents contain optional collection-speci�c data (additional at-
tributes) that is used by the CDMS to perform collection-speci�c form queries
(Req. U.3.4.2) and data speci�c to the document type that is interpreted by
the document manager. These items are stored in the collection databases (�gure
2.10). Note that storage format of a speci�c document type needs to be known only
by the corresponding document manager and is of no signi�cance to the rest of the
system. Therefore, the format may be changed and/or extended without too much
e�ort. Just to give the reader an idea, table 2.9 suggests some �le formats for the
individual document types.

2.2. THE DESIGN OF HYPER-G 65

Document Type File Format

Text 7-bit format described in [132].

Drawing Picture Interchange Coding (PIC) as described in [50, 85], and
generated by EDEN-based graphics editors [49].

Image PIC raster pro�le ('RAST') [134, 89]. Perhaps in a later stage
JPEG format [25, 26, 179].

Sound Audio Interchange File Format (AIFF) [7], based on the IFF
format [28] used by Commodore and Apple computers.

Digital Video Extended PIC RAST format. Perhaps in the future MPEG
[96] format or DVI [100].

Animation May be implemented as digital video (see above) or real-time
animation (see chapter 3). For the latter the PHIGS [6, 75]
Archive �le format is an obvious choice.

Map May be stored either like drawings or images (see above).

Table 2.9: Suggested Document File Formats

2.2.6.1.3 Anchors

Anchor-related data is split into attributes, which are stored in the KAD, and ad-
ditional data (e.g. positional information) stored together with the document the
anchor is tied to. No attributes beyond the generic Hyper-G Object attributes of
table 2.7 (page 61) are required to be stored in the KAD. The data that gets stored
together with the document and is to be interpreted by the corresponding document
manager, however, strongly depends on the type of document the anchor is tied to.
Table 2.10 gives an overview of the data required to de�ne an anchor depending on
the underlying document type.

In addition, every document has a default anchor associated with it (Req. G.2.3).
The default anchor covers the whole document and can be used as both a source
and destination anchor. It is used to link whole documents (e.g. with cluster links).

2.2.6.1.4 Links

Other than documents and anchors, links are handled entirely by the S/IM and
KADBM. Table 2.11 lists the link attributes that have to be stored in the KAD in
addition to the generic Hyper-G object's attributes (table 2.7 on page 61).

66 CHAPTER 2. HYPERMEDIA

Document Type Anchor Data Comments

Text 2 indices The indices indicate the positions of the �rst
and last character of the text to be marked as
(clickable) anchor (e.g. a word, a paragraph...).

Drawing Segment ID The name of a segment within the PIC �le
[85, 50]. Clicking on this segment will activate
the anchor, if used as a source anchor. The pic-
ture will be scaled and/or scrolled so that the
segment is visible, if used as a target anchor.

Image Rectangle A rectangle (2 coordinate pairs) de�nes the
anchor. Source and destination behavior like
drawings.

Sound 2 Markers Markers can be stored and named using AIFF
Marker Chunks [7]. When used as destination
anchor, the section de�ned by the begin and
end markers is played. When used as a source
anchor, the anchor is activated when playback
reaches the begin marker, which can be use
to synchronize playback of sound to display of
documents.

Digital Video n Rectangles Similar to images, rectangles describe the po-
sition of anchors in digital videos. However,
a rectangle per frame may be de�ned, which
allows the rectangle to move during playback.
Also, beginning and ending time marks limit
the area of an anchor.

Animation Structure ID Depending on the implementation (table 2.9),
anchors are stored like with digital video, or as
PHIGS structure IDs [6, 75].

Map like drawings or images

Dialog Function The name of a function within the Dialog Man-

ager that is to be called when the anchor is
activated (active anchor ; see section 2.2.3.7 on
page 24).

Table 2.10: Anchor Data Depending on Document Type

The interaction of links, anchors and documents is described in section 2.2.6.2.1
(page 70).

2.2. THE DESIGN OF HYPER-G 67

Data Item Comments

Label Sort of link name that serves a number of purposes: It may be
displayed to the user when a selection of links is to be done, it is
used to follow tours (section 2.2.6.1.5, page 67), and may be used
to implement semantic (typed) links, e.g. so that all links referring
to history are labeled "history", etc.

LinkType One of C (cluster), U (user de�ned) or A (automatic) (see section
2.2.3.6 (page 24) and �gure 2.8 (page 38).

TargetSize One of S (small), M (medium) or L (large). Used (like Language)
to select between equivalent documents in a document cluster (e.g.
a long text versus a short text on the same subject), based on the
user's preferences.

UseCount The number of times this link was followed since TimeCreated .
Used in conjunction with LinkType and Author to calculate link
priority (oftenly used links are granted a slight increase in priority).

UndoCount The number of times the user followed the link and stepped back
immediately. May be used in conjunction with UseCount by
the system administration to �nd incorrect and/or outdated links
(Req. G.3.1).

Table 2.11: Attributes of Class Link

2.2.6.1.5 Tours

As shown in �gure 2.11 (page 62), the Tour class is derived from the Document

Class. By doing so, tours inherit names, keywords, titles and copyright info from
documents, and the S/IM is able to select tours and documents in response to key
queries. However, there are substantial di�erences in the execution of tours and
documents:

� Tours are implemented using labeled links and scripts (implementation details
are discussed below) . No attributes or data other than the attributes listed
in tables 2.7, 2.8 and 2.11 are needed.

� A DocumentType of \tour" indicates that the object is a tour rather than an
ordinary document. In this case the Path attribute points to the script.

� A document manager called TourGuide interprets the tour document script
(section 2.3.5.10, page 96). The script language used depends on the Tour-

Guide. Therefore, Hyper-G is not restricted to a single script language, as the
document manager for a document (and therefore a tour) is chosen dynami-
cally (section 2.2.5.1, page 53).

68 CHAPTER 2. HYPERMEDIA

� The TourGuide provides a comfortable user interface that supports the user
in tour navigation and execution. Within a tour, the following functions are
available:

{ Any tour has two special document clusters: The start cluster and the
index cluster. At any time, the user may \jump" to one of these clusters.
The start cluster is supposed to be the entry point of the tour, while
the index cluster is supposed to contain a graphical representation of the
tour, with links to every frame of the tour. If the tour is too complex to
�t on a single index cluster, sub-indexes may be attached.

{ A \next cluster" is associated with any cluster. By activating the function
\go to next cluster" (e.g. by pressing a special button), the user may
proceed to the next cluster.

{ Similarly, the user may step backwards to the previous cluster. However,
unlike the \next" cluster, which is de�ned by the author of the tour,
the function \go to previous cluster" is dynamic, i.e. a sort of \undo"
function.

{ The user may also follow other links that are provided by the author,
labeled as being part of the tour, and tied to individual documents. Thus,
a tour is not necessarily a linear list of document clusters, but may also
incorporate branches.

{ The anchors of such \branch links" are highlighted in such a way (e.g.
by the use of colors) that the user receives a feedback on whether the
destination cluster of the link has already been visited. This is especially
useful with index clusters, as the user gets graphical feedback on what
parts of the tour have not been seen yet.

{ When a document cluster is executed that is also part of another tour,
the user is given the opportunity to change tours. At a later time, the
original tour may be continued.

{ In addition, the user may select tour-speci�c help documents (if provided
by the author), information on the author, copyright information, visit a
cluster not yet visited, etc.

As has been stated above, simple tours may be implemented using links. This is
done in the following way (see also �gure 2.13):

� Tours are given a unique name (attribute Name in table 2.8). Because the
author can not be expected to know the names of all tours in the system, the
TourGuide also uses the Author attribute to generate a tour name. This way,
only the tours of a single author are required to have a unique name.

� Links that store this tour name in their Label attribute (table 2.11) are con-
sidered part of this tour, i.e. the tour is made up by links labeled with the
tour name. Only links with this label are followed within a tour.

"Tour A" "Tour A"

"T
ou

r B
"

"T
ou

r B
"

"Tour B" branch link

C1 C2 C3

C4 C6

C5

"start"

Tours implemented
with Labeled Links

Tour B

2.2. THE DESIGN OF HYPER-G 69

Figure 2.13: Tours Implemented with Labeled Links

� A link that references the default anchor of a document (i.e. the whole docu-
ment) as a source anchor is treated as the \next cluster" link (links C1 ! C2,
C2! C3, C4! C2 and C2! C5 in �gure 2.13). Links tied to other source
anchors are the \branch links" described above (link C4! C6 in �gure 2.13).
Remember, only links that are labeled with the tour name are considered.

� There exist two special links from the tour object to two document clusters
that are labeled \start" and \index". These links (that are stored in the link
database like all other links) are used by the TourGuide to �nd the start and
index clusters. Optional \help" links reference author-supplied, tour-speci�c
help documents.

� When a document (cluster) has an additional link attached with another tour
name in its label attribute (such as cluster C2 in �gure 2.13), the user may
switch to the new tour and follow the other link. He may also select functions
\go to start/index cluster" to gain an overview of the new tour, or return to
the old tour by selecting \go to previous cluster" (remember, this is a dynamic
function, i.e. its meaning is generated at runtime).

The concept of labeled links allows authors to build tours easily (using the link
editor). Also, it enables the user to \switch tours". However, certain advanced
features call for the script approach:

70 CHAPTER 2. HYPERMEDIA

� It may be useful to modify the tour dynamically (e.g. in educational tours),
based on decisions of the student or TourGuide (e.g. to guess whether the
student understood the previous section). These modi�cations can in general
not be implemented with branch anchors (�gure 2.5 on page 26), as they lack
the memory that is necessary to remember states during a tour.

� A very simple script language allows to associate priorities with the labels of
the labeled links. This feature can be used to incorporate large portions of
other people's tours into one's own tour (see section 2.3.5.10 and �gure 2.15
on page 97 for an example).

While in principle it is possible to implement tours with scripts only (given a powerful
script language) this should be avoided, because the \tour switching" feature of
Hyper-G relies on labeled links. Scripts should be used only where the same result
can not be achieved with links. In these cases, a user may be required to start the
tour at the beginning, whereas with the link approach, the tour may be followed
from any point. For the sake of completeness, Hyper-G supports both concepts.

2.2.6.1.6 Collections

Like tours, collections are derived from the Document class, i.e. inherit names,
keywords, titles and copyright info from documents. Also, the S/IM may return a
whole collection in response to a key query. A DocumentType (table 2.8) of collection
indicates that the object is a collection rather than an ordinary document.

In this case the Path attribute is used by the S/IM to determine a collection-speci�c
database manager (CDBM) that is responsible for that collection (section 2.2.6.2.2,
page 73), i.e. may be used to perform collection-wide key queries if the collection is
in the user's list of active databases (by methods found in table 2.6 on page 59).

Usually, one or more links attached to the collection object and labeled \query" point
to dialog objects that may be used to perform collection-speci�c form queries (Req.
U.3.4.2), including menus. Additional referential links point to sub-collections. If
a collection is in the user's list of active databases, the sub-collections are searched
also.

2.2.6.2 Databases

2.2.6.2.1 The Keys & Attributes Database (KAD)

In general, the KAD may be implemented by an ordinary relational database. Al-
though it would be possible to store all Hyper-G objects (documents, links, anchors

2.2. THE DESIGN OF HYPER-G 71

etc.) in one database, because of performance considerations partitioning the KAD
into a number of smaller databases and relations is preferred.

So, the KAD will in fact be split into the following databases containing Hyper-G
objects:

1. Documents (and tours) will be stored in a number of databases (one per col-
lection) of Document objects (section 2.2.6.1.2, page 62), in order to be able
to restrict searches to collections in the user's list of active databases.

2. The Collection objects themselves get stored in an extra database.

3. Anchors (section 2.2.6.1.3, page 65) are contained in an anchor database.

4. Links (section 2.2.6.1.4, page 65) will be stored in one of two databases:

(a) Cluster links are contained in an extra database to speed up common
searches for cluster links only.

(b) Referential links (user-de�ned and automatic) are held in another
database.

As has been pointed out earlier (section 2.2.6.1, page 60), Hyper-G objects will
be stored as simple (editable) text �les (for an example see �gure 2.12 on page
64). A number of indices and/or search trees may be used internally to increase
performance of common searches, e.g. to �nd Hyper-G objects by ObjectID or to
�nd links by source anchor ID.

In addition to the Hyper-G objects databases, the KAD uses the following relations
to link objects10:

1. The link-anchor relation stores the data shown in table 2.12 in each record.
Its main use is to �nd the destination anchor and link data once the source
anchor is known11, i.e. the link-anchor relation links two anchors.

2. The anchor-document relation links anchors to documents (table 2.13). Its
main use is to �nd a document once the anchor ID is known.

3. The document-collection relation links documents to collections (table
2.14). Its main purpose is to �nd the collection(s) a certain document is a
member of. It may also be used to �nd all the documents of a collection.

10A relational database model has been preferred to a network database model, mostly because

of the exibility and simplicity of the relational concept. Note that no Hyper-G object contains

references to other Hyper-G objects (as in a network database), e.g. documents do not contain a

list of attached links, as with this approach it would not be possible to backward-follow links (i.e.

�nd all documents linking to a given document), unless information is duplicated.

11And vice versa, in the case of backward link following.

72 CHAPTER 2. HYPERMEDIA

Data Item Comments

LinkID ObjectID of the corresponding Link Object. Used to �nd addi-
tional information (table 2.11) on the link (label, type, author,
language, size etc.).

SourceID ObjectID of the source anchor of the link. Used to �nd corre-
sponding document with anchor-document relation and addi-
tional information on the anchor.

DestID ObjectID of the destination anchor of the link (see above).

TextID This optional DocumentID points to a document with a de-
scription of the link's purpose (preferably a small text docu-
ment; but may be any type). Some user interfaces may display
this information before actually linking to the target document.

Table 2.12: The Link-Anchor Relation

Data Item Comments

AnchorID ObjectID of the anchor. If the AnchorID equals the Docu-
mentID, it is a default anchor.

DocumentID ObjectID of the document.

Table 2.13: The Anchor-Document Relation

Let us once again illustrate the use of the two relations in the case of forward
following a static link, which is the main application of these relations (�gure 2.14):

1. When the user activates (e.g. clicks on) a source anchor of a document, the
document manager informs the S/IM (i.e. sends the anchor ID). The link-
anchor relation is searched in order to �nd links that originate at this anchor.

2. Additional link attributes and the link description may be used to select a link
to follow.

3. The destination anchor is looked up in the anchor-document relation in order
to �nd the destination document.

Data Item Comments

DocumentID ObjectID of the document.

CollectionID ObjectID of the collection. The document is a member of
this collection.

Table 2.14: The Document-Collection Relation

SourceID LinkID TextID DestID

Link
Object

Text
Object

AnchorID DocumentID

AnchorID DocumentID

AnchorID DocumentID

Source
Document

Destination
Document

link-anchor relation

anchor-document relation

to cluster links

1.
2.

2. 3.
4.

4.

5.

5.

2.2. THE DESIGN OF HYPER-G 73

Figure 2.14: Using the KAD for Forward Link Following

4. The destination document is displayed so that the destination anchor is visible.

5. The DocumentID (which is also the default anchor ID) may be used to �nd and
select between cluster links originating or ending at the document, in order to
�nd the other documents of the destination document cluster.

For the time being, relations will be stored as simple text �les, like Hyper-G objects.
Special indices and trees are used to reduce access time.

2.2.6.2.2 Collection-Speci�c Databases

As stated in Req. U.3.2, Hyper-G's information database is structured in a col-
lections. Every document is a member of at least one collection (Req. U.3.2.2).
The hierarchy is an acyclic directed graph with a number of 'root' collections (Req.
U.3.2.1). This allows a number of classi�cation schemes for Hyper-G's collections,
e.g.:

� According to the area of knowledge, e.g. as shown in �gure 2.7 on page 29. In
this case, the collection-speci�c database would contain additional attributes
and search criteria that are only signi�cant in this �eld. For example, the

74 CHAPTER 2. HYPERMEDIA

database of collection 'paintings' would store attributes like painter, name of

picture, year, style, theme, and museum (section 2.2.3.13, page 30).

� According to the document type of the object. E.g., all raster images may be
grouped in one collection, allowing database queries speci�c to this data type,
e.g. to �nd images by choosing between small versions (icons) of the images.
In this example, the collection-speci�c database would contain information
related to the physical representation of the images, such as size, number of

colors and �le format .

� Other \Stand-alone collections" may be used to allow for form queries of in-
formation that does not �nd into above classi�cation schemes.

Note that because a document may be a member of a number of collections, and
because a number of 'root' collections (i.e. a number of collection hierarchies) are
allowed, Hyper-G can support all the classi�cations schemes described above simul-
taneously. The user has the choice.

Also, the attributes and layout of the collection-speci�c databases need not be known
by the S/IM or the document managers. Only the collection-speci�c database man-
agers (CDBMs, �gure 2.10 on page 53) and collection-speci�c dialog documents that
perform form queries need to know about these attributes.

2.2.6.2.3 Remote Databases

As speci�ed by Req. I.2, Hyper-G supports access to remote databases (section
2.2.3.1.3, page 18). However, in order to confront the user with a consistent user
interface, access to such a database shall be hidden from the user, i.e. the remote
database looks like an integral part of Hyper-G.

This can be achieved most elegantly by presenting the remote database to the user as
an ordinary Hyper-G collection. The dialog document usually attached to collections
handles the user's form queries and passes them on to a CDBM, as in the case
of a standard collection. This CDBM, however, communicates with the remote
database, i.e. translates the queries into a form the remote database understands,
retrieves the information, and passes it to a document manager that displays the
information. Either the information of the database can be easily translated to an
existing document type (e.g. text), or a special document manager is needed.

This way the remote database is fully integrated within the Hyper-G environment,
i.e. the user would not notice any di�erence to other collections12. Also, the col-

12Of course, the time to retrieve and transfer the information could be signi�cantly longer than

with local collections (databases).

2.2. THE DESIGN OF HYPER-G 75

lection can be searched using key queries by implementing the CDBM methods of
table 2.6 (page 59).

76 CHAPTER 2. HYPERMEDIA

2.2.7 The User's View

As has been pointed out in previous sections, the user interface of Hyper-G will
be con�gurable to a large extent. A number of user interface metaphors can be
supported by Hyper-G (Req. U.3.1.1 - Req. U.3.1.6). Also, the user interface
devices used to communicate with the system will vary depending on the application
and environment (see table 2.3 on page 40). Clearly, an in-depth speci�cation of the
various user interfaces is beyond the scope of this document. Also, user interfaces
metaphors will be tested, evaluated and modi�ed on the basis of a �rst version
of Hyper-G. During this evaluation process, it may very likely turn out that some
metaphors are not suited for use with large systems like Hyper-G, as suspected in
[86]. So, let us concentrate on some general features of Hyper-G's user interface(s)
in this section.

2.2.7.1 Search Strategies

In general, the user looks for information. Hyper-G o�ers the user a number of
possible strategies to �nd that information:

� If users know exactly what they are looking for (e.g. \I want information on
UNIX �le systems"), the fastest method is to issue a key query to search for
keywords. Key queries are available in two avors:

{ The fast version generates dynamic links to documents containing a com-
bination (and, or, not ...) of these keywords in their Keywords attribute
(table 2.8 on page 63). The user may specify additional attributes (e.g.
document type, author) in a query-by-example manner to reduce the
number of links generated.

{ If too few documents are found with above method, the user may consider
to use the slower version that actually performs full-text searches (e.g.
\what documents contain the word UNIX?") on the documents. Here
the users may specify a list of databases (collections) they are interested
in, in order to reduce the time required and number of links generated.

� Alternatively, the user may explore the collection hierarchies. This strategy is
best if you look for things like \some pretty pictures from painters" etc., and
you just can't think of an appropriate keyword. Once a promising collection
is found, the user may use form queries to reduce the number of possible
documents.

In above example, the user might �nd a collection paintings, and �ll in a form
containing painter, name of picture, year, style, theme, museum and the like,
again in a query-by-example manner.

2.2. THE DESIGN OF HYPER-G 77

� If accurate information retrieval is not the primary goal, but users want to
explore the system in a browsing manner, they might go on a guided tour, e.g.
\my favorite paintings" by author xyz .

An important feature of Hyper-G's tour concept is the ability to switch tours
whenever a document cluster is reached that is part of another tour. Thus if
another author has prepared a similar tour, it is likely that the tours share a
few document clusters (unless the sets of favorite paintings of the two authors
are completely disjunct), and the user may visit the union of the two tours.

Also, the navigation aids available within a tour are quite comfortable (section
2.2.6.1.5, page 67).

� The ability of any user to (potentially) create private links { a sort of annota-
tion facility; remember, there is no explicit annotation (section 2.2.3.8, page
27) { allows to create a private list (or tour) of document clusters that are
considered interesting but were di�cult to �nd. These document clusters can
then easily be found in future sessions.

� With all of above strategies, once the users �nd an interesting document, they
may follow the links attached to the documents and freely wander around the
Hypermedia system. However, in this mode the navigation facilities are limited
and restricted to rather simple functions like undo, redo, drop/goto book-mark,
show document info, show link info, etc.

Note that a particular user interface metaphor does not need to support all of above
strategies, but may o�er a subset of them. Also, they may be hidden from the user
and combined by the metaphor to o�er the user a di�erent method of information
retrieval.

2.2.7.2 User Con�gurable Options

The user interface may be �ne-tuned on a per-terminal and per-user basis by the
terminal pro�le and user pro�le, respectively. A ag in the user pro�le speci�es
what parts of the pro�le may be changed by the users themselves (Req. U.4.1.8).

Most notably, the user may (potentially) change:

� The user's system entry point, which may be any Hyper-G object. However,
to de�ne a root-level collection or a dialog document containing some menu
or form would be reasonable.

� The user's language preference (explained in section 2.2.3.14 starting page 30).

� The preferred user interface metaphor.

78 CHAPTER 2. HYPERMEDIA

� Depending on the user interface metaphor, additional parameters may be con-
�gured, e.g.:

{ Preference of short, medium or long versions of semantically equivalent
text documents.

{ Preference of digitized voice documents or semantically equivalent text
documents.

{ A list of preferred document managers that is used by the S/IM to gen-
erate the Document Manager Table (DMT) (section 2.2.5.1, page 53).

{ Parameters describing the visual appearance of the user interface (e.g.
window positions and sizes, colors, window manager behavior etc.). Con-
�gurations of these parameters is most easily managed using the X Re-

source Manager concept of the X window system.

2.2.8 The Author's View

As has been pointed out previously, any Hyper-G user is a potential author, i.e. is
allowed to insert information into the database. Depending on the kind of infor-
mation (documents, links, tours), a number of steps have to be performed by the
author preparing that information. Each step is made using a specialized editing
tool.

2.2.8.1 Document Editing

Documents are prepared using a number of document editing tools, depending on
the document type. The philosophy of Hyper-G is not to supply a tool for every
document type. Rather, documents are prepared outside the Hyper-G environment,
using standard software where possible. This approach o�ers the following advan-
tages:

� We do not have to write lots of editing software ourselves, saving manpower
for the implementation of the Hyper-G runtime system and other utilities.

� There is a number of good commercial software packages available, each one
suited for the generation of a certain document type. Table 2.15 lists packages
that are used at our institute to prepare documents13.

� Authors can incorporate their own documents (e.g., raster images in about
any possible format, from whatever source) instead of having to generate doc-
uments on-line, with a single editor.

2.2. THE DESIGN OF HYPER-G 79

Document Type Software Packages used

Text Any text editor will do. Currently, we use GNU EMACS [165]
on UNIX workstations, because of its availability on a large
number of platforms. On PC's a large number of good text
editors is available. Because of embedded control sequences
for text formatting, text has to be converted to the format de-
scribed in [132] to be incorporated into the Hyper-G database.

Drawings EDEN-based graphics editors [49] are available on both work-
stations [4] and PC's [11, 84]. Because of the ability to convert
CGM's [74] and GEM meta�les [38, 37, 153] to PIC format
[50, 85], we can also use the PC-based editors CorelDraw! a

and Designerb and other software capable of producing CGMs
or GEM meta�les.

Images Images are stored as PIC �le that contain pixel arrays. Images
can be converted from a variety of formats, including PPM
[150], TIFF [34] and GIF [29].

Sound Sound is currently digitized on a MacIntoshc equipped with
the AudioMedia board and software.

Animation For time being, we use the Wavefront Advanced Visualizerd

running on a Silicon Graphics Personal Iris 4D/35 [164] to
generate the individual frames of a computer animation clip.
The frames are then converted to digital videos for playback.

Digital Video At this time the creation of digital videos other than computer
animations is a tedious process using a single-frame digitizer
(we currenlty use a product called Screen Machine for this
purpose). In the future, we will probably use frame compres-
sion hardware (e.g. the NeXTDimension board [8],[17, page
159]) for real-time digitizing of analog video.

a cCorel Systems Corp.

b cMicrografx. Inc.

c cApple Computer Inc.

d cWavefront Technologies

Table 2.15: Software Used to Generate Documents

Of course, there are also some disadvantages:

� We need to write a number of converters to convert other people's document
formats to Hyper-G's format. Alternatively, a document manager may be able

13Fortunately, software gets better all the time, so this list is subject to change.

80 CHAPTER 2. HYPERMEDIA

to interpret a number of document formats. However, in most cases, writing
such a converter is far easier than writing a good editing package.

� We need to know about commercial software packages that are commonly used
and periodically update table 2.15.

After the document is prepared, in can be entered into the database. At this stage,
the attributes of the document are determined. Some of them (e.g. author, creation
date) are automatically assigned, other (e.g. keywords, title) have to be supplied by
the author. Also, the author has to decide in what collections the document should
be inserted, and supply additional collection-speci�c attributes. After this has been
done, the document is accessible via database queries, but is not part of a document
cluster (strictly speaking, it is a document cluster containing only one document),
nor can it be reached via links or tours.

2.2.8.2 Link Editing

In order to group documents in document clusters, or to reference it from other
documents and use it in tours, links have to be added to the document. These links
may be generated automatically by the system (static automatic links), however,
this approach works only for some document types (e.g. text) and the link priority
is low (section 2.2.3.6, page 24). Therefore, higher-priority links may be generated
\manually", following these steps:

1. Anchor Placement requires a special tool for each document type, as the
appearance of anchors varies (see table 2.10 on page 66). If the source or
destination of the link is the whole document, this step is skipped (e.g. the
case with cluster links that group documents to document clusters).

2. Link De�nition involves the speci�cation of link attributes as well as the
source and target anchors. This is done using the link tool that allows to see
the two documents while de�ning the link and to test the link.

3. Tour Generation is done using the tour editor . Basically, links are de�ned
with the link tool, but additional capabilities allow convenient editing of the
tour. Most notably, a graphical representation of the tour is created that is
then also incorporated into the tour as the index cluster (section 2.2.6.1.5,
page 67). Also, the author needs to specify a start cluster, a next cluster for
any cluster, and optional tour-speci�c help clusters.

2.2. THE DESIGN OF HYPER-G 81

2.2.9 The System Administrator's View

In addition to the tools described in section 2.2.8, the system administration is
equipped with tools that allow:

� The bulk update of documents and whole collections (e.g. when adding a new
encyclopedia).

� The automatic generation of static links [133].

� Checking the database to �nd and remove bad links.

� The deletion of links and documents (including the removal of referencing
links, anchors, etc.).

� The automatic maintenance of objects (Req. G.3.1) is needed to get rid of
obsolete or outdated information. Several methods are possible:

{ Use of the expiration date associated with each object (Req. G.3.1.1).
A typical expiration time of a user-supplied document might be six
months. Two months before expiration, the user (i.e. the author of the
document) is noti�ed (by means of e-mail) and may extend the lifetime
of the object. If the case of response, the object may be deleted (and
with it all associated links).

{ Use of the time of last access and number of accesses (table 2.7 on page
61) may be used to gather statistics of the object's usage and relevance.
Obviously, it would be a bad idea to delete objects that are used fre-
quently.

{ The Undo Count associated with each link records the number of times
the user followed the link and stepped back immediately. If this happens
very often (in relation to the link's use count), this indicates an incorrect
or badly placed link. The system administration would then consider to
remove the link.

{ The user logs also may be used to �nd weaknesses of the database Req.
U.5.1.2). For example, unsuccessful database queries indicate missing
information (especially if a number of users cannot �nd the same things).
Also, the undo and help actions of users point to di�culties using the
system.

82 CHAPTER 2. HYPERMEDIA

2.3 Implementing a Prototype of Hyper-G

2.3.1 Purpose

In order to evaluate the ideas and speci�cation presented in the previous sections,
a prototype of Hyper-G is being developed. The aim of this project, which will be
�nished by end of 1992, is to have a \demonstratable" version of Hyper-G running
on both PC's and UNIX-Workstations, with the following goals:

1. The UNIX version will serve as a base on which the \real" Hyper-G system
can be built on, i.e. it should be possible to create Hyper-G by incremental
changes to the prototype.

2. The PC version will be used to demonstrate some of the features of Hyper-G.
Because it runs on standard PC's we will be able to send demo diskettes with
small Hypermedia applications (e.g. a single tour) to interested organizations
or persons.

3. In addition the prototype can be used to create some small \real" Hyperme-
dia applications as spin-o�s. Because of the widespread availability of PC's,
the PC version will be adapted to publish Hypermedia material on diskettes
(for small applications) or CD-ROM's (for larger applications). More on this
electronic publishing aspect of Hyper-G can be found in section 4.2 (page 126).

4. By-products like HOTACT (section 4.3.1.3, page 130) and other demonstra-
tions of unorthodox user interfaces may be used in a \Viewseum" (section
4.3, page 128).

5. From a more scienti�c point of view, the possibility to evaluate and modify
certain features and options of Hyper-G (e.g. user interface, navigation aids,
database design) at an early stage in the system development (rapid prototyp-
ing) is tempting and will contribute to the success of the real system.

However, the implementation of such a prototype is not su�cient. In order to test
the ability to handle large amounts of data and to create real-world demos and
applications, large amounts of real-world data has to be prepared and incorporated
into the prototype system. The backbone of the prototype system will be formed by
a number of general-purpose and specialized encyclopedias [132, 133], some 10,000
raster images (for a short discussion of the problems associated with the preparation
of images see section 3.3.1 on page 109), and a few sound and digital video clips.

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 83

2.3.2 Priority of Requirements

In order to derive a reasonable subset of requirements for the Hyper-G prototype,
tables 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, and 2.22 list the requirements of sections
2.2.2 and 2.2.4, with associated priorities. As the system of priorities is organized
in an hierarchical way, only the highest level with a unique priority is listed (e.g.
the low priority of Requirement Req. G.3.1 implies the low priority of Req.
G.3.1.1, so it is not listed. Also, Req. G.3 needs not to be listed, as all of
its implied requirements are contained in table 2.17). Every requirement has one of
three priorities associated with it:

H: Requirements of this priority are absolute musts. They are implemented in a
very early stage named HBS (section 2.3.3, page 87) of prototype development.

M: These requirements are classi�ed as medium-priority. They are implemented
in the prototype, at least in a simpli�ed way.

L: These are low-priority requirements that will be implemented in the \real"
Hyper-G, but not in the prototype.

A few explanations of the choice of priorities seem to be necessary:

� The prototype should implement the Hyper-G Core System (section 2.2.3.1.1,
page 17) as shown in �gure 2.1, i.e. a system of servers and workstations in
a reasonable-speed local area network. Access from remote terminals (sec-
tion 2.2.3.1.2, page 18) and to remote databases (section 2.2.3.1.3, page 18)
is postponed to the implementation of the \real" Hyper-G, except for demon-
stration of access to \in-house remote" databases.

� Only one user interface metaphor (\Desk-top") is available in the prototype.
This metaphor is best used with standard mouse and keyboard user interface
devices, so these are the only input devices supported, except for some special
applications (section 4.3, page 128).

� As the prototype is not going to be used by the general public, no provisions
concerning access rights have been made. Also, no truly anonymous use of the
system is possible.

� There is no charging for speci�c functions in the prototype.

� Multilingual Hypermedia (with use of user-speci�c language preference) is al-
ready implemented in HBS and will be available with the Hyper-G prototype.

� The same is true for the Tour concept.

84 CHAPTER 2. HYPERMEDIA

� Key queries will be implemented in the prototype; complex form queries and
dialog documents for collection-speci�c database queries will not.

� No user logs will be maintained. As a consequence, the Undo function is
available only within a session, and automatic maintenance of the database is
limited.

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 85

Requirement Priority

ID Short Description H M L

G.1.1.1 Document Type: Text H

G.1.1.2 Document Type: Drawing M

G.1.1.3 Document Type: Raster Image H

G.1.1.4 Document Type: Digitized Sound M

G.1.1.5 Document Type: Digital Movie M

G.1.1.6 Document Type: Animation M

G.1.1.7 Document Type: Maps M

G.1.1.8 Document Type: Electronic Mail, Bulletin Board, Com-
puter Conferencing

M

G.1.1.9 Document Type: Dialoga L

G.1.2 Document Clusters M

G.1.3.1 Object Attribute: Author and Group M

G.1.3.2 Object Attribute: Creation/Modi�cation/Access/Expira-
tion time

L

G.1.3.3 Object Attribute: Language H

G.1.3.4 Object Attribute: Access Rights L

G.1.3.5 Object Attribute: Price L

G.2.1 User may activate link by activating anchor. H

G.2.1.1 Anchors belong to links rather than documents M

G.2.1.2 Visual appearance depends on document type and already
visited

M

G.2.2.1 Forward Following of links & Anchor Positioning H

G.2.2.2 Backward Following of links & Anchor Positioning M

G.2.3 Default Anchor M

G.2.4 Cluster Linksb and Referential Links H

G.2.4.1 Referential Links: User De�ned and Automatic M

G.2.4.1.1 Automatic Links: Static or Dynamic M

G.2.5 Link Priority M

G.2.6 Active Anchors L

aThis applies to complex dialog objects. Simple ones like menus are implemented in the proto-

type.

bCluster links are implicitly de�ned between text and image documents in HBS.

Table 2.16: Priority of General Requirements (Part 1)

86 CHAPTER 2. HYPERMEDIA

Requirement Priority

ID Short Description H M L

G.3.1 Documents and links are maintained automatically L

G.3.2 The majority of the links is generated automatically M

G.3.2.1 Automatic generation of static links for new document L

G.4 The system should be easily extensible M

Table 2.17: Priority of General Requirements (Part 2)

Requirement Priority

ID Short Description H M L

U.1.1 Application-speci�c user interfaces (table 2.3 on page 40) L

U.2.1 User may specify language preferences H

U.2.2 System selects documents by language H

U.2.3 Multilingual user interfacea H

U.2.4 Temporarily override language strategy L

U.3.1.1 User Interface Metaphor: Simple Hypermedia (HBS) H

U.3.1.2 User Interface Metaphor: Desk-Top M

U.3.1.3 User Interface Metaphor: Stack L

U.3.1.4 User Interface Metaphor: Book L

U.3.1.5 User Interface Metaphor: Holiday Travel L

U.3.1.6 User Interface Metaphor: Library L

U.3.1.7 Simple Navigation Facilities M

U.3.2.1 Collection Hierarchy M

U.3.2.2 Advanced navigation in the collection hierarchy L

U.3.3 Guided Tours H

U.3.3.1 Tour switching M

U.3.3.2 Advanced tour navigation functions H

U.3.4.1 Key Queries M

U.3.4.1.1 List of active databases (collections) M

U.3.4.1.2 Inexact match key queries L

U.3.4.2 Form Queries L

aImplemented in the PC Version of HBS by use of pictorial icons.

Table 2.18: Priority of User-Related Requirements (Part 1)

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 87

Requirement Priority

ID Short Description H M L

U.4.1 The system maintains a user pro�le, containing:

U.4.1.1 Security Information L

U.4.1.2 The user's system entry point M

U.4.1.3 The user's language preferences H

U.4.1.4 Preferred user interface metaphora L

U.4.1.5 Preferred user interface metaphor's optionsb M

U.4.1.6 User logging (full/system/o�) L

U.4.1.7 Default active databases for queries M

U.4.1.8 Whether user may change pro�le L

U.5 User may return to previous stateb H

U.5.1 The system maintains user logs L

U.6 The system may be used anonymouslyc L

U.7 Some system features and information items are charge-
able

L

aOnly one user interface metaphor (\Desk-Top") is available in the prototype. However, options

of this metaphor are con�gurable.

bSupported only within a session (no user logs needed).

cNot applicable in the prototype (Core System only).

Table 2.19: Priority of User-Related Requirements (Part 2)

Requirement Priority

ID Short Description H M L

A.1 Any user is a potential authora M

A.2 Editing tools for authors (section 2.2.8, page 78) M

aIn the prototype, only text documents (annotations) and links may be created by the casual

user.

Table 2.20: Priority of Author-Related Requirements

2.3.3 The Hypermedia Base System (HBS)

The Hypermedia Base System (HBS) was implemented as an attempt to demonstrate
some ideas of Hyper-G, and to create tools, libraries and platforms on which the
Hyper-G prototype can be built. This section contains a brief overview of the

88 CHAPTER 2. HYPERMEDIA

Requirement Priority

ID Short Description H M L

S.1.1 For each terminal, there is a terminal pro�le, describing: M

S.1.1.1 Terminal facilities, such as: M

S.1.1.1.1 Input Devices M

S.1.1.1.2 Voice I/O capability L

S.1.1.1.3 Digital Sound I/O capability M

S.1.1.1.4 Digital Video I/O capability M

S.1.1.1.5 Hardcopy capability L

S.1.1.1.6 Softcopy (diskette) capability L

S.1.1.1.7 Communication capabilities (E-Mail, conferencing) M

S.1.1.1.8 Charging of anonymous users L

S.1.1.2 Security information L

S.1.1.3 The prices of speci�c terminal facilities L

S.2 Access rights control whether a certain user on a cer-
tain terminal may perform a certain function on a certain
object.

L

S.2.2 A similar mechanism is used to determine the price for a
certain function performed by a certain user on a certain
terminal with a certain object.

L

S.3 The system avoids uncontrolled growth of information L

Table 2.21: Priority of System Requirements

Requirement Priority

ID Short Description H M L

I.1.1 Keys & attributes Database (KAD) M

I.1.2 Collection-speci�c Databases (CDBs) L

I.1.3 The databases themselves ensure database integrity L

I.2 Hyper-G allows access to remote databasesa L

aMay be demonstrated for some cases by the prototype.

Table 2.22: Priority of Implementation Requirements

functionality of HBS, compared with the functionality of the Hyper-G prototype.
For a complete description of HBS the reader is referred to [71].

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 89

HBS utilizes the so-called \Simple Hypermedia" Metaphor. The user may follow pre-
de�ned tours, but because tours do not have to be organized as a linear succession
of scenes, the user has the possibility to select from the o�ered information by
activation of referential links. Despite the limited functionality, HBS may already
be used to realize some real-world applications, such as electronic publishing of
instructional or advertising material.

HBS is implemented in both a PC (MS-DOS) and Workstation (UNIX) version. Al-
though the both operate on the same data, there are minor di�erences in functional-
ity and major di�erences in the user interface. For example, the PC versions always
shows full-screen raster images and a single text window, while the UNIX version
imposes no restriction on the number of windows opened simultaneously and allows
individual placement, resizing and iconi�cation of windows by the user. However,
we do not see these di�erences as a disadvantage; rather, it allows us to evaluate the
di�erent user interface metaphors and to demonstrate access to the same material
via di�erent interfaces.

Concepts of the Hyper-G prototype that are already extensively implemented in
HBS are:

� The Tour concept. In fact, tours are the only way of navigation supported
by HBS. The tour description is contained in a control �le that speci�es the
next links, as well as referential links. All of the advanced navigation features
(except tour switching) described in section 2.2.6.1.5 (page 67) are available.

� The idea of Multilingual Hypermedia . Text documents are chosen according
to a list of language preferences supplied by the user. While the UNIX version
also changes the labels of buttons and other user interface widgets, the PC
version circumvents the problem by extensive use of pictorial icons.

Concepts that are in part found in HBS are:

� The Document Clusters are simpli�ed to Scenes. Tours are made out of
scenes; scenes contain exactly one raster image and a number of equivalent
text documents that di�er only in their language. HBS selects one of the text
documents based on the user's languages preferences, i.e. the user sees one
image and one text document at a time. Display of the text document may
be switched o� by the user.

� Text and Raster Image are the only document types supported. In the UNIX
version, the Raster Image Document Manager allows to resize and scroll im-
ages. Text can be scrolled and is automatically reformatted and hyphenized.

� Cluster links are contained implicitly in the scene description. Only author-
de�ned, static referential links are supported in HBS.

90 CHAPTER 2. HYPERMEDIA

� Only forward following of links is possible (as there is no link database).

� Anchors are contained within text documents, but are speci�ed together with
the link for raster images.

Concepts that are missing in HBS, but will be implemented in the Hyper-G proto-
type are discussed in the next section.

2.3.4 From HBS to the Hyper-G Prototype

The Hyper-G prototype is created in an evolutionary process by incremental changes
and extensions of HBS14. In particular, things that have to be changed or added are:

� The following additional document types are supported: Object-Oriented
Drawing, Digitized Sound, Digital Movie, Animation, Map and Communi-
cation. Animation may be simulated by digital movies, maps will be im-
plemented on top of raster or object-oriented images. Communication will be
demonstrated by electronic mail and on-line communication between Hyper-G
users.

� The Scene concept will be generalized to the Document Cluster concept. Such
a cluster will contain an arbitrary set of documents of the document type listed
above. Cluster links are used to con�gure document clusters.

� A strict separation of documents, links, and anchors will be enforced.

� All Hyper-G objects will be stored in the KAD. This serves to implement the
following features:

{ A pre�x key query for documents will be possible.

{ All link types and priorities (section 2.2.3.6, page 24) are supported,
including static and dynamic automatically-generated links.

{ Forward and backward following of links is supported.

� The process structure of �gure 2.10 is partially implemented, making the sys-
tem very extensible.

� The user interface metaphor evolves from \simple Hypermedia" to \Desk-Top"
(section 2.3.6, page 97), with simple navigation functions (e.g. Undo, Drop
Bookmark) available throughout the system.

14An intermediate stage { called HBS-II { is currently being developed at the Institute for

Multi-Media Information Systems of Joanneum Research, Graz, Austria.

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 91

� Information will be organized in a collection hierarchy. The user may specify
a list of active collections for key queries.

� Labeled links are used to implement tours (section 2.2.6.1.5, page 67), so tour
switching becomes possible. In addition, a simple script language that allows
to incorporate sub-tours by associating priorities with labels, is implemented.

� The user will be able to extensively con�gure the user interface of the desk-
top metaphor (implemented by means of the X resource concept).

� The user may also become an author. However, in the prototype authoring of
standard users is restricted to creating text documents and links (annotations).
Creation of document types other than text is still more complex and reserved
to \real authors".

Although not fully implemented, demonstration of hidden access to remote data-
bases will be possible in special cases, such as access to the institute's in-house
videotex database. This computer can also be reached from middle-european public
videotex networks, so this connection can be used to demonstrate a number of the
communication aspects of Hyper-G.

2.3.5 Document Managers

Document managers will be implemented as individual processes (section 2.2.5,
page 52). A lot of the functionality and appearance of the system is therefore in the
hands of the document managers. This section briey describes the features of the
document managers that will be used in the prototype system.

2.3.5.1 Text Document Manager

Text is stored in a format similar to TEX[90, 91] as de�ned in [132], which means
that the text is not entered in a manner that directly implies document layout (e.g.
where to break a line); rather, control sequences specify layout information (e.g.
paragraphs, tabs, headings), and the document is formatted (i.e. line breaks and
hyphenations are determined) on the y by the document manager. This approach
has the obvious disadvantage of consuming more computation time than formatted
entry or pre-formatting, but o�ers the following advantages:

� The authors need not care about the size of the target text display. In fact,
this size (i.e. characters per line) may vary on a per-terminal or per-user basis,
and is di�cult to tell with proportionally spaced fonts.

92 CHAPTER 2. HYPERMEDIA

� The user may at any time resize the text window, which initiates a re-
formatting of the text by the text document manager.

� The user may con�gure a certain font family and size to be used to display
the text. Obviously, changing the size requires re-formatting.

The text document manager is able to highlight anchors, determine the user's click
on an anchor and pass the anchor ID to the S/IM. In addition, when the user clicks
on a word that is not part of an anchor, this word is passed to the S/IM, which
in turn initiates a key query with this word. Other interactions with the user are
handled by the text document manager itself, such as:

� Vertical scrolling (no horizontal scrolling is needed because the text is always
formatted to �t into the width of the text document manager's window).

� Moving and resizing the window. Moving is handled by the display manager,
but resizing requires reformatting, which is the task of text document manager.

� Selecting font family and size. Requires re-display of the text; if the font size
is changed, the text has to be re-formatted also.

� Portions of the text may be marked and put into the system-wide past bu�er of
the X window system, so that it can be copied to other windows (like terminals
or text editors).

When the text document is displayed and the target anchor is not the default anchor
(i.e. the whole document), the text is scrolled vertically so that the beginning of the
anchor is near the top of the display. No text editing is supported in the document
manager.

2.3.5.2 Drawing Document Manager

Drawings are stored as PIC �les [50, 85]. Anchors are represented by local segments
within the picture. Because of the object-oriented nature of the picture, it may be
scrolled and/or rescaled so that the target anchor is visible. If the target anchor
is the default anchor (i.e. the whole picture), the picture is scaled to �t into the
window of the drawing document manager.

The user may click on a segment (by clicking in the interior of the segment's bound-
ing box), in which case the drawing document manager informs the S/IM by sending
the anchor ID. The S/IM will then activate the corresponding link.

The drawing document manager is built on top of the EDEN kernel [4], which allows
the user to perform a number of interactive operations, such as:

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 93

� Horizontal and vertical scrolling.

� Zooming.

� Rescaling.

� Changing colors.

Potentially, the user could even edit the drawing, even while other users watch the
same document. Doing so, a graphical communication is possible.

2.3.5.3 Raster Image Document Manager

The raster image document manager is able to display raster images of various kinds.
Depending on the kind of terminal and the user's preferences the following image
types can be displayed:

� Full-color (24 bits/pixel) images o�er the best quality, but need much storage
space and can only be viewed on workstations with 24-bits (or more) per pixel
frame bu�ers.

� 8 bits/pixel images with variable color table o�er good quality, can be viewed
on most workstations, and require less storage. However, only one image of
this kind can be shown at a time, as the 'optimal' colors are chosen image-
dependently using a modi�ed Median-Cut algorithm [64].

� 8 bits/pixel images with 216 �xed colors still o�er reasonable quality (if the
resolutions of the image and display are high enough). Basically, the RGB
cube is split into 6 slices in each of the three directions, resulting in 63 = 216
colors. Then, each image is dithered to this set of colors using the Floyd-
Steinberg algorithm[54]. The advantage of this method is that a number of
images may be displayed simultaneously. On a workstation with 8 bits/pixel
display memory, this leaves 28 � 216 = 40 colors for other applications.

� Also, the images may vary in size. For performance reasons, a user might
choose to look at the smallest available image (\icon") �rst, before displaying
the full-size image. This is especially valuable when connected with Hyper-G
via a slow-speed network (e.g. phone line).

Anchors of raster images are de�ned as rectangular areas with optional icons (small
raster images). When the user clicks on such a rectangle, the anchor ID is sent to
the S/IM. Other user interactions handled by the raster image document manager
include:

94 CHAPTER 2. HYPERMEDIA

� Horizontal and vertical scrolling.

� Integer Zooming (i.e. every pixel is displayed as a rectangle of n � n pixels).

� Integer Reducing (i.e. every nth pixel in every nth row is displayed).

� Color changes (e.g. gamma correction).

When the image is �rst displayed, the window automatically adapts to the image's
size. If the window cannot be made large enough, the image is scaled down to �t
or the user may scroll the image (this option is user con�gurable). When the target
anchor is not the whole document, the image is scrolled so that the target anchor is
visible.

2.3.5.4 Digitized Sound Document Manager

The digitized sound document manager is able to replay sound that was recorded
and digitized in advance. As with raster images, sound may be stored in di�erent
qualities:

� CD-quality sound means stereo, 44.1 KHz sampling rate, 16 bits/sample, and
gives the best results. However, much storage space (176 KB per second) is
required.

� For most cases, mono hi-� quality sound (22 KHz, 8 bits/sample) will do.
Obviously, only an eighth of the storage of CD quality sound is needed (22
KB/sec.).

� For ordinary speech the quality of an ISDN phone line (8 KB/sec.) may be
considered. If even less space is required, a number of compression algorithms
are available [187].

Anchors of sound documents are beginning and ending time marks. When the
document is \displayed" the portion between the two marks is played back (the
whole document in case of the default anchor). When used as a source anchor, the
users are visually informed during playback when an anchor is reached. They may
then press a button, in which case the sound document manager sends the anchor
ID to the S/IM.

The user is given a visual representation of the document (a sort of a scrollbar that
shows how much has been played), and may:

� Increase/Decrease the volume (if the hardware supports it).

� Terminate the playback.

� Move the scrollbar back and forth, in order to re-play parts of the document.

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 95

2.3.5.5 Digital Movie Document Manager

Digital movies are stored as a sequence of di�erential raster images. Because of
limitations of storage and I/O bandwidth, the actually moving parts of the movie
are limited (up to 400 � 300 pixels) in order to achieve reasonable frame rates.
However, this approach allows to move relatively small objects over a large but
stable background.

Anchors in movies are a combination of the rectangular areas of raster images (one
per image, so the anchor may move also) and the beginning and ending time marks
of sound documents. When used as a destination anchor, playback of the movie is
started at the beginning mark. During playback, anchors are highlighted and may
be clicked by the user, in which case playback stops and the anchor id is passed to
the S/IM.

Like with sound playback, the user is shown a sort of scrollbar that shows how much
has been seen. The user may interactively:

� Move the scrollbar back and forth, in order to re-play parts of the document.

� Additional buttons (similar to a standard video player) allow the follow-
ing functions: Play forward, play backward15, fast forward, fast backward,
slower/faster, still image.

� When a still image is displayed, the standard image operations (section 2.3.5.3,
page 93) may be performed on the image.

� Of course, the user may at any time terminate the playback of the movie.

Synchronization of audio and video is a rather complex task (section 3.3.4, page
114). In the Hyper-G prototype, both sound and digital movie documents are
synchronized with respect to time, i.e. played back with correct speed and therefore
remain synchronized as long as no user intervention takes place. However, e.g.,
stopping the movie does not stop the sound.

2.3.5.6 Animation Document Manager

For the time being, animations are implemented as digital movies, so the same
document manager is used for playback. In the future, animation may be performed
by a document manager implemented on top of PHIGS. However, this approach
requires high-performance 3D graphics hardware and will not be available on all
workstations of the system.

15Because di�erential images are used to encode the movie, playing backward may result in

strange e�ects if no backward channel is supplied with the movie (section 4.3.2, page 137).

96 CHAPTER 2. HYPERMEDIA

2.3.5.7 Map Document Manager

In the prototype, maps are displayed as either raster images or object-oriented draw-
ings, so the standard document managers for the appropriate document type may
be used. However, in the \real" Hyper-G system it is planned to supply additional
functionality to maps (e.g. display of information depending on the zooming level).

2.3.5.8 Communications Document Manager

Communication will be possible via electronic mail and on-line communication be-
tween Hyper-G users. The Communications Document manager is therefore just a
layer on top of the corresponding UNIX tools ('mail' and 'talk') that is compatible
to Hyper-G's user interface metaphor.

In addition, communication with users of middle-european videotex systems is
demonstrated by using a layer on top a a videotex decoder running under UNIX.

2.3.5.9 Dialog Document Manager

While in Hyper-G, dialog objects may become very complex (e.g. ex-forms), in
the prototype only very simple dialogs (like menus) are implemented. In addition,
a special answer judging document manager is needed to port some 700 existing
lessons of the COSTOC project [110] to Hyper-G tours [70], as well as advanced
features described in [69].

2.3.5.10 Tour Guide

As stated in section 2.2.6.1.5 (page 67), a special document manager called Tour-

Guide is used to interpret the tour (i.e. the tour's script), and to present a suitable
user interface that provides the advanced navigation facilities possible within tours
(Req. U.3.3.2). While in HBS the script implicitly contained the tour's links, the
Hyper-G prototype relies on labeled links stored in the KAD.

In addition, one very simple script language is implemented that consists of an
ordered list of labels. The meaning is that the order de�nes a priority for following
labeled links. For example, the script

MyFavouritePictures, FineArtPictures

allows the author of the tour MyFavouritePictures to include large portions of the
existing tour FineArtPictures by creating links to an entry cluster and from the

"new"

"old"

"old"

"old"

"old"

"old"

"old"

"new" "new"

"new"

new,old

The Simple Script:

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 97

exit cluster(s) of the desired subset of tour FineArtPictures (�gure 2.15). When
executing the tour (script), the TourGuide follows the links MyFavouritePictures

where they exist, else the links FineArtPictures.

Figure 2.15: Sub-Tours Implemented with the Simple Script Language

Of course, the author could have achieved the almost the same by creating new links
labeledMyFavouritePictures parallel to the existing FineArtPictures links. However,
with the priorities approach, the tour MyFavouritePictures automatically changes
when the sub-tour of FineArtPictures is modi�ed (e.g. new clusters are inserted).

2.3.6 User Interface

The user interface of the prototype adopts the Desk-Top metaphor that has been
around since Xerox' Star [81], was re�ned by the user interfaces of computers like
Apple's MacIntosh, the Commodore Amiga, the NeXT, and { with the advent of
the X Window System { made its way to today's UNIX workstations. To put it
simple, this metaphor allows the user to simulate a desk on the computer's screen.
Each application opens a window that usually can be moved, resized or iconi�ed.
Communication with the applications relies heavily on mouse, buttons, pull-down
and pop-up menus, and the like. A major disadvantage of this metaphor is that
it allows the user to cram the screen with lots of windows (like the piles of sheets
found on some real desks). No matter how large the number of pixels, the screen is
always too small. Figure 2.16 shows the typical working environment of the author.

98 CHAPTER 2. HYPERMEDIA

Figure 2.16: The Desk-Top User Interface Metaphor

Consequently, every document manager opens its own window. The window may be
placed and sized according to the user's preferences. Also, the user may at any time
move, resize or iconify the window. The S/IM uses its own window to communicate
with the user.

In order to reduce communication overhead between the document managers and
the S/IM, most user interface functions are handled locally within the document
manager (section 2.3.5, page 91). This requires the document managers to be
equipped with buttons, menus as well as keyboard and mouse bindings. To guarantee
that the user is not confronted with inconsistent user interfaces of the document
managers, some rules have to be obeyed in the design of them:

� The left mouse button is always reserved for the clicking on anchors, buttons
and the like.

� The right mouse button may activate a menu speci�c to the document man-
ager.

� The middle mouse button may be used for scrolling.

2.3. IMPLEMENTING A PROTOTYPE OF HYPER-G 99

� There is always a 'Quit' and an 'Undo' button available. Alternatively, the
user may use the keyboard accelerators 'Q' and 'U'.

� The labeling of the buttons is always in the user's preferred language (if avail-
able). Alternatively, icons may be used consistently throughout the system.

The local Undo function is interpreted by the document manager. In addition, there
is a global Undo available in the S/IM's window.

2.3.7 Data

In order to evaluate the suitability of the proposed navigation tools (database
queries, collections, tours), a large number of documents is needed already in the
prototype phase. Particularly, we plan to integrate the following databases:

� A number of German encyclopedias16:

{ Meyer's encyclopedia in 10 volumes (51300 documents)

{ Duden Vol. 8 (German synonyms; 57900 documents)

{ Duden Vol. 10 (de�nitions of German words; 15600 documents)

{ Duden Informatics (600 documents)

{ Eulenspiegel (an archive for a science magazine in cooperation with ORF,
the Austrian Broadcasting Organization; 1000 documents)

{ Human diseases (300 text documents plus 300 pictures)

{ Technology (300 text documents plus 300 pictures)

� We have not yet decided on what English encyclopedias to include in the
prototype.

� A number (approximately 10000) raster images, from areas like:

{ Geography (e.g. illustrations for an electronic map of the world)

{ Science (e.g. space science, biology)

{ Art (e.g. museum-like exhibitions)

{ Illustrations of encyclopedias

� Some object-oriented drawings, mostly technical illustrations in encyclopedias.

16Meyer's encyclopedia, Duden Vol. 8 and 10, Duden Informatics, Eulenspiegel are already

accessible from videotex, plus other similar databases.

100 CHAPTER 2. HYPERMEDIA

� A small number of digital videos and animations.

� Some sound documents (e.g. CD quality samples of famous compositions, hi-�
quality voices of animals and famous persons, voices reading text documents).

� Maps of the world, all countries of the world and regions of interest.

� Some 700 existing COSTOC lessons [110] covering topics ranging from
medicine, ecology, and natural sciences to computer science.

Chapter 3

Hyper-Animation

3.1 Introduction

In this chapter we introduce a new concept for the creation of real-time, interactive
animation1. It is essentially a combination of Computer Animation and Hypermedia
technologies, therefore we will call it Hyper-Animation. A key feature of Hyper-
Animation is that it may be integrated within the Hyper-G environment.

Hyper-Animation is not limited to traditional computer animation, but combines
still images, digital video, computer animation and sound together with non-
standard input devices to achieve a high degree of interactivity. In Hyper-G, links
from an animation sequence to all kinds of information, including other animation
sequences can be de�ned. Such links may be followed by explicit choice of the user,
or by some random or external mechanisms.

Hyper-Animation is a general approach, allowing complex animation sequences (in
terms of complexity of objects, number of objects, complexity of motion), and { most
important { can be edited conveniently. The Hyper-Animation Editor (section
3.6, page 118) acts like a cutting desk, where prefabricated animation sequences are
linked together.

After a short overview on the state of the art of conventional computer animation
(section 3.2, page 102) we will discuss some of the more complex data types (i.e.
document types) supported by Hyper-Animation (section 3.3, page 108). Then, the
Hyper-Animation functionality (section 3.4, page 114) and the integration within
Hyper-G (section 3.5, page 116) are addressed. Example applications are only
sketched (section 3.7, page 118). However, this chapter serves as a foundation for
the more concise descriptions of applications that may be found in chapter 4.

1An early outline of the Hyper-Animation concept has appeared in [88].

101

102 CHAPTER 3. HYPER-ANIMATION

3.2 Conventional Computer Animation

The term Computer Animation covers a number of systems, applications and con-
cepts, ranging from computer generated movies, commercial graphics, video games,
and education to ight simulators and scienti�c visualization. The greatest common
denominator of animation systems is that computer generated images change with
respect to time.

A number of possibilities exist to create such changes:

� Appearance and disappearance of objects.

� Motion of objects.

� Change of the shape of objects (metamorphosis).

� Change of an object's attributes (e.g. color, texture, transparency).

� Changes of the lighting (e.g. shadows).

� Change of camera parameters (e.g. position, direction, aperture angle, expo-
sure time).

All these changes occur and must be viewed in a continuous way, but are really
computed for a discrete number of instants. The visual e�ect of a continuous change
is created by display of individual images (frames) at a rate high enough to fool the
human eye (approximately 20 frames per second).

Computer animation is sometimes derived from traditional (\cartoon") animation,
and some of the terms are borrowed from there. The production of a computer
animation as well as traditional animation can be divided in the following phases:

1. Pre-processing: The Story is de�ned in various levels of detail. The Sto-

ryboard contains comic-strip-like snapshots of the �lm. The �lm consists of
sequences, which in turn consist of scenes.

2. Scene editing and object modeling: The individual scenes and objects
are entered. Depending on the system, objects may be program-generated,
extracted from a database, scanned or edited manually. Also, an object's
material (color coe�cients, shininess, texture, dissolve, etc.) is de�ned at this
stage.

3. Animation: Now the motion of objects, cameras and light sources are de�ned.
As we shall see, there are a number of possibilities at this stage.

3.2. CONVENTIONAL COMPUTER ANIMATION 103

4. Rendering: The time domain is cut into discrete steps and the individual
frames are rendered. The process may be very time consuming when real-
istic images have to be delivered. Therefore, improvement of algorithms and
hardware used to generate the frames (Image Synthesis) are a main area of
research.

5. Post-processing: This stage includes shooting on �lm or video, synchroniza-
tion with sound, and copying.

6. Analysis of the Results: Is necessary in simulations and scienti�c visual-
ization applications.

3.2.1 Classi�cation of Computer Animation Systems

Computer animation systems can be classi�ed in a number of di�erent ways.
Magnenat-Thalmann and Thalmann [105] de�ne �ve levels of animation systems:

Level 1: are basically graphic editors that do not take time into account.

Level 2: can compute in-betweens and move an object along a trajectory. These
systems do take time into account.

Level 3: provide operations which can be applied to objects (e.g. translation,
zooming). These systems may also include virtual camera operations like
zoom, pan or tilt [109].

Level 4: provide a means of de�ning actors; i.e. objects which possess their own
animation. The motion of these objects may also be constrained.

Level 5: are extensible and can learn as they work. With each use, such a system
becomes more powerful and "intelligent".

Pueyo and Tost [151, 178] propose a more complex classi�cation scheme based on
various criteria (table 3.1):

1. Historical:
Because computer animation originally developed from traditional animation,
stages of development can be distinguished:

(a) Early systems were intended primarily to mechanize the long and tedious
task of drawing so-called \in-betweens", i.e. the frames between the
important ones (\key frames"), and the coloring of pictures. This kind
of animation system is generally called Computer Assisted Animation.

104 CHAPTER 3. HYPER-ANIMATION

Historical: � Computer Assisted Animation

� Computer Modeled Animation

Application: � production of commercial or entertainment �lms

� industrial or scienti�c simulation

Motion Control: � guiding

� program level

� task level

Dimension: � 2D

� 21

2
D

� 3D

Scene Generation: � by drawing

� by instantiation of primitives

� by reconstruction of a real model

Animation Model: � based on kinematic data

{ interpolation of key-frames

{ de�nition of geometrical transformations

� dynamic data (forces and torques)

Rendering: more or less realism

Time Performance: � real time animation

� batch animation and shooting

Post-processing: necessary or not

Table 3.1: Classi�cation Criteria of Computer Animation

(b) In the newer Computer Modeled Animation instead, the human part is
even more relieved. Models of the �lm's objects are stored within the
computer, which is able to perform di�erent actions on them.

2. Application:
Two classical applications of computer animation can be distinguished.

(a) Production of �lms for commercial purposes, education and presentation.
Such �lms utilize highly realistic images, while the motion is not required
to conform to physical laws.

(b) Industrial or scienti�c visualization. Here the animation is not supposed
to yield a realistic impression; rather, the interpretation of real-world
data shall be facilitated. Obviously, only computer modeled animation
(see above) is suited for this purpose.

3. Motion Control:

The animator is the human being that de�nes th motion of objects (includ-

3.2. CONVENTIONAL COMPUTER ANIMATION 105

ing cameras and light sources). Depending on the e�ort necessary to specify
motion, three classes of systems can be distinguished:

(a) In so-called guiding systems , the animator must know "a priori" the dif-
ferent positions the objects of the scene will have at each moment. Guid-
ing motion control (also referred to as interactive motion control [183])
usually adopts the kinematic animation model, which produces motion
from positions, speeds and accelerations and is used by most of today's
animation systems. Guiding systems correspond to the "Level 2" systems
of the hierarchical classi�cation scheme mentioned above.

The earliest, but still one of the most common, guiding motion con-
trol technique is keyframing. In these systems, the user de�nes a set
of frames and the times when they occur, and the computer interpolates
intermediate frames, generally using some splining technique to provide
�rst-derivative (velocity) and sometimes second derivative (acceleration)
continuity to the motion. Keyframing has the advantage that the user
sees the total scene at given times, easily noting collisions or undesirable
interactions. The disadvantages are that it is low-level and requires a lot
of user input.

Another guiding technique is path speci�cation. In contrast to keyfram-
ing, where the user has to specify all objects at particular time points,
path speci�cation lets the user specify the entire path (usually some sort
of spline) of a particular object over time. The disadvantages are that
it is low-level and does not allow easy visualization of the con�guration
of all objects at a particular time instant, making it di�cult to detect
collisions.

(b) In the program level systems , the computer has su�cient knowledge in
order to interpret a formal program (the script) and carry out all later
stages of the animation independent of further user input. Some script
languages, such as MIRANIM [108] and ASAS [156] can be considered
high-level. ASAS is a complete LISP-based structured programming lan-
guage including procedures, recursion and typed data structures.

The main drawback of program-level systems is that they require the
user to have certain knowledge of computer science, thus their use by
artists is limited. On the other hand, high-level animation languages can
be interpreted to low-level languages by means of parameterization, �nite
state machines, command libraries or hierarchies, providing the user with
higher level motion control. Program-level systems correspond to the
"Level 3" systems of [105].

Much research has been carried out in controlling the motion of the hu-
man body [106, 104, 151, 178], especially the human face. It turns out
that dance notations (Labanotation, Benesh notation) can be used to de-
scribe motion for computer graphics. Human body motion control lan-
guages are also of interest in robotics.

106 CHAPTER 3. HYPER-ANIMATION

(c) In task level systems (also referred to as motor control systems [191]
or "Level 4" animation systems [105]), the objects (also called actors)
possess their own motion and "move themselves" based on global data,
their internal state, and information about other objects. Motion may
also be restricted by a set of constraints.

Task-level systems have the choice of adopting the kinematic or the dy-
namic animation model. In the kinematic model, motion is produced
from positions, speeds, and accelerations, whereas dynamic models de-
scribe motion by masses, forces, and torques, from which kinematic data
are derived using physical laws and constraints. Most of the currently
operative computer animation systems use the kinematic model, which
has the advantage of being more intuitive and requiring less computation
time. On the other hand, dynamic models are useful to describe complex
movements of interacting objects and result in realistic motion, making
them suited for simulation purposes.

Task-level systems in general are convenient to use, because most of the
work is done automatically by the actors, and complex animations can be
speci�ed with minimal user input. The major disadvantage is the lack of
�ne control over the movements of individual elements. Furthermore, it
is impossible to de�ne motions not matching laws and constraints known
to the actors.

4. Dimension:

(a) 2D- and

(b) 21

2
D-Systems are usually computer assisted animation systems.

(c) 3D-Systems are more complex and usually computer modeled animation
systems.

5. Scene Generation:
Similar to motion control, three kinds of models may be distinguished, accord-
ing to the e�ort on behalf of the animator:

(a) In 2-dimensional animation, a 2-dimensional graphics editor is used.

(b) In 3-dimensional animation, a geometric model of the scene is stored in
the computer (lines, faces, surfaces, boolean operations, etc.), and used
in the generation of images.

(c) Real images can be entered using scanners (section 3.3.1, page 108). 3D
objects can be entered using 3D digitizers [148].

6. Animation Model:

As shown in table 3.1 two main methods of specifying action of a scene can
be distinguished:

(a) Most of today's animation systems use kinematic data to specify motion,
in one of two avors:

3.2. CONVENTIONAL COMPUTER ANIMATION 107

i. In the key frame method, the animator must entirely edit some of the
frames of the sequence to be displayed. The computer interpolates
intermediate ones (in-betweening). This method is used in computer
assisted animation systems.

ii. Another way is to edit only the objects of the scene, and to specify
elemental actions to be performed by each object, such as translation,
rotation etc. Most modern animation systems use this approach.

(b) In the dynamic model, the animator associates masses, forces and torques
with objects. The objects then may generate their own motion, based
on physical laws and other constraints (constraint based systems) or life
laws (stochastic particle system). Although this approach is not adopted
by most commercially available systems, a lot of research is undertaken in
this �eld. Ideas include more 'intelligence' for the objects (which are then
called actors ; see e.g. [2, 106, 156, 66]), dynamic analysis and inverse
kinematics (e.g. [183]), path planning and collision avoidance (e.g. [83,
101]), particle systems (e.g. [155]), visual programming (e.g. [173]), and
learning of actors [113, 188].

7. Rendering:
Most of today's animation systems concentrate on creating realistic images.
As the techniques used to render such images are very time-consuming, much
research e�ort is spent on developing faster algorithms that allow even more
realistic images of increasingly complex scenes. Various topics in image syn-
thesis such as shading techniques, complex light sources, aliasing, shadows,
ray-tracing and optimization, texture and bump mapping, fractals, particle
systems and special natural phenomena have been discussed in this major
research area of computer graphics ([107] lists 381 research papers plus some
books and tutorials on image synthesis). E�ects available in most animation
systems are:

(a) Removal of hidden surfaces.

(b) Shading models (reections, shadows, transparency).

(c) Texture mapping

(d) Anti-aliasing.

(e) Di�erent light sources, atmospheres.

(f) Reduction of the strobe e�ect of fast moving objects using temporal anti-
aliasing (motion blur).

(g) Simulation of a real camera (focal length, depth of focus).

8. Time Performance:

(a) Real-time animation delivers frames at a rate high enough to produce
the sensation of continuity for the human eye (more than 20 frames per
second). This is only possible with high-performance 3D Hardware and
losses in image quality (section 4.3.4, page 140).

108 CHAPTER 3. HYPER-ANIMATION

(b) \Realistic" movies need more rendering time, and are then copied on �lm
(shooting phase) and played back with high speed (real-time play-back).

9. Post-processing:
Depending on the application, post-processing can be necessary. E.g, the
movie may have to be copied on �lm or video. The process of synchronization
of sound and pictures can become di�cult with computer modeled animation
systems.

3.3 Hyper-Animation Data Types

Animation in Hyper-G (Hyper-Animation) includes classical computer animation,
but in addition

� Still images (either drawings or digitized images)

� Digital Video

� Computer Animation mixed with digital video

� Sound

will also be supported. Above data types will be explained in some detail in sections
3.3.1 to 3.3.4.

The document types listed above are treated in a special way when they are part
of a Hyper-Animation document cluster (section 3.4, page 114). Note that other
document types may also be part of a Hyper-Animation cluster, but are treated the
usual way, i.e. displayed by their corresponding document manager (section 2.2.5.2,
page 56).

In Hyper-G, links from an animation sequence to all kinds of information, including
other animation sequences can be de�ned. Such links may be followed by explicit
choice of the user, or by some random or external mechanisms. More on this may
be found in section 3.4.

3.3.1 Still Images

Usually still images are not covered by the term `animation'. However, they may
certainly be treated as a special case. Vice versa, animation is mostly generated by
just displaying a series of still images fast enough to fool the human eye. Therefore

3.3. HYPER-ANIMATION DATA TYPES 109

we will �rst discuss still images, in order to allow the description of true animation
in terms of still images.

Hyper-G will support two types of still images (see also chapter 2, e.g. sections
2.3.5.2 and 2.3.5.3):

1. Object-Oriented Drawings are most often used for explanatory purposes
together with text in encyclopedias and computer aided instruction. Typi-
cally, some kind of technical drawing is displayed. Such items will be stored
as PIC �les [50, 85] generated by EDEN-based graphics editors [48, 49]. The
main advantage of object-oriented graphics is the size-invariance of the pic-
ture de�nition. In other words, such images can be displayed in any resolution
on any graphical output device; the user may zoom in interactively, etc. Fur-
thermore, the de�nition of object-oriented drawings requires signi�cantly less
storage than other methods.

2. Digitized (Scanned) Images will be used to store information not suited for
object-oriented graphics. Typically, such images are the digital representation
of a picture or photograph. There are four possibilities to obtain a digitized
representation. One can use:

(a) a scanner to digitize images on paper,

(b) a special kind of scanner for scanning transparency slides,

(c) a video digitizer for processing of video sources (VCR, CamCorder, CD-
V),

(d) or one can generate the image by computer

Digitized images are also stored in PIC �les [89]. This allows the combination
with object-oriented drawings (background { foreground etc.).

While the storage of object-oriented drawings represents no di�culty, the storage of
digitized images requires careful attention, because of their huge memory require-
ments and their inability to adapt to di�erent resolutions without loss of informa-
tion. If for instance an image was scanned at 3000� 2000 pixels, each in one of 224

colors, some processing has to take place before it can be displayed in a 640 � 480
window with only 256 colors.

The four image sources identi�ed above yield images of di�erent resolutions:

� A typical scanner (e.g. MICROTEK MSF-300 Z) scans at 300 dots per inch,
i.e. the resolution depends on the size of the original. A full DIN A4 page
(about 8" by 11") gives a maximum resolution of 2400�3300 pixels, out of 224

(16,777,216) colors or 256 gray values. This is also the resolution of a typical
laser printer.

110 CHAPTER 3. HYPER-ANIMATION

� The NIKON LS-3500 slide scanner (on the upper end of the spectrum of slide
scanners) delivers 4096 � 6144 dots, also with 224 colors. This is incidently
the resolution of professional color graphic recorders used to output computer
graphics to slides or movie �lm.

� The resolution of video sources is substantially less. The european PAL stan-
dard uses about 600 horizontal lines, the north american NTSC TV standard
even less than that. The number of pixels per line is not speci�ed, because
current TV standards are analog signals, but is about the same magnitude.
Even worse, a standard VHS or Video-8 VCR records only about 250 lines of
video information, better S-VHS or Hi-8 recorders make it up to 400 lines.

� Computer generated images may have arbitrary resolution and number of col-
ors.

Thus, although it might be desirable to have a standard resolution for the storage
of all Hyper-G images, it is not feasible. Another issue is image compression. Good
compression techniques (in terms of compression rate), such as Color Cell Compres-
sion [18] or JPEG [24, 25, 179] lead to loss of information (let us call such tech-
niques a destructive compression, which means that the original image can not be
fully reconstructed from the compressed image). To cope with these problems, the
following organization for storing images will be used in Hyper-G:

All images are stored in a so-called long term archive in their native (full) resolu-
tion, with full color, using a non-destructive compression (e.g. LZW [180]) or no
compression at all. Because of the expected size and number of images, the long-
term archive will typically reside on slow but large mass storage media, such as
removable optical disks or magnetic tape (e.g. DAT [99]).

Whenever an image is to be inserted into the Hyper-G database, a program called
the Image Retriever creates a version of the original image, which is inserted into
the fast, random-access storage of the execution system. The Image Retriever o�ers
the following features:

� Using image processing techniques, the image may be reduced (or enlarged)
to any desired target resolution.

� Likewise, the number of colors may be reduced to a desired value (e.g., by the
Median-Cut Algorithm [64] with Floyd-Steinberg [54] error propagation).

� The image may be compressed using a suited image compression method, even
a destructive one, e.g. Color Cell Compression.

This strategy o�ers the following advantages:

3.3. HYPER-ANIMATION DATA TYPES 111

� The amount of storage needed in the run-time system servers is kept to a
minimum. E.g., a 640 � 480 frame with 256 colors, coded using Color Cell
Compression needs less then 80KB run-time storage, while the original 4K �

6K slide scan image with full color needs 75MB of long-term archive, if stored
uncompressed.

� Whenever another run-time image of the same image is needed, with a di�er-
ent resolution or a di�erent window, it can be generated from the long-term
archive, without re-scanning the original slide.

� The high resolution of the long-term image allows to generate `zoomed in'
views of the original image. A typical Hypermedia application could allow the
user to get detailed views of some (pre-determined) interesting areas of the
whole image, and real-time zoom e�ects in some isolated and special cases.
The number of such cases increases with the further development of storage
capacities and processing speeds.

� The long term archive may eventually become part of Hyper-G if external
storage devices with good access speeds and capacities in the tera-byte range
become available. Thus, archiving at high resolution will avoid rapid obsoles-
cence of the picture material.

The search for a speci�c image in the archive is eased by galleries, which act as di-
rectories of the archive. In a gallery, small versions of the original images are used
to select the latter (like �le names used in standard directories). Clever organiza-
tion of these galleries helps to �nd the desired image. In addition, keywords and
attributes assigned to the images allow database queries.

3.3.2 Digital Video

Digital videos are video (or �lm) sequences that may be shown in a window of Hyper-
G. In order to allow their display and manipulation without specialized hardware
(such as video mixing adapters), they are stored in digitized form. Typically, they
are generated from standard video sources, such as VCRs, CamCorders or CD-V.

Such video sources have a comparably low resolution (see section 3.3.1). Thus,
displaying them on a whole workstation screen with, say, 1280� 1024 pixels would
not make too much sense, because of a blurred picture. Also, the width-to-height
ratio of video is constant (4 : 3). A low-resolution digital video would use 320� 240
pixels per frame, 640� 480 pixels would de�ne a high-resolution video image.

In contrast to the low resolution, video o�ers a high color capability (because of the
analog transmission of color). In addition, 25 frames per second are displayed,
which is not possible on currently used computers because of their limited I/O

112 CHAPTER 3. HYPER-ANIMATION

bandwidth. A state-of the art graphics workstation (the DEC 5000/200) allows to
display only about 10 frames per second at a resolution of 320� 240. However, the
next generation of workstations is likely to eliminate these problems.

For the time being, digital videos in Hyper-G will be stored as a sequence of still
images, using a compression technique called CCC [18, 160]. The refresh rate will
be limited to 20 frames per second, and a maximum of 216 colors (out of 224) will be
available in a single frame. A typical low-resolution frame (320 � 240) is stored in
about 40 KB, a high-resolution frame (640 � 480) will need 160 KB. A one-minute
sequence (20 � 60 = 1200 frames) stored in di�erential run-length format [89] will
need about 25 MB (low-resolution) or 100 MB (high-resolution), assuming that only
an average of 50 % of the pixels change in comparison to the previous frame.

Recently, an Extended Color Cell Compression (ECCC) algorithm has been pro-
posed [147] that achieves compression ratios from 0.6 % to 3 %, with real-time de-
compression on standard hardware. In the future, even better compression methods
will be implemented in hardware (e.g. the JPEG/MPEG standards [24, 25, 96, 179]
by C-Cube Microsystem's CL550 chip [26] that is built into the NeXTdimension
board [8][17, page 159], or Digital Video Interactive (DVI) [100] implemented by
Intel's i750 chipset [63]). When such hardware becomes a workstation standard,
Hyper-G is prepared to utilize it.

With the advent of HDTV expected in the mid 90's, higher quality video sources
will become available, allowing display of full-screen digital video. The continuing
development of hardware makes it likely that the fast display and the archiving of
such pictures will be, nevertheless, easier than today's handling of smaller resolution.

3.3.3 Computer Animation

Two kinds of computer animation will be available in Hyper-G:

� Real-Time Animation requires execution on powerful workstations with
dedicated hardware (3D-accelerators, double bu�ering, special input devices
etc.). Possible interactivity is the main advantage of this kind of animation.
The main drawback of this kind of interactive computer animation is the dif-
�culty of editing the animation in advance. Therefore, interactive real-time
animation in Hyper-G will be carried out by executing some kind of `custom'
program, i.e. a special document manager.

� Real-Time Playback of computer animation allows the display of more com-
plex scenes that were computed previously (e.g. by ray tracing) and recorded
in digital form, very much like digital videos (see section 3.3.2). In addition,
these pre-recorded sequences may be mixed with actually digitized videos,

3.3. HYPER-ANIMATION DATA TYPES 113

yielding high-quality results without too much e�ort on behalf of the editor.
The penalty paid is a decrease in interactivity.

Because of its generality, we will now concentrate on the second approach. A piece
of software, the Hyper-Animation Editor acts as a post-production tool. It allows
the combination of animation sequences with digital video, still images, and sound,
as well as the de�nition of some standardized navigation mechanisms to allow a sort
of interactivity between the user (viewer) and the animation. The Hyper-Animation
Editor will be discussed in more detail in section 3.6.

3.3.4 Sound

Animation in Hyper-G will include sound to make it more realistic. The synchro-
nization of the sound with the pictures leads to some interesting challenges which
we want to mention briey.

Computer sound output may have di�erent sources. The sound may be generated
by the computer itself, behaving like a synthesizer. As a special case, a speech
synthesizer (e.g., a phoneme generator) may generate speech at run-time.

However, the most exible approach is to record ('sample') natural sound. To have
sound available on computers, it has to be converted to digital form. This involves
discretization both in time (sampling) and in amplitude (quantizing), called pulse

code modulation (PCM). The fundamental sampling theorem states that the origi-
nal signal can only be reconstructed from a sampled version if it does not contain
frequencies greater than half the sampling rate. Telephone quality speech does not
contain frequencies above 4 kHz, so a sampling rate of 8 kHz is su�cient (and used in
ISDN). However, to achieve high-quality sound suited for music, noise etc. a higher
sampling rate is required (e.g., CD's are sampled at 44.1 kHz). Also, the number of
available quantization levels varies from 8 to 16 bits (section 2.3.5.4, page 94).

When replaying sound on modern multi-user, multi-tasking workstations, the fol-
lowing problems arise:

� The digital signal has to be passed to a D/A converter exactly at the sampling
rate. This is a real-time process, i.e. it may not be interrupted for a period
of time longer than the sampling period (e.g. 23�s with 44.1 kHz sampling
rate). This is not possible in a standard UNIX-based multi-tasking system.
The solution is the use of special hardware for sound output (it is not enough
to just have a workstation with a built-in loudspeaker). This hardware will
have a small processor for itself, and is fed from the host computer via an
input queue by a host program. The input queue has to be large enough to

114 CHAPTER 3. HYPER-ANIMATION

hold the digitized sound for the largest expected time that this host program
gets interrupted by other processes, say n seconds.

� In general, sound will have to be synchronized with other events. In particu-
lar, we will want to synchronize sound with animation. Typically, it may be
required that a certain frame of the animation corresponds with a portion of
the sound replayed together with the images (the sound track). As the image
display speed may vary with the workload imposed on the workstation, and
because the sound cannot easily be slowed down or speeded up, the images
have to be synchronized by the sound, i.e. the sound is the master of time
(and the images are the slaves). This may be achieved by skipping a frame
if the images are behind, and by extending the display period of an image
if the images are ahead. Again, the increase of speed of graphic processors
and communication channels should eventually ease this problem at least for
"standard applications".

� Using the mentioned approach to above problems leads to a new problem.
Whenever the host program gets active, it completely �lls the sound output
bu�er. As a consequence, a delay of up to n seconds between the �lling of the
bu�er and the actual output of the corresponding sound is introduced. This
means that the sound to be synchronized with an image has to be fed into the
sound output bu�er up to n seconds before the corresponding image is dis-
played. This not only complicates the run-time synchronization of sound with
images, but also the editing of sequences with sound attached to them, espe-
cially, if the order of sequences is determined at run-time (by user interaction,
random choice etc.).

To make things even more complicated, Hyper-G supports multi-track sound as-
signed to a certain animation. This feature may be used for high-quality stereo
sound, as well as for multi-lingual speech. E.g., a certain animation may be used
simultaneously by a number of users in di�erent languages.

3.4 Functionality

Looking back at section 3.2, we may distinguish between real-time animation and
real-time playback of animation. While real-time animation allows virtually any
type of user interaction (e.g. games), interaction is somewhat limited with real-time
playback. However, real-time playback is a more general approach, allows arbitrarily
complex animation (in terms of complexity of objects, number of objects, complexity
of motion), and can be edited conveniently.

Hyper-Animation is based on the real-time playback approach, but tries to push the
(user) interaction features to the limit. In addition, the concept combines interactive

3.4. FUNCTIONALITY 115

computer animation with Hypermedia paradigms. To be speci�c, the following
document types may be combined in an Hyper-animation sequence:

1. Still Images: These are either digitized images or object-oriented drawings
(section 3.3.1). A typical application of digitized still images is use as back-
ground, while drawings may be used as titles.

2. Digital Video: This is probably the easiest way to generate animation, al-
though the features are nothing more than those of video �lm.

3. Computer Animation: Animation sequences generated by computer ani-
mation software (the Animation Editor) allow virtually everything one can
think of. However, it turns out that realistic rendering of some objects (e.g.
clouds) or realistic motions (e.g. of humans) are not easily handled by a pure
computer animation system. In such cases it is more convenient to have a dig-
itized image of the cloud or a digital video of the moving human, and combine
them with the computer-generated animation.

4. Sound: Sound is recorded (sampled) from natural sources and digitally stored
by another stand-alone program (the Sound Editor). It is the task of the
Hyper-Animation Editor to link and synchronize these prerecorded sound
tracks with the animation sequences.

5. Custom Program: A program may be used to generate graphics on the
screen, based on some algorithm or under user control. At edit-time, the
behavior of the program is not known to the Hyper-Animation Editor, ex-
cept, that program has to obey certain rules. This feature is intended as a
`last recourse', if the desired e�ect cannot be achieved using other interaction
features of Hyper-Animation (see section 3.4.1).

With the exception of sound, the data types may be combined in the following ways:

1. The most obvious combination is concatenation in the time dimension. I.e.,
individual animation sequences of type still image, digital video and computer
animation are linked together and may be replayed in sequential order. How-
ever, the sequence does not have to be static (see section 3.4.1), hence allowing
some interaction or non-determinism in the succession of sequences.

2. Animation sequences may also be combined in the z-dimension, assuming that
the z-axis grows out of the computer screen (layering). Typical applications
are background-foreground type animations (of course, an arbitrary number
of layers is possible), superimposing of titles etc.

Layering may be done directly by the Hyper-Animation Editor. A certain color
or a number of colors of the foreground-layers is de�ned to be `transparent'.

116 CHAPTER 3. HYPER-ANIMATION

Then, the full image can be generated similar to the 'blue box' technique
of TV. In some situations (e.g., the foreground is changed under algorithmic
control), it may be necessary to postpone layering until execution at run-time,
facing a possible decrease of performance.

3. We can also combine animation sequences in the x-y-dimension. I.e., two or
more sequences may run simultaneously side by side. Again, this may be done
at edit-time or at run-time, depending on the scene. If we have a small video
sequence running in an environment with a large still image, performance will
be better if the combination is done at run-time.

3.4.1 Styles of Interaction

The aim of Hyper-Animation is to allow convenient editing and integration within a
Hypermedia environment, without sacri�cing interactivity. In principle, the ability
to include 'custom' programs allows any kind of interactivity; however, having to
write programs is not exactly what we would call user-friendly animation editing.
To aid the author of a Hyper-animation sequence, there are a number of 'built-in'
possibilities to achieve interactivity without having to write programs.

� The 'standard' links and anchor concepts of Hyper-G allow the user to click
on anchors, modifying the succession of sequences.

� In addition, the sequence (or appearance) may vary at random, based on
external events (sensors), or on previous animation sequences.

� An animation is implemented based on the Hyper-G Tour concept, giving
the user all of the advanced navigation facilities available in tours (section
2.2.6.1.5, page 67).

3.5 Integration within Hyper-G

After the preceding introductory sections we will now concentrate on the integration
of Hyper-Animation within Hyper-G.

Animation is decomposed into so-called sequences. A sequence is a group of el-
ementary data types (still image, digital video, computer animation, sound). The
sequences are represented and stored as Hyper-G document clusters (section 2.2.3.3,
page 19), i.e. documents of document types HA image, HA drawing, HA video,

HA animation, and HA sound grouped together by cluster links.

3.5. INTEGRATION WITHIN HYPER-G 117

Unlike other document types, above ones are not interpreted by a document manager
of their own, but by a single Hyper-Animation document manager. This is necessary
to combine, overlay and synchronize the display (execution) of the documents.

Hyper-Animations are implemented on top of Hyper-G's tour concept, i.e. using
labeled links and/or scripts. The navigation facilities possible in tours apply (section
2.2.6.1.5, page 67); also, sequences that are part of more than one Hyper-Animation
may be used to 'switch' to another Hyper-Animation.

3.5.1 Hyper-Animation Links and Anchors

Interaction with { or, in Hypermedia terminology: Navigation in { the Hyper-
Animation is performed using Hyper-G's link and anchor concepts:

� The most common operation is to proceed from one sequence to another.
This may be achieved interactively by clicking on an anchor, which in turn
activates a referential link, proceeding to another document cluster (animation
sequence). Like with tours, the link is chosen based on the link's label , allowing
to use a single animation sequence in more than one Hyper-Animation.

� In addition, active anchors (section 2.2.3.7, page 26) can activate links without
user interaction, e.g. after the end of the animation sequence, after some
(random) period of time, based on more complex user input, etc.

� The Hyper-Animation Document Manager is able to overlay still images, dig-
ital videos and animation sequences in the z or x� y dimension (e.g. a digital
video or animation of bird ying over a still image background). This func-
tion is also initiated by anchors (active or interactive), with links pointing to
special destination anchors that contain overlay and coordinate information.
Documents that (may) have to be played back together are in the same doc-
ument cluster.

� A special kind of active anchor { the Repeat Anchor { allows to repeat a certain
animation sequence a number of times speci�ed by the repeat count , or until a
user interrupt. Again, the type of the destination anchor determines whether
(and where) the target is to be overlayed on the current animation, or replaces
the current animation sequence. If the source sequence is only a single still
image, the animation just stops and waits either a number of seconds speci�ed
by the repeat count, or until user input occurs. The repeat count may also be
generated as a random number, or could be based on external data on a �le or
a set of special programs (e.g. using the time of day or unusual input devices
to generate the number).

118 CHAPTER 3. HYPER-ANIMATION

� The Branch Anchor (section 2.2.3.7, page 26) selects a target sequence from
a number of possibilities, either by user input, or based on random numbers
or external data (e.g. sensors).

� The Asynchronous Anchor is not attached to a speci�c sequence, but to a
kind of event and is handled internally by the Hyper-Animation Document
Manager. If the event occurs (e.g. user interrupt, timer, at random), a certain
sequence is executed. Additional attributes control whether the new sequence
replaces what was going on (like a `goto'), or is executed like a subroutine and
returns to the original sequence afterwards. Again, the link is not restricted to
the time domain. For example, an asynchronous anchor may be used to let a
plane y over the screen every n seconds, no matter what is on the screen. To
further enhance this concept, asynchronous links may be enabled and disabled
for individual animation sequences.

3.6 The Hyper-Animation Editor

The Hyper-Animation Editor adopts the metaphor of a cutting desk. In terminology
of conventional �lm or video production, this is the post-production stage: The
sequences of �lm generated by the cameras have to be cut and glued together, the
sound track is synchronized, and special e�ects and titles are added.

The same is true for the Hyper-Animation Editor: It does not generate the ani-
mation; instead, prefabricated animation sequences are linked together by de�ning
link types. Therefore, Hyper-G's tour editing package (section 2.2.8.2, page 80),
equipped with a few extensions (e.g. an animation previewer) will do the job.

3.7 Examples

This section only sketches some of the applications of the Hyper-Animation concept,
as a detailed discussion is contained in chapter 4.

A simple examples might be a single animation sequence (i.e. document cluster)
that may be used in instructional lessons (tours), e.g. a background drawing with
a schematic diagram of some electrical circuit, stating \Press Button A to see what
happens when the switch S1 is closed", \Press Button B to see what happens when
the switch S1 is opened", and \Press Button C when you have seen enough". The
document cluster looks as follows (see also �gure 3.1):

It consists of 3 documents: One of type HA drawing and two of type HA animation.
They are linked by cluster links. On activation only the drawing is displayed, be-
cause the the cluster links to the animation documents origin at the buttons A and

HA_drawing

A

B

C

S
1

HA_animation

S
1

HA_animation

S
1

to next cluster

A Simple Hyper-Animation

3.7. EXAMPLES 119

Figure 3.1: A Simple Hyper-Animation Example

B, rather than at the default anchor (the whole document). When the user presses
buttons A or B, the corresponding computer animation is overlayed on top of the
drawing, as de�ned by the destination anchor. Button C activates a standard la-
beled link to the next document cluster. Links to other document clusters can be
added, allowing this animation sequence to be incorporated into a number of tours
(animations, lessons).

Additional sound documents could have been attached to buttons A and B, resulting
in playback of the sound while the animation is running). Also, an additional active
anchor could have been attached to the drawing. This anchor could activate other
documents (e.g. animations) at random, or responding to external events.

More complex examples of Hyper-Animations ranging from unorthodox user inter-
faces to virtual reality are discussed in chapter 4.

Chapter 4

Some Advanced Applications of

Hyper-G

This chapter describes some of the more advanced applications of Hyper-G that led
to the requirements formulated in chapter 2. Roughly, these applications can be
divided into three groups:

1. Information Systems are a typical application of Hypertext and Hyperme-
dia Systems that were envisioned by pioneers like Bush [16], Engelbart [44]
and Nelson [135, 136]. Hyper-G is supposed to become the basis of a Uni-

versity Information System which combines concepts of information retrieval
systems, documentation systems, communication and collaboration, and com-
puter supported teaching and learning.

2. Electronic Publishing through CD-ROM hardware technology and Hyper-
media software technology seems to become more and more important (section
4.2, page 126).

3. The Viewseum (section 4.3, page 128) covers a broad spectrum of applica-
tions that are to be used by the general public, typically in a museum or exhi-
bition environment. Applications range from public information systems to in-
teractive movies, utilizing unorthodox user interfaces from trackball to virtual
reality (section 4.3.4, page 140). Especially tha applications "n-dimensional
Movie" (section 4.3.2, page 137) and "Interactive Movie" (section 4.3.3, page
139) are new concepts within the Hypermedia environment.

120

4.1. UNIVERSITY INFORMATION SYSTEM 121

4.1 University Information System

The creation of a modern University Information System is both one of the most
important and most ambitious Hyper-G projects1. Such a system should help the
scientist in the process of information retrieval (e.g. �nding literature), ease the
communication and collaboration of scientists, and support computer aided instruc-
tion of students. The motivation for such a tool is not exactly a new one. In his
1945 article \As we may think" [15, 16, 136] Vannevar Bush writes:

\There is a growing mountain of research. But there is increased evidence

that we are being bogged down today as specialization extends. The inves-

tigator is staggered by the �ndings and conclusions of thousands of other

workers - conclusions which he cannot �nd time to grasp, much less to re-
member, as they appear. [. . .]

Mendel's concept of the laws of genetics was lost to the world for a gen-

eration because his publication did not reach the few who were capable of

grasping and extending it; and this sort of catastrophe is undoubtedly be-

ing repeated all about us, as truly signi�cant attainments become lost in the

mass of the inconsequential.[. . .]

Publication has been extended far beyond our present ability to make real

use of the record."

Since 1945, the situation has become even worse. We are now not only confronted
with an increasing number of books and periodicals, but also with electronic media.
On the other hand, the availability of knowledge in electronic form potentially allows
us to look for speci�c information and browse through it more e�ciently by use of
computers and information retrieval systems.

4.1.1 Information Retrieval

Information retrieval is one of the most important aspects of a University Informa-
tion System. Today, there are several on-line information services (e.g. DIALOG,
BIX, CompuServe) available. These services are highly interactive, charging users
on the basis of minutes spent on-line, and each has a unique user interface. Also,
connectivity between such services is limited. These limitations will hopefully be
reduced by the Wide-Area Information Server (WAIS) project currently being per-
formed by Thinking Machines, Apple Computer, and Dow Jones News/Retrieval

1Of course, the Technical University of Graz would be the �rst one to use this system

122 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

[166]. By de�ning a public WAIS protocol which should then be adopted by in-
formation servers and end-user user interfaces, WAISes should become connected,
usable in a consistent way, and cheaper.

The \remote database" concept of Hyper-G (see �gure 2.2 on page 18 and section
2.2.6.2.3 on page 74) allows to integrate such information servers and to make them
accessible using the Hypermedia paradigm (i.e. links). It is possible to create
both links to and from such remote databases by means of dynamic links (section
2.2.3.4, page 22), even when the remote database does not adopt the Hypermedia
paradigm. Moreover, it is possible to create links between Hyper-G-based University
Information Systems installed at di�erent locations (universities), if this should ever
be the case.

While access to remote databases is possible, the University Information System at
the Technical University of Graz will have stored information locally that is both
accessed on a regular basis and not subject to frequent changes, including:

� A number of general-purpose, scienti�c, and technical encyclopedias in both
English and German.

� Dictionaries for both English (Webster's Dictionary or Oxford English Dictio-
nary [12, 154]) and German (Duden).

� Translators between English and German.

� Geographic information, including pictures from locations throughout the
world, maps, etc.

� Access to the university's library.

If available, books and periodicals available on CD-ROM can be integrated also.
More on-line data is described in the forthcoming sections.

4.1.2 Computer Mediated Communication (CMC)

As shown in �gure 2.1 on page 17 the Hyper-G Core System includes a number of
workstations attached to a high-speed LAN. Additional terminals (see �gure 2.2 on
page 18) may be connected via low-speed (up to 64 kbits/s) phone lines. While
simple textual communication is available on any terminal, the workstations will
allow voice and (in theory) even video communication between Hyper-G users. Users
that are logged in simultaneously may communicate via an on-line communication
system [119].

4.1. UNIVERSITY INFORMATION SYSTEM 123

Hyper-G users may annotate any document (provided that access rights allow it).
In particular, annotations may be annotated, starting an electronic discussion about
some document; similar to bulletin boards. The users need not be logged in simul-
taneously.

In addition to this \local communication", Hyper-G users may communicate with
computer users throughout the world using Electronic Mail (E-mail). E-mail docu-
ments are incorporated into the Hyper-G database as private text documents, and
may be linked (either static or dynamic) with other documents (including other
E-mail, e.g. questions and answers). In order to �nd E-mail, keywords have to be
attached or extracted (automatically), allowing links to be targeted to the piece of
mail in question. Of course, E-mail may be annotated.

Today, cost and speed of hardware are no longer limiting the use of CMC systems.
However, mechanisms with which the user can organize information to avoid infor-

mation overload [67, 68] have to be provided [152, page 155]. It is believed that
Hypertext is a promising mechanism for this purpose, and there are Hypertext im-
plementations like NLS/Augment [45] and gIBIS [9] addressing the E-mail problem.

According to International Data Corp (Framingham, MA), the number of electronic
mailboxes will soar from 17.4 million in 1990 to 64.7 million in 1995 [157], and so
will increase the amount of mail to be handled. Information Lens, a research project
at MIT's Sloan School of Management, addresses electronic information overload by
semistructured message templates and rules that de�ne what to do (automatically)
with mail of certain type and content [157].

An even larger amount of data (approximately 20 MBytes a day) is distributed
by a communication system known as Usenet News [152, page 235]. There are
more than 2000 hierarchically structured newsgroups (discussion topics) available
covering computer science, other sciences, social issues, recreational activities and
other topics. Unfortunately, the sheer amount of data makes it very time-consuming
to follow even only a few newsgroups regularly.

However, if the individual news (which, by the way, conform to certain standards)
can be automatically supplied with keywords, stored, and cross-referenced in a Hy-
pertext system, the user could later on search for news covering a speci�c topic,
which would be a valuable tool for the scientist. A prototype of a system that au-
tomatically constructs hypertext links between news articles based on a similarity
rating has already been implemented at the Technical University of Denmark [3].
We will try to incorporate a similar mechanism into the University Information Sys-
tem, i.e. integrate news articles into the Hyper-G database.

124 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

4.1.3 Computer Supported Collaborative Work (CSCW)

Computer Supported Collaborative Work (CSCW), sometimes also referred to as
Groupware is one of the buzzwords of the beginning 90's. While some people use
Groupware as a rather general term [59] that refers to anything from electronic mail
to distributed databases, Ellis et al. [42] de�ne Groupware as:

\computer-based systems that support groups of people engaged in a com-

mon task (or goal) and that provide an interface to a shared environment"

and give an overview of concepts and commercial products. Engelbart and Lehtman
[45] de�ne CSCW and Groupware as:

\Computer Supported Cooperative Work (CSCW) deals with the study and
development of systems that encourage organizational collaboration. Most

Groupware products fall under this classi�cation."

They distinguish between three groups of CSCW projects:

1. Tools for augmenting collaboration and problem solving within a group geo-
graphically co-located in real time.

2. Real-time tools for collaboration among people who are geographically dis-
tributed.

3. Tools for asynchronous collaboration among teams distributed geographically.

The spectrum of Groupware products ranges from simple or \intelligent" [33, 157]
E-mail systems [144, 186] to \joint editing" of documents (text or picture).

\Electronic Meeting Systems" can be used to prepare or even carry out meetings.
The semi-identi�ed user mode of Hyper-G supports a (semi-)anonymous discussion
during the \brain-storming" phase of a meeting, which encourages discussion. A
similar application { the \Electronic Classroom" { is discussed in the next section.

According to above de�nitions, Hyper-G is a piece of Groupware or CSCW, because
of its communication facilities described in the previous section. In addition, we will
evaluate the feasibility of distributed editing of technical drawings within the Hyper-
G environment, made possible by use of the \Distributed EDEN" as described in
[4] and [47].

4.1. UNIVERSITY INFORMATION SYSTEM 125

4.1.4 Computer Aided Instruction

As teaching is one of the responsibilities of a university, a University Information
System can be expected to also support the process of teaching and learning. Hyper-
G addresses this problem in two ways:

� Computer Aided Instruction (CAI) is supported by over 700 COSTOC
lessons [110] covering topics ranging from medicine, ecology, and natural sci-
ences to computer science, that will be converted to Hyper-G tours (section
2.2.3.12, page 29). New lessons can be edited (as tours) with much greater
exibility. Also, students may at any time consult additional material from
other tours, encyclopedias, books, etc. using automatically generated links
(section 2.2.3.4, page 22).

� The Electronic Classroom is a more collaborative approach to computer as-
sisted learning. Such a classroom is equipped with a number of Hyper-G work-
stations. A utility built into Hyper-G called \shared X" that was developed
by Michael Altenhofen at CEC Karlsruhe allows \WYSIWIS" (What You See
Is What I See) distribution of the output of an X Windows client to a number
of X Windows servers (workstations) and has been tested in learning/training
environments to provide online help from remote tutors. Two scenarios are
possible:

{ The teacher shows something to the students by distributing his output
to their terminals. Input is taken from the teacher's terminal. At some
point, the teacher may ask questions. Then, students may grab input and
perform some operation (e.g. answer a question, click on some anchor).
Output is distributed to the other student's and the teacher's terminal.
So the whole class works together to solve a problem.

{ Students work on their own. When they get stuck, they may ask other
students or the teacher for help by sending them a copy of their screen's
contents. The teacher or tutor may then grab the input in order to
perform the necessary steps while the student watches. Student and
teacher may switch control over the input as often as they like to complete
the task.

Note that it is not necessary that the terminals of the electronic classroom
reside in the same room, or even building. Potentially, the electronic classroom
may be distributed over the whole world.

Additional bene�ts related to teaching are that the students may call the system
via phone lines from home, thus having access to, e.g. the university's library, exam
results, e-mail exchange with professors and other students, etc.

126 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

4.1.5 Other Aspects

The user of a University Information System can be expected to have some experi-
ences with computers and communication systems, and be familiar with keyboard
and mouse. Therefore, the standard Desktop User Interface Metaphor (see �gure
2.16 on page 98) seems feasible.

Additional features may include a \Hyper-Calendar" which is similar to the calendar
found in most DeskTop environments. However, the Hyper-Calendar allows to tie
links to certain dates and times which point to other documents. Also, a links may
origin at other documents and point to the calendar.

4.2 Electronic Publishing

Electronic Publishing by means of Hypertext and Hypermedia has always been on
the minds of Hypertext pioneers like Ted Nelson [135, 136, 137] and others [190].
Already in 1978, Maurer and Angstmann have implemented an electronic encyclo-
pedia [5]. Basically, electronic publishing { i.e., distributing electronic Hypertexts
or Hypermedia documents from \author" to \customer" { can be done in the fol-
lowing ways:

� By allowing customers to log into a Hypermedia system and to \read" the
documents interactively.

� By sending the documents to customers electronically (like E-mail).

� By sending or selling storage media to the customers that contain the docu-
ments.

The �rst approach is easily implemented with public phone lines and modems. How-
ever, throughput is very low so that access to images, movies and sound documents
takes prohibitively long and costs too much.

The same is true for the second solution. In addition, missing Hypertext and Hy-
permedia document standards hinder the distribution of such documents. Although
some standardization attempts have been made (see, e.g. [130] and [80]), much work
remains to be done in this area.

Distribution of (parts of) Hypermedia databases by means of storage media also
su�er from the standardization problem. However, the Hypermedia system itself
(or versions of it) can also be distributed on the same medium together with the
data, so that no interface to other software is required.

4.2. ELECTRONIC PUBLISHING 127

With the exception of very small applications that could be distributed on oppy
discs, the CD ROM seems to be the optimal medium for the (Hypermedia) message.
Without getting too much into detail (see, e.g., [94]), the characteristics of the CD
ROM medium are as follows:

� CD ROM technology is an o�spring of audio CD technology, and as a conse-
quence is very cheap: drives cost about $500, the production costs per disc
are about $2 to $5. However, mastering costs are high.

� A CD ROM can store about 600 MB of user data. This is the equivalent of
approximately 300 1,000-page books, 10,000 low-resolution (320 � 200 pixels,
256 colors) raster images, or 1,000 high-resolution (1000 � 600 pixels, 256
colors) raster images, without any kind of data compression involved.

� CD ROM data is practically error-free. A sophisticated scheme of Error Cor-
rection Codes (ECC) gives an overall byte error rate of one per 1013 bytes,
corresponding to a single-byte error in every 20,000 discs [62].

� Throughput is approximately 150 KB per second, which is better than a oppy
but less than a Winchester hard disk. Data compression is required to play
live video o� a CD ROM [100].

� Access time is modest: Radial access time is about 500 ms or more (compared
to about 10 ms of a good Winchester), latency (the time to wait until the disc
has rotated so that the desired sector is under the head) is between 60 and
150 ms average (compared with 8 ms for Winchesters). As a consequence,
sophisticated indices are required to allow access to databases without too
much random access to the CD ROM [12].

� CD ROMs are read-only, i.e. the end user cannot modify the data. This may
be considered an advantage, however, it complicates annotations, tours, etc.

And the future for CD ROMs looks bright: In 1988, Bill Gates forecast that by
Christmas 1991, the typical $1,000 PC would come equipped with a CD ROM drive
[111]. Link Resources, a New York research �rm estimated a total installed base of
85,000 CD ROM players (1988) and predicted a total of 220,000 for year-end 1989
and 1.3 million for year-end 1992 [111]. While these �gure may be a bit optimistic,
there is no doubt that CD ROM technology is becoming mature.

Also, Philips and Sony have announced Compact Disc-Interactive (CD-I), that is
basically a speci�cation of a delivery system based on the CD-ROM standard, but
provides a tightly speci�ed software and hardware framework for developing and
presenting data, images, and sound [93]. A CD-I player is a self-contained low-cost
computer plus a CD-ROM drive intended to plug directly into home television and
hi-� sets. The big Japanese companies see CD-I as customer electronics more than
a computer application.

128 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

For the huge amounts of storage typically associated with Hypermedia documents
(encyclopedias, images, digital movies, sound . . .), the CD ROM is the optimal
distribution medium. We intend to distribute parts of the Hyper-G database on CD
ROM, together with a CD ROM version of HBS (section 2.3.3, page 87). To be
speci�c, the following collections of data are likely to be published this way:

� An interactive map of Austria with pictures of sights in Austria (to be pre-
sented at the World EXPO '92 in Sevilla, Spain).

� Trips around the Himalaya region (about 2,000 high-quality images).

� A hierarchical collection of maps of the world including pictures (similar to
the EXPO project).

� A number of hiking trips (maps plus sights) in Austria.

� An electronic encyclopedia (modi�ed Meyer's encyclopedia) with images.

4.3 The Viewseum

A Viewseum is a new kind of museum, a virtual museum where the exhibits are not
on display as such, but are virtual objects that can be viewed and manipulated by
the visitor by means of computers and audio-visual techniques. The term has been
coined by Maurer [117], and it turns out that Hypermedia systems are well suited
for the task [127].

With its ability to adapt to di�erent user interface devices (see table 2.3 on page 40)
and user interface metaphors (section 2.2.3.10, page 27), its anonymous and anony-

mously identi�ed user modes (section 2.2.3.15, page 32), multilingual documents
(section 2.2.3.14, page 30) and chargeable system functions (Req. U.7), Hyper-G
can also serve as a solid foundation on which to build a Viewseum environment.

Exhibits in such a museum are pieces of audio and video information (video clips,
computer animation, pictures) in combination with encyclopedias, communication
facilities, speci�cally designed software and unorthodox user interfaces. A descrip-
tion of the kind of information that may be found in a Viewseum is contained in [127].
In the following sections, we will concentrate on advanced features of such a mu-
seum: First, we will discuss some of the not-so-common user interfaces, then we will
describe ways of presenting complex (higher dimensional) objects by n-dimensional
movies, interactive movies, and virtual reality.

4.3. THE VIEWSEUM 129

4.3.1 Unorthodox User Interfaces

4.3.1.1 Track Balls and Thumb Wheels

A Track Ball is a device similar to an upside-down mouse: A ball is mounted so
that it can be rotated freely in any direction. It is typically moved by drawing one's
palm or thumb across it. In addition, there may be buttons mounted on the same
device. Internally, the balls turns potentiometers, whose output is converted into
digital form. Advantages in a Viewseum environment (when compared to a mouse)
are:

� Trackballs can be made very resistant to user abuse.

� They can be �xed in place.

� They need less space than mice.

� They are more easily handled by novice users than mice.

Thumb Wheels are more simple devices: Here the potentiometer is rotated directly
by one's thumb. Therefore, only unidirectional movement is possible.

4.3.1.2 Touch Screen

A touch screen is a device that usually is understood by people who have never
touched a keyboard before. Although there are a number of technologies used to
implement touch screens (infrared light, gold wires, inductive), the one considered
most mature consists of a special kind of coating that is mounted on top of the
CRT's glass, and is able to detect the changes in capacity created by a human �nger
touching the coating, to translate that information to 2-D coordinates of the user's
�nger, and to transmit the data to the computer (usually via a serial interface).

Depending on the application, the user may choose between menus, click on anchors,
and even draw directly on the screen. Occasional text input may be handled by
displaying a keyboard on the screen.

However, there is a small disadvantage: The screen is rapidly covered with �nger
prints and appears blurred. Still, experiences at other museums (e.g. EPCOT
Center in Orlando, Florida) show that the touch screen can be operated by most
novice users and therefore is an ideal candidate for a Viewseum environment.

130 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

4.3.1.3 HOTACT

HOTACT (an acronym for HOmeTrainerAnd Computer Technology) is currently
developed at the IMMIS (implementation details may be found in [120]) and con-
sists of a stationary bicycle �tness machine connected to a MS-DOS PC with high-
resolution graphics. The bicycle trainer has two switches attaches to each side of
the handlebars. The user can pedal this combination on a virtual trip through a
tour pre-determined by some author. It is actually just a special kind of user inter-
face to Hyper-G tours. By pressing one of the two buttons, the user can navigate
within the tour (e.g. turning left, entering a building).

The possible tours are not restricted to the obvious \Trip through Austria" likes, but
also \A guided tour through the Louvre", \A trip through the Solar System", \A
Journey into the Human Body", \A Journey through Time", etc. may be provided.

4.3.1.4 Sensors

A number of sensors installed in the Viewseum can detect positions of visitors in
order to activate exhibits when visitors come close to the exhibit. More sophisticated
systems are even able to recognize the visitor based on an anonymous ID card (such
as the ELIS from the Austrian company ELIN or the Keywatch bi Skidata), thus
allowing to �ne-tune the exhibit's user interface according to the user's language,
interests, preferences and whether the user already visited the exhibit.

Other sensors may detect temperature, light, the number of users watching and the
noise level in the exhibit's room, to let the exhibit to respond to that data. Pressure
sensitive oors may be used to detect the positions of users in the exhibition room.

4.3.1.5 3D I/O Devices

To interact with exhibits like virtual objects (e.g. a statue that can be viewed from
all directions; see also sections 4.3.2 and 4.3.4), 3D input and output devices may
be attached to the system.

4.3.1.5.1 3D Input Devices

Digitizers that deliver 3D position information (x; y; z) of a point in space have been
available for some time. They usually work on an ultrasonic or mechanical basis
[82, 128].

4.3. THE VIEWSEUM 131

More powerful are devices working with low frequency magnetic �elds. The \3Space
Tracker" of Polhemus [40, 148] delivers not only the position (x; y; z), but also
th orientation (Azimuth, Elevation, Roll) of a sensor in relation to a source, so it
is actually a 6D input device. The same holds true for the \Spaceball" of Spatial
Systems. It is essentially a force sensitive device that relates the forces and torques
applied to the ball mounted on top of the device, and sends them to the computer
[103].

The \Dataglove" of VPL Research can also considered a 3D input device. It consists
of a lightweight nylon glove with optical sensors mounted along the �ngers that mea-
sure the bending angles of the joints of the thumb and the lower and middle knuckles
of the other �ngers (see �gure 4.1; from [55]). In conjunction with the 3Space Tracker
the absolute position and orientation of the hand can also be detected, allowing
for a new kind of user interface [14, 55]. The users may directly manipulate virtual
objects in a way they are used to in the \real world". This device is commonly used
together with the \EyePhone" in virtual reality environments (section 4.3.4, page
140). There are cheaper variants (e.g. the \PowerGlove" of Mattel [41]) that work
on an ultrasonic basis and are less accurate.

4.3.1.5.2 3D Output Devices

Output devices capable of producing depth perception in the eyes (more accurately
the brains) of viewers by means of physiological depth cues are usually referred to
as true 3D displays. Physiological depth cues are Accomodation, Convergence, and
Binocular Parallax [145]:

� Accomodation is the muscular tension needed to adjust the focal length of the
eye in order to focus on an object in space. This is a monocular depth cue
and is e�ective only for near-situated objects.

� Convergence refers to the muscular tension necessary to rotate the eyes slightly
so that the viewing axes of each eye cross at the point of interest.

� The retinal images in both eyes di�er slightly due to slightly di�erent view-
points. They are fused by the brain, and the di�erence between them is used
to produce depth perception. This e�ect is known as Binocular Parallax, and
is the depth cue used by most true 3D output devices to produce depth per-
ception.

We can distinguish between the following groups of 3D output devices [53, 145, 158]:

132 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

Figure 4.1: The DataGlove (VPL Research)

1. Stereoscopic Systems:
In stereoscopic systems, the eyes of the viewer are directly provided with dif-
ferent views of the object or scene. Typically, they are perspective views taken
with virtual cameras [109] with a rotational di�erence of about 6�. To en-
sure that each eye sees only the image that it is meant to see, a number of

CRT screen
(left view)

CRT screen
(right view)

polarizers

half-silvered
mirror

polarized
glasses

viewer

4.3. THE VIEWSEUM 133

techniques can be used:

(a) Time-Parallel Systems:
The easiest approach is to use di�erent colors (e.g. red and green) for
the two images, and to supply the viewer with colored glasses that �lter
out the \wrong" image for each eye. This is the solution with the lowest
hardware costs, however, there are disadvantages: Pictures have to be
monochrome, and the technique causes eye strain and fatigue due to
conict in our visual system when each eye is exposed to a di�erent
color. Also, color-blind persons cannot use the system.

A di�erent technique uses polarizers mounted in front of two monitors.
A half-silvered mirror combines the two images (�gure 4.2; from [145]).
The viewer wears polarized glasses that �lter out the \wrong" image for
each eye. A major disadvantage of this technique is the limited viewing
position imposed by the mechanical arrangement, so that only one person
can use the system at a time.

Figure 4.2: Dual-Monitor Stereoscopic Display

The \EyePhone" of VPL Research is a so-called \Head-Mounted-Display"
[53]. Each eye looks into its own display, achieving perfect image separa-
tion. However, hardware costs are high and only one person can use the
system.

(b) Time-Multiplexed Systems

In time-multiplexed systems, there is only one monitor, and the two views
are presented one to each eye alternately (one �eld per eye on interlaced
screens). Some type of shuttering mechanism is required to prevent the

134 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

left eye from viewing the monitor while the right eye image is being
displayed, and vice versa.

The currently most promising technology is based on liquid crystal shut-
ters that are incorporated into glasses the user has to wear. Switching im-
ages has to occur fast enough to avoid ickering, and it has to be synchro-
nized with the monitor. While older systems used synchronization cables
for this purpose, modern devices (e.g. \CrystalEyes" of Stereographics
Corp. [158, 167]) use infrared receivers in the glasses and transmitters at
the monitor for synchronization. A number of users can use the system
simultaneously, provided that each one wears a pair of glasses, and watch
the monitor from within a wide area.

The critical factors of this technology are brightness and contrast of the
image, synchronization, ickering, image separation, and equal illumina-
tion of both images. Also, the viewer has to keep his head strictly verti-
cal. According to [145] approximately 8 % of the population cannot fuse
stereo pairs. However, this de�ciency can be improved with practice.

2. Auto-Stereoscopic Systems
Auto-stereoscopic systems are systems that do not require the viewer to wear
glasses of any kind. Also, the object or scene can be watched from arbitrary
viewing angles by a number of persons simultaneously. Obviously, this kind of
3D displays is best suited for the Viewseum environment. Unfortunately, the
technology is currently still immature and very expensive. We can distinguish
between three kinds of auto-stereoscopic devices:

(a) Varifocal-Mirror Displays

Varifocal mirror displays combine a vibrating circular mirror with a CRT.
The mirror is vibrated 30 times a second between convex and concave
by a hi-� speaker driven by a sine wave generator. A CRT display can
be seen in the mirror (�gure 4.3; from [145]). Vibrations of the mirror
are synchronized with the display of the object on the CRT so that each
point on an object is reected from the mirror at a position corresponding
to the depth of that point. Thus, the image has to be redisplayed 30
times a second, limiting resolution. On the other hand, the observer
can change position to see the image from a di�erent viewpoint and no
special glasses are necessary. The technique has been used successfully
in medical imaging [145].

(b) Laser Systems
The Omniview of Texas Instruments [184] uses laser beams that \write"
on a translucent double-helix disk that is mounted on a rotating shaft.
When properly synchronized, any point within a cylinder volume can be
highlighted by the lasers. The observer's eye fuses the discrete points of
light to 3D objects. Only prototypes are available at this time, for prices
of around $200; 000.

synchronizing
control

sine wave
generator

amplifier

image
memory

display

processor

viewer

CRT

screen

mirror

Hi-Fi
speaker

4.3. THE VIEWSEUM 135

Figure 4.3: Block Diagram of Varifocal Mirror Display System

(c) Auto-Stereoscopic Displays
New liquid crystal displays developed by Dimension Technologies, Inc.
[39, 158] use tiny lenses to let the viewer's eyes see di�erent pixels at the
same location. No glasses are required, however, the user's head has to
be within a certain area in front of the display. A similar technique is
currently being developed for CRT's in combination with LCD shutters
[175].

4.3.1.6 Eye Tracking

A technology called Eye Tracking makes the human eye a computer input device by
determining the direction in that the user looks. With a response time of 20 to 30
milliseconds the eye could be a very fast input device. A number of attempts have
been made to utilize this (a short overview can be found in [174]):

Of course, one of the �rst organizations to show a serious interest in eye-tracking
technology was the U.S. Air Force, and used it in ight simulators for �ghter jets.
Basically, a special camera \locks" on the eye, emits a beam of light onto its cornea
and records the direction in which light is reected. The resolution is high enough
to determine on which word on a computer screen the user is focusing on.

At Texas A&M University, the user has to wear a set of eyeglasses equipped with
infrared-emitting diodes and phototransistors. The position of the eye determines
the amount and intensity of the light emitted to the phototransistors.

136 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

Sentient Systems Technology of Pittsburgh, PA, developed the \Eye-Typer 300"
intended to be used by handicapped persons. It lets you enter information by
focusing your eyes for a speci�ed period of time on a certain point. The system sends
the input to the computer over a standard RS232C interface, and sends feedback to
the user using an embedded speech synthesizer.

Another system called OASIS (Ocular Attention Sensing Interface System) uses a
combination of eye and voice input to present information without the users having
to take their hands o�, e.g., the controls of an airplane or car.

As a conclusion, the technology is new, immature and expensive. Also, the users
have to wear glasses or helmets or have to stand in certain positions without moving
their heads. On the other hand, eye tracking is an extremely fast yet natural user
interface. In the Viewseum environment, the user could almost subconsciously select
between items (e.g. pictures) presented on the screen and thus inuence the course
of events.

4.3.1.7 Gesture Recognition

Another experimental user interface technique is that of gesture recognition, espe-
cially hand gesture recognition.

Takahashi and Kishino [172] performed real-time hand gesture recognition experi-
ments with a DataGlove (see �gure 4.1 on page 132), in order to recognize the 46
gestures of the Japanese kana manual alphabet (similar to the gestures used by the
deaf). The experiments showed that about 30 gestures could be distinguished with
their coding method involving joint angle and hand orientation measurements.

Simple gestures like raising the left or the right hand should be distinguishable more
easily, e.g. by infrared motion detectors or light beams.

4.3.1.8 Voice Recognition

While voice output seems to be a solved problem, voice recognition still isn't. How-
ever, there are advances: Kurzweil Applied Intelligence in Waltham, MA, has pro-
duced a 5000- to 10000-word voice recognition system that consists of special hard-
ware and software for use with a 80386-type personal computer [174]. Unfortunately,
the system has to be trained to recognize individual users' voices.

In the Viewseum, a large number of di�erent users will communicate with the ex-
hibits. Therefore, speech recognition must be speaker-independent. On the other
hand, the set of words to be recognized is relatively small. Siemens has developed

Play forward

Play backward Window

4.3. THE VIEWSEUM 137

a prototype of a speaker-independent word recognizer based on phoneme recogni-
tion. The system chooses between a number of generated hypotheses and recognizes
about 98 % [159]. Unfortunately, a lot of hardware (2-3 boards) is needed to recog-
nize speech in real time.

4.3.2 n-dimensional Movies

The Raster Image Document Manager (section 2.3.5.3, page 93) of Hyper-G allows
the display of images that are larger than the workstation screen. In that case the
user can shrink the image (with loss of information) or scroll horizontally and/or
vertically. This feature allows to incorporate some panorama (360�) images, creating
the illusion of rotating a camera on the spot.

To some extent the opposite problem is to rotate a (virtual) camera around an
object, e.g. a statue, to get views from all sides. Here the solution is to take images
from a number of angles and compose a Digital Movie representing a ight around
the object. As the Digital Movie Document Manager allows to play digital movies
back and forth if a \backward channel" is supplied (section 2.3.5.5, page 95), the
user gets the illusion of being able to move around the object and look at it from
all sides.

Figure 4.4: The 1-Dimensional Digital Movie

Figure 4.4 illustrates the concept of such a \1-dimensional" movie, where the user
can move a \window" over the movie in one dimension. When moving the window
forward, the \forward channel" (i.e. the di�erential images for the step from frame
Fi to Fi�1) is used, when moving the window backward, the \backward channel"
(i.e. the di�erential images for the step from frame Fi to Fi�1) is used. Alternatively,
the movie may have been recorded using full images for each frame.

Things get more complicated if the user wants to see the object from above. In
other words, the camera moves on a sphere surface during recording, creating a
2-dimensional digital movie. Now, every frame has not only a predecessor and

right

up

left

down

138 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

successor, but is stored in a matrix with frames to the left, right, up, and down
(�gure 4.5). When replaying the movie, the user may step in either direction.

Figure 4.5: The 2-Dimensional Digital Movie

More dimensions may be added by allowing the object itself to move (e.g. a simu-
lation of a running car engine), not restricting the camera position to a sphere, or
special camera e�ects [109]. This leads us to the generic n-dimensional movie.

One big problem with n-dimensional movies is the exploding storage space required
for each additional dimension. The problem can be reduced by the approach shown
in �gure 4.6 for a 2-dimensional movie: Not all frames Fi;j are supplied, only a grid,
e.g. 5 frames wide, is available. This essentially means that the user's navigation is
a bit limited, however, there are still enough images to guarantee a smooth motion
in any direction.

Applications of n-dimensional movies include visualizations of 3D objects, mov-
ing objects, panorama views of rooms and landscapes, and the like. Note that
n-dimensional movies cannot be implemented using laser discs, because of their
high access time to frames not in sequential order.

user
wants
up

resulting
movement

4.3. THE VIEWSEUM 139

Figure 4.6: A 2-Dimensional Digital Movie Grid

4.3.3 The Interactive Movie

The Interactive Movie is a concept even more interactive than n-dimensional movies
described in above section. Unlike a conventional (linear) movie, the contents of an
interactive movie are not pre-determined, but may be di�erent at any time the user
watches the interactive movie.

The course of events, the appearance of objects and other parameters of an interac-
tive movie may be inuenced by:

� User interaction

� Random numbers

� Data from sensors

� Interaction with other interactive movies or programs

Depending on the story, an interactive movie may actually be one of 100,000 possible
movies. This leads to fundamental properties of interactive movies:

� An interactive movie cannot be watched o� a �lm or video tape. It has to be
executed on a computer.

140 CHAPTER 4. SOME ADVANCED APPLICATIONS OF HYPER-G

� Theoretically, interactive movies can be implemented as n-dimensional movies
(see above section). However, an interactive movie withm frames per sequence
and n decisions between k sequences each would require m�kn frames, which
is too much for a reasonable interactive movie.

� Interactive movies are best implemented using the Hyper-Animation concept
(see chapter 3) by de�ning appropriate Hyper-Animation links between se-
quences of the interactive movie.

In the Viewseum environment, an interactive movie will be seen by the user as a
computer monitor with high-resolution graphics. It will react to the user's presence
(detected by one of the sensors described in section 4.3.1.4 on page 130). Communi-
cation with the user will probably take place using a touch screen (section 4.3.1.2,
page 129), speech synthesis and perhaps speech recognition (section 4.3.1.8, page
136). With the use of ID cards, the interactive movie might even recognize its ob-
server, choose the appropriate language and interaction level, etc.

The interactive movie is not totally interactive, however. Every possible sequence
has to be prerecorded in advance. Only the combination and succession of sequences
is determined at run time. Interactive movies are not as exible as virtual realities
(discussed in the next section); on the other hand, no expensive hardware is required
(\poor man's virtual reality"). Still, interactivity is high when compared to similar
systems found in museums nowadays, and image quality is much higher as in today's
virtual reality systems. Also, users do not have to wear special equipment, which
would be rather inconvenient in a museum environment.

4.3.4 Virtual Objects { Virtual Reality

\Virtual Reality", \Arti�cial Reality", \Cyberspace" are buzzwords of these days.
Papers on it may not only be found in almost any computer magazine (e.g., [14, 40,
41]), but it also draws the attention of the general (American) public, as evidenced
by articles in TIME [43], Scienti�c American [55] and even on the front page of the
New York Times [149].

Virtual reality uses some of the 3D user interfaces described in section 4.3.1.5 plus
powerful and expensive 3D workstations, and enables persons to move in a virtual
world. There are multi-user systems; however, because of the need for a 3D work-
station for every eye, the two-person variant (\RB2", for \reality built for two" [40])
cost $ 430.000 (in 1989). Because the image quality is still to be considered poor,
prices will remain high as pretensions increase. But there are e�orts to bring virtual
reality down to inexpensive hardware (PCs) [146], delivering even poorer quality
(e.g. wire-frame rendering).

4.3. THE VIEWSEUM 141

Serious applications include remote control of robots planned by NASA [149] (the
user's motion data is gathered by the sensors and transmitted to the robot), and
mission planning.

In the Viewseum, visitors could \experience" and \interact with" 3D objects that
are virtually exhibited in the Viewseum, e.g. statues, living dinosaurs, molecules,
the solar system, etc. To achieve this, the document type \3D object" has to be
incorporated into Hyper-G, i.e. a document manager capable of displaying such an
object on one of the 3D output devices described in section 4.3.1.5.2 on page 131
and interacting with it by means of 3D input devices (section 4.3.1.5.1, page 130)
has to be supplied.

In addition, a user interface metaphor suitable for virtual reality has to be developed.
Once again, XEROX PARC has unveiled a new user interface, one that incorporates
color and real-time, three-dimensional, interactive animation. It is called Informa-

tion Visualizer [20, 27], is implemented on Silicon Graphics platforms, and consists
of an environment of rooms, perspective walls [102], data sculptures, and oating
trees that the user can view from any side and wander around in. It is believed that
this interface eases the managing of large quantities of information.

Bibliography

[1] Adobe Systems I. : PostScript Language Reference Manual. Addison-
Wesley, Reading, Mass., 1985.

[2] Agha G. : \An Overview of Actor Languages". ACM SIGPLAN Notices,
21(10):58{67, October 1986.

[3] Andersen M. H., Nielsen J., and Rasmussen H. : \A Similarity-based
Hypertext Browser for Reading the UNIX Network News". Hypermedia,
1(3):255{265, 1989.

[4] Andrews K. : Distributed EDEN { Object-Oriented Design of the EDEN

Kernel as a Distributed System. Master's thesis, Technical University Graz,
Austria, June 1991.

[5] Angstmann R. : Implementation einer elektronischen Enzyklop�adie. PhD
thesis, University of Karlruhe, Germany, 1978. In German.

[6] ANSI. : Computer Graphics { Programmer's Hierarchical Interactive Graphics
System (PHIGS); Functional Description, Archive File Format, Clear-Text

Encoding of Archive File; ANS X3.144. ANSI, September 1988.

[7] Apple Computer, Inc. : Audio Interchange File Format: "AIFF". A Stan-

dard for Sampled Sound Files. Version 1.2. Apple Computer, Inc., June 1988.

[8] Baran N. and Linderholm O. : \Fast New Systems from NeXT". Byte,
15(12):165{168, November 1990.

[9] Begeman M. L. and Conklin J. : \The Right Tool for the Job". Byte,
13(10):255{266, October 1988.

[10] Benest I. D. : \A Hypertext System with Controlled Hype". In Proc. of the

Hypertext II Conference, York, 1989.

[11] Blaschitz P., Fellner W. D., Hofbauer A., Jones W., Kandler G.,
Kappe F., Kessler M., Klinger E., Rapatz K., and Yaganaki N. :
VTX EDEN { User's Manual. INFONOVA Ges.m.b.H., Graz, Austria, 1990.

[12] Bowers R. A. : \The Oxford English Dictionary on Compact Disc". Elec-
tronic and Optical Publishing Review, 8(2):88{91, June 1988.

142

Bibliography 143

[13] Brown H. : \Standards for Structured Documents". The Computer Journal,
32(6):505{514, 1989.

[14] Burgess P. : \Head of VPL Research Virtually Makes His Own World".
MacWEEK, 38{39, August 2, 1988.

[15] Bush V. : \AsWe May Think". In Lambert S. andRopiequet S. (editors),
CD ROM { The New Papyrus, pages 3{20, Microsoft Press, 1986.

[16] Bush V. : \As We May Think". The Atlantic Monthly, 176(1):101{108, July
1945.

[17] Byte. : \The 1990 Byte Awards". Byte, 16(1):147{165, January 1991.

[18] Campbell G., DeFanti T. A., Frederiksen J., Joyce S. A.,
Leske L. A., Lindberg J. A., and Sandin D. J. : \Two Bit/Pixel
Full Color Encoding". ACM Computer Graphics (Proc. SIGGRAPH '86),
20(4):215{223, August 1986.

[19] Card S. K.,Morgan T. P., and Newell A. : The Psychology of Human-
Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, N.J., London,
1983.

[20] Card S. K., Robertson G. G., andMackinlay J. D. : \The Information
Visualizer: An Information Workspace". In Proc. CHI '91: Human Factors

in Computing Systems, pages 181{188, ACM Press, New York, May 1991.

[21] Carlson P. A. : \The Rhetoric of Hypertext". Hypermedia, 2(2):109{132,
1990.

[22] Carlson P. A. : \Square Books and Round Books: Cognitive Implications
of Hypertext". Academic Computing, 16{19; 26{31, April 1990.

[23] Carson G. S. : \Graphics, Networking, and Distributed Computing". In
Proc. Workshop on Graphics and Communications (ESPRIT Project 2463 -

ARGOSI), Breuberg, Germany, Springer, October 1990.

[24] Cavigioli C. : \Image Compression: Spelling Out the Options". Advanced

Imaging, 64{85, October 1990.

[25] Cavigioli C. : \JPEG Compression: Spelling Out the Options". Advanced
Imaging, 44{48, March 1991.

[26] Clark D. : \C-Cube's JPEG Image Compression: Where's It Headed?".
Advanced Imaging, 50{71, September 1990.

[27] Clarkson M. A. : \An Easier Interface". Byte, 16(2):227{282, February
1991.

144 Bibliography

[28] Commodore Business Machines. : Amiga ROM Kernel Reference Manual:

EXEC. Technical Reference Series, Addison-Wesley, Reading, Massachusetts,
1985.

[29] CompuServe. : Graphics Interchange Format (GIF) { A standard de�ning a

mechanism for the storage and transmission of raster-based graphics informa-

tion. CompuServe Inc., June 1987.

[30] Conklin J. : \Hypertext: An Introduction and Survey". IEEE Computer,
20(9):17{41, September 1987.

[31] Coulouris G. F. and Dollimore J. : Distributed Systems: Concepts and

Design. International Computer Science Series, Addison-Wesley, Reading,
Mass., 1988.

[32] Cox B. J. : Object Oriented Programming { An Evolutionary Approach.
Addison-Wesley, Reading, Mass., 1986.

[33] Crowston K. and Malone T. W. : \Intelligent Software Agents { Using
AI techniques in groupware has the potential to dramatically alter the way we
organize our work". Byte, 13(13):267{272, December 1988.

[34] Davenport T. and Vellon M. : Tag Image File Format (TIFF) { Rev.

4.0. Aldus Corp. & Microsoft Corp., April 1987.

[35] Davies G.,Maurer H., and Preece J. : Presentation Metaphors for a very

large Hypermedia System. IIG Report 282, IIG, Graz University of Technology,
Austria, April 1990. To appear in: Journal of Micro Computer Applications
14(2), 1991.

[36] Digital Equipment Corporation. : Compound Document Architecture

Manual, Ultrix Version 3.0, Order Number AA-LY28A-TE. DEC, November
1988.

[37] Digital Research. : GEM Programmer's Guide. Digital Research, 1985.

[38] Digital Research. : GEM Programmer's Guide. Digital Research, 1985.

[39] Dimension Technologies, Inc. : \New Display Produces Stereoscopic 3-
D Images Without Glasses". Jandel Scienti�c Newsletter, 4(2):2, 1990.

[40] Ditlea S. : \Inside Arti�cial Reality". PC/Computing, 91{102, November
1989.

[41] Eglowstein H. : \Reach Out and Touch Your Data". Byte, 15(7):283{290,
July 1990.

[42] Ellis C. A., Gibbs S. J., and Rein G. L. : \Groupware: Some Issues and
Experiences". Communications of the ACM, 34(1):39{58, January 1991.

Bibliography 145

[43] Elmer-Dewitt P. : \Through the 3-D Looking Glass". TIME, 65{66, May
1, 1989.

[44] Engelbart D. C. : \A Conceptual Framework for the Augmentation of
Man's Intellect". In Howerton P. D. and Weeks D. C. (editors), Vistas
in Information Handling, Vol. 1, pages 1{29, Spartan Books, Washington
D.C., 1963.

[45] Engelbart D. C. and Lehtman H. : \Working Together { The human
system and the tool system are equally important in computer-supported co-
operative work". Byte, 13(13):245{252, December 1988.

[46] Fedida S. : \An Interactive Information Service for the General Pub-
lic". In Proc. European Computing Conference on Communication Networks,
pages 261{282, 1975.

[47] Fellner W. D., Andrews K., Kappe F., and Leitner H. : Distributed
EDEN { A Distributed Graphics Editing Environment. Technical Report 9104,
Memorial University of Newfoundland, St. John's, NF, Canada, May 1991.

[48] Fellner W. D. and Kappe F. : EDEN { A General-Purpose Graphics

Editor Environment. IIG Report 266, IIG, Graz University of Technology,
Austria, February 1988.

[49] Fellner W. D. and Kappe F. : \EDEN { An Editor Environment for
Object-Oriented Graphics Editing". In Vandoni C. E. and Duce D. A.

(editors), Proc. Eurographics '90, Montreux, Switzerland, pages 425{437,
Eurographics Association, Elsevier Science Publishers B.V., The Netherlands,
September 1990.

[50] Fellner W. D. and Kappe F. : \PIC { A Meta�le Format for Distributed
Graphics Applications". In Proc. Workshop on Graphics and Communications

(ESPRIT Project 2463 - ARGOSI), Breuberg, Germany, Springer, October
1990.

[51] Fellner W. D., Kappe F., and Schaeffler J. : CGI' Interface Version
1.0 (based on CGI 2nd DP). IIG Report 292, IIG, Graz University of Technol-
ogy, Austria, November 1990.

[52] Fiderio J. : \A Grand Vision { Hypertext mimics the brain's ability to
access information quickly and intuitively by reference". Byte, 13(10):237{
244, October 1988.

[53] Fisher S. S. and Tazelaar J. M. : \Living in a Virtual World". Byte,
15(7):215{221, July 1990.

[54] Floyd R. W. and Steinberg L. : \An Adaptive Algorithm for Spatial Gray
Scale". SID 75 Int. Symp. Dig. Tech. Papers, 36{37, 1975.

146 Bibliography

[55] Foley J. D. : \Interfaces for Advanced Computing". Scienti�c American,
127{135, October 1987.

[56] Frei H. P. and Stieger D. : \The Retrieval View, a Component of the Doc-
ument Architecture". InMaurer H. (editor), Proc. of Hypertext/Hypermedia
'91, Graz, Austria, pages 99{108, Springer, IFB 276, May 1991.

[57] Frisse M. : \From Text to Hypertext". Byte, 13(10):247{253, October 1988.

[58] Gloor P. A. : Hypermedia-Anwendungsentwicklung { Eine Einf�uhrung

mit Hypercard Beispielen. Leitf�aden der angewandten Informatik, Teubner,
Stuttgart, 1990. In German.

[59] Grudin J. : \Perils and Pitfalls { To succeed with Groupware, you must �rst
clear these hurdles". Byte, 13(13):261{264, December 1988.

[60] Halasz F. G. : \Reections on NoteCards: Seven Issues for the Next Gener-
ation of Hypermedia Systems". Communications of the ACM, 31(7):836{852,
July 1988.

[61] Hammond N. and Allison L. : \The Travel Metaphor as Design Principle
and Training Aid for Navigating Around Complex Systems". In Diaper D.

and Winder R. (editors), People and Computers III, Cambridge University
Press, 1987.

[62] Hardwick A. : \Error Correction Codes { Key to Perfect Data". In
Lambert S. and Ropiequet S. (editors), CD ROM { The New Papyrus,
pages 73{83, Microsoft Press, 1986.

[63] Harney K., Keith M., Lavelle G., Ryan L. D., and Stark D. J. :
\The i750 Video Processor: A Total Multimedia Solution". Communications
of the ACM, 34(4):64{78, April 1991.

[64] Heckbert P. : \Color Image Quantization for Frame Bu�er Display". Proc.
SIGGRAPH '82, ACM Computer Graphics, 16(3):297{307, July 1982.

[65] Helander M. (editor). : Handbook of Human-Computer Interaction. Noth-
Holland Publ. Co., Amsterdam, 1990.

[66] Hewitt C. : \Viewing Control Structures as Patterns of Passing Messages".
Arti�cial Intelligence, 8(3):323{364, June 1977.

[67] Hiltz S. R. andTuroff M. : \The Evolution of User Behavior in a Comput-
erized Conferencing System". Communications of the ACM, 24(11):739{751,
November 1981.

[68] Hiltz S. R. and Turoff M. : \Structuring Computer-Mediated Commu-
nication Systems to Avoid Information Overload". Communications of the

ACM, 28(7):680{689, July 1985.

Bibliography 147

[69] Holweg G. and Huber F. : \Creating Highly Interactive Lesson Material
or Learning by Doing". In Dalton D. W. (editor), Proc. 32nd Annual.

Conference, Association for the Development of Computer-Based Instructional

Material, San Diego, Ca., pages 184{191, November 1990.

[70] Huber F., Makedon F., and Maurer H. : \Hyper-COSTOC: A Compre-
hensive Computer-Based Teaching Support System". Journal of Micro Com-

puter Applications, 12:293{317, 1989.

[71] H�utter M. : Design und Implementierung eines Hypermedia Basis Systems.
Master's thesis, Technical University Graz, Austria, June 1991. In German.

[72] Irler W. J. and Barbieri G. : \Non-Intrusive Hypertext Anchors and Indi-
vidual Colour Markings". In Rizk A., Streitz N., and Andr�e J. (editors),
Hypertext: Concepts, Systems and Applications; Proc. ECHT '90, pages 261{
273, Cambridge University Press, 1990.

[73] ISO. : Information Processing Systems { Computer Graphics { Interfacing

Techniques for Dialogs with Graphical Devices (CGI), Parts 1-6, ISO DIS

9636. ISO, December 1989.

[74] ISO. : Information Processing Systems { Computer Graphics { Meta�le for

the Storage and Transfer of Picture Description Information (CGM), ISO IS

8632. ISO, August 1987.

[75] ISO. : Information Processing Systems { Computer Graphics { Programmer's

Hierarchical Interactive Graphics System (PHIGS), Parts 1-3, ISO DIS 9592.
ISO, October 1987.

[76] ISO. : Information Processing Systems { Open Systems Interconnection {

Speci�cation of Abstract Syntax Notation One (ASN.1), ISO DIS 8824. ISO,
July 1986.

[77] ISO. : Information Processing Systems { Open Systems Interconnection

{ Speci�cation of basic encoding rules for Abstract Syntax Notation One

(ASN.1), ISO DIS 8825. ISO, July 1986.

[78] ISO. : Information Processing Systems { Text and O�ce Systems { O�ce

Document Architecture (ODA) and Interchange Format, Parts 1,2,4-8, ISO

IS 8613. ISO, 1989.

[79] ISO. : Information Processing Systems { Text and O�ce Systems { Standard

Generalized Markup Language (SGML), ISO IS 8879. ISO, 1986.

[80] ISO. : ISO/IEC JTC1/SC2/WG12 { Multimedia and Hypermedia informa-

tion coding Expert Group (MHEG) { Coded Representation of Multimedia and

Hypermedia Information { MHEG Working Document "S", Version 3. ISO,
November 1990.

148 Bibliography

[81] Johnson J., Roberts T. L., Verplank W., Smith D. C., Irby C.,
Beard M., and Mackey K. : \The Xerox Star: A Retrospective". IEEE

Computer, 22(9):11{26, September 1989.

[82] Joyce E. : \A Three Dimensional Space Tablet". PC Magazine, 4(12), June
26 1984.

[83] Kant K. and Zucker S. W. : \Planning Collision-Free Trajectories in
Time-Varying Environments: A Two-level Hierarchy". The Visual Computer,
3(5):304{313, March 1988.

[84] Kappe F. : Design und Implementierung eines EDEN-basierenden Bild-

schirmtext-Editors. Master's thesis, Technical University Graz, Austria,
February 1988. In German.

[85] Kappe F. : Picture Interchange Coding (PIC); Functional Speci�cation and

Encoding of Pro�le '2D'. IIG Report 266, IIG, Graz University of Technology,
Austria, February 1989.

[86] Kappe F. : \Spezielle Eigenschaften gro�er Hypermedia-Systeme". In
Maurer H. (editor), Proc. of Hypertext/Hypermedia '91, Graz, Austria,
pages 164{173, Springer, IFB 276, May 1991. In German.

[87] Kappe F. : \Unorthodoxe Anwendungen von Hypermedia-Systemen". In
Wallmannsberger J. (editor), Hypertext { State of the Art, R. Oldenbourg,
Vienna, Munich, 1991. In German. To appear.

[88] Kappe F. and Maurer H. : \Animation in Hyper-G { An Outline". In
Haase V. and Zinterhof P. (editors), Proc. Future Trends in Information

Technology '90, Salzburg, Austria, pages 235{248, Austrian Computer Society,
R. Oldenbourg, Vienna, Munich, September 1990.

[89] Kappe F., Nagler G., Sammer P., and Sigl H. C. : Picture Interchange
Coding (PIC) Addendum 3 - Pro�le 'RAST'. IIG Report, IIG, Graz University
of Technology, Austria. In preparation.

[90] Knuth D. E. : Computers and Typesetting. Vol. A: The TEXbook. Addison-
Wesley, Reading, Massachusetts, 1986.

[91] Knuth D. E. : Computers and Typesetting. Vol. B: TEX: The Program.
Addison-Wesley, Reading, Massachusetts, 1984.

[92] Kuhlen R. : Hypertext { Ein nicht-lineares Medium zwischen Buch und

Wissensbank. Springer, 1991. In German.

[93] Laub L. : \Information Delivery Systems". In Ropiequet S., Ein-
berger J., and Zoellick B. (editors), CD ROM { Optical Publishing,
pages 11{30, Microsoft Press, 1987.

Bibliography 149

[94] Laub L. : \What Is CD ROM?". In Lambert S. and Ropiequet S.

(editors), CD ROM { The New Papyrus, pages 47{71, Microsoft Press, 1986.

[95] Laurel B. (editor). : The Art of Human-Computer Interface Design.
Addison-Wesley, Reading, Massachusetts, 1990.

[96] le Gall D. : \MPEG: A Video Compression Standard for Multimedia Ap-
plications". Communications of the ACM, 34(4):46{63, April 1991.

[97] Linton M. A., Calder P. R., and Vlissides J. M. : \The Design and
Implementation of InterViews". In Proc. USENIX C++ Workshop, Santa Fe,

New Mexiko, November 1987.

[98] Linton M. A., Vlissides J. M., and Calder P. R. : \Composing User
Interfaces with InterViews". IEEE Computer, 22(2):8{22, February 1989.

[99] Lion K. : \DAT's a Solution". Byte, 15(12):323{328, November 1990.

[100] Loviera G. and Kinstler D. : \Multimedia: DVI Arrives". Byte, 15(11,
IBM Special Edition):105{108, 1990.

[101] Lozano-Per�ez T. and Wesley M. A. : \An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles". Communications of the

ACM, 22(10):560{570, October 1979.

[102] Mackinlay J. D., Robertson G. G., and Card S. K. : \The Perspective
Wall: Detail and Context Smoothly Integrated". In Proc. CHI '91: Human

Factors in Computing Systems, pages 173{179, ACM Press, New York, May
1991.

[103] Magnenat-Thalmann N. : \Multimedia, Virtual Reality and Computer
Animation". In Maurer H. (editor), Proc. of Hypertext/Hypermedia '91,

Graz, Austria, pages 1{17, Springer, IFB 276, May 1991.

[104] Magnenat-Thalmann N. and Thalmann D. : \Abstract Muscle Action
Procedures for Human Face Animation". The Visual Computer, 3(5):290{297,
March 1988.

[105] Magnenat-Thalmann N. andThalmann D. : Computer Animation: The-
ory and Practice. Springer, Tokyo, Berlin, Heidelberg, New York, 1983.

[106] Magnenat-Thalmann N. and Thalmann D. : \The Direction of Synthetic
Actors in the Film Rendez-vous �a Montr�eal". IEEE Computer Graphics &

Applications, 7(12):9{19, December 1987.

[107] Magnenat-Thalmann N. and Thalmann D. : \An Indexed Bibliography
on Image Synthesis". IEEE Computer Graphics & Applications, 7(8):28{38,
August 1987.

150 Bibliography

[108] Magnenat-Thalmann N. and Thalmann D. : \MIRANIM: An Extensi-
ble Director-Oriented System for the Animation of Realistic Images". IEEE

Computer Graphics & Applications, 5(3):61{73, March 1985.

[109] Magnenat-Thalmann N. and Thalmann D. : \Special Cinematographic
E�ects with Virtual Movie Cameras". IEEE Computer Graphics & Applica-

tions, 6(4):43{50, April 1986.

[110] Makedon F. andMaurer H. : \COSTOC { Computer Supported Teaching
of Computer Science". In Proc. IFIP Conference on Teleteaching, Budapest,
pages 107{119, North Holland Publ. Co., Amsterdam, 1988.

[111] Manes S. : \Archives in Miniature". PC Magazine, 8(2):185{200, January
1989.

[112] Marchionini G. and Shneiderman B. : \Finding Facts vs. Browsing
Knowledge". IEEE Computer, 21(1):70{80, January 1988.

[113] Maulsby D. L.,Witten I. H., and Kittlitz K. A. : \Metamouse: Spec-
ifying Graphical Procedures by Example". ACM Computer Graphics (Proc.

SIGGRAPH '89), 23(3):127{136, July 1989.

[114] Maurer H. : Bildschirmtext mu� ein Erfolg werden. IIG Report B42, IIG,
Graz University of Technology, Austria, February 1984. In German.

[115] Maurer H. : Bildschirmtext�ahnliche Systeme. IIG Report B11, IIG, Graz
University of Technology, Austria, 1981. In German.

[116] Maurer H. : \Hyper-G { Ein echtes Hypermedia System". InWallmanns-

berger J. (editor), Hypertext { State of The Art, R. Oldenbourg, Vienna,
Munich, 1991. In German.

[117] Maurer H. : The Viewseum { An Introduction. IIG Report 279, IIG, Graz
University of Technology, Austria, April 1990.

[118] Maurer H., Roszenich N., and Sebestyen I. : \Videotex without Big
Brother". Electronic Publishing Review, 4:201{214, 1984.

[119] Maurer H., Schinnerl W., and Tomek I. : \Kommunikation in einem
Hypermedia-System". In Gloor P. A. and Streitz N. A. (editors), Proc.
of Hypertext/Hypermedia '90; IFB 249, pages 124{133, Springer, Berlin, 1990.
In German.

[120] Maurer H. and Soral G. : HOTACT: HOmeTrainer And Computer

Technology. IIG Report 283, IIG, Graz University of Technology, Austria,
August 1990.

[121] Maurer H. and Tomek I. : \Broadening the Scope of Hypermedia Princi-
ples". Hypermedia, 2(3):201{221, 1990.

Bibliography 151

[122] Maurer H. and Tomek I. : \From Hypertexts to Hyperenvironments". e
& i, 107(12):614{616, December 1990.

[123] Maurer H. and Tomek I. : Hypermedia Bibliography. IIG Report 286, IIG,
Graz University of Technology, Austria, November 1990. An updated version
appears in: Journal of Micro Computer Applications 14(2), 1991.

[124] Maurer H. and Tomek I. : \Hypermedia in Teleteaching". In Proc. IFIF

Congress WCCE '90, pages 1009{1015, North Holland Publ. Co., Amsterdam,
1990.

[125] Maurer H. and Tomek I. : \A Model for a Next-Generation Hypermedia
System". In Proc. ACM/CSC '91, Texas, 1991.

[126] Maurer H. andTomek I. : \Some Aspects of Hypermedia Systems and their
Treatment in Hyper-G". Wirtschaftsinformatik, 32(2):187{196, April 1990.

[127] Maurer H. and Williams M. : Hypermedia Systems as Infrastructure for

Museums. IIG Report 279, IIG, Graz University of Technology, Austria, 1991.
To appear in: Journal of Micro Computer Applications 14(2), 1991.

[128] McAvinney P. : \Telltale Gestures: 3-D applications need 3-D input". Byte,
15(7):237{240, July 1990.

[129] Meyrowitz N. K. : \InterMedia: The Architecture and Construction of
an Object Oriented Hypertext/Hypermedia System and Applications Frame-
work". In Proc. OOPSLA 86, Portland, Oregon, pages 186{201, Septem-
ber/October 1986.

[130] Moline J., Benigni D., and Baronas J. (editors). : Proc. Hypertext Stan-
dardization Workshop, NIST Special Publication 500-178, January 1990.

[131] M�uhlh�auser M. : \Hyperinformation in Instructional Tools Environments".
In Norrie D. H. and Six H. W. (editors), Computer Assisted Learning:

Proc. 3rd International Conference ICCAL'90, pages 245{264, Springer, LNCS
438, 1990.

[132] M�ulner H. : Die Behandlung von Textdatenbest�anden in einem Hypermedi-

asystem. PhD thesis, Technical University Graz, Austria, 1991. In German.

[133] M�ulner H. : \A System of Inter-Active Encyclopaedias". In Proc. 4th

Austrian-Hungarian Informatics Conference, Budapest, pages 181{190, John
von Neumann Society for Computing Sciences, Hungary, 1989.

[134] Nagler G. M. : Integration digitalisierter Bilder in Editiersysteme. Master's
thesis, Technical University Graz, Austria, September 1990. In German.

[135] Nelson T. H. : \A File Structure for the Complex, the Changing, and the
Indeterminate". In Proc. 20th ACM National Conference, pages 84{100, 1965.

152 Bibliography

[136] Nelson T. H. : Literary Machines, Ed. 87.1. (1987). The Distributors,
South Bend, IN, 1981.

[137] Nelson T. H. : \Managing Immense Storage: Project Xanadu provides a
model for the possible future of mass storage". Byte, 13(1):225{238, January
1988.

[138] Nielsen J. : \The Art of Navigating through Hypertext". Communications
of the ACM, 33(3):296{310, March 1990.

[139] Nielsen J. : Hypertext & Hypermedia. Academic Press, San Diego, CA, 1990.

[140] Nievergelt J. : \Errors in Dialog Design and how to Avoid them". In
Nievergelt, Coray, Nicoud, and Shaw (editors), Document Preparation
Systems, North Holland, 1982.

[141] Nye A. (editor). : X Protocol Reference Manual. Volume 0 of The X Window

System Series, O'Reilly and Associates, Inc., 2nd edition, 1990.

[142] Nye A. : Xlib Programming Manual. Volume 1 of The X Window System

Series, O'Reilly and Associates, Inc., 1989.

[143] Nye A. (editor). : Xlib Reference Manual. Volume 2 of The X Window System

Series, O'Reilly and Associates, Inc., 1989.

[144] Opper S. : \A Groupware Toolbox: These products prove that personal
computer groupware is real". Byte, 13(13):275{282, December 1988.

[145] Owczarczyk J. and Owczarczyk B. : \Evaluation of true 3D Display
Systems for Visualizing Medical Volume Data". The Visual Computer, 6:219{
226, July 1990.

[146] Pausch R. : \Virtual Reality on Five Dollars a Day". In Proc. CHI '91:

Human Factors in Computing Systems, pages 265{269, ACM Press, New York,
May 1991.

[147] Pins M. : \Extensions of the Color-Cell-Compression-Algorithm". In
Magnenat-Thalmann N. and Thalmann D. (editors), proc. Computer
Animation '91, Geneva, Switzerland, pages 241{251, Springer, 1991.

[148] Polhemus. : 3SPACE Isotrak { User's Manual. Polhemus { A Kaiser
Aerospace & Electronics Company, Colchester, Vermont, May 22, 1987.

[149] Pollack A. : \What Is Arti�cial Reality? Wear a Computer and See". The
New York Times, 138(47836):1, April 10, 1989.

[150] Poskanzer J. : Extended Portable Bitmap Toolkit. Beta Test Distribution of

Feb. 5. 1991.

Bibliography 153

[151] Pueyo X. and Tost D. : \A Survey of Computer Animation". Computer

Graphics Forum, 7(4):281{300, December 1988.

[152] Quarterman J. S. : The Matrix { Computer Networks and Conferencing

Systems Worldwide. Digital Press, Bedford, MA, 1990.

[153] Rapatz K. : Ma�schneiderung von EDEN auf GEM-Kompatibilit�at. Master's
thesis, Technical University Graz, Austria, 1989. In German.

[154] Raymond D. R. and Tompa F. W. : \Hypertext and The Oxford English
Dictionary". Communications of the ACM, 31(7):871{879, July 1988.

[155] Reeves W. T. : \Particle Systems { A Technique for Modeling a Class
of Fuzzy Objects". ACM Computer Graphics (Proc. SIGGRAPH '83),
17(3):359{376, July 1983.

[156] Reynolds C. W. : \Computer Animation with Scripts and Actors". ACM
Computer Graphics, 16(3):289{296, July 1982.

[157] Robinson M. : \Through a Lens Smartly { MIT's Information Lens project
has laid the foundation for intelligent assistants for your E-mail system". Byte,
16(5):177{187, May 1991.

[158] Robinson P. : \Stereo 3D". Computer Graphics World, 68{74, June 1990.

[159] Rumpf C., Harke U., Leiner U., and Niem�oller M. : \Nat�urliche
Sprache und Computer-Animation { Eine multi-mediale Dialogober�ache".
In Maurer H. (editor), Proc. of Hypertext/Hypermedia '91, Graz, Austria,
pages 238{248, Springer, IFB 276, May 1991. In German.

[160] Sammer P. : Erweiterungen des klassischen computerunterst�utzten Unter-

richts. PhD thesis, Technical University Graz, Austria, May 1989. In German.

[161] Scheifler R. W. and Gettys J. : \The X Window System". ACM Trans-

actions on Graphics, 5(2):79{109, April 1986.

[162] Sch�utt H. A. and Streitz N. A. : \A Hypermedia Engine Based on a
Relational Database Management System". In Rizk A., Streitz N., and
Andr�e J. (editors), Hypertext: Concepts, Systems and Applications; Proc.

ECHT '90, pages 95{108, Cambridge University Press, 1990.

[163] Shneiderman B. : \User Interface Design for the Hyperties Electronic En-
cyclopedia". In Proc. of Hypertext '87, TR88-013, pages 199{205, University
of North Carolina, Dept. of Computer Science, March 1988.

[164] Smith B. : \Personal Iris: The Dream Maker". Byte, 15(7):174{178, 1990.

[165] Stallman R. : GNU Emacs Manual. 5th Edition, Emacs Version 18 for Unix

Users. October 1986.

154 Bibliography

[166] Stein R. M. : \Browsing through Terabytes { Wide-area information servers
open a new frontier in personal and corporate information services". Byte,
16(5):157{164, May 1991.

[167] StereoGraphics Corp. : \3-D Viewing in Two Styles". Byte, 16(1):50,
1991.

[168] Streitz N. A., Hannemann J., and Th�uring M. : \From Ideas and
Arguments to Hyperdocuments: Travelling through Activity Spaces". In Proc.
Hypertext '89, pages 343{364, ACM Press, New York, November 1989.

[169] Stroustrup B. : The C++ Programming Language. Addison-Wesley Series

in Computer Science, Addison-Wesley, Reading, Massachusetts, 1987.

[170] Stubenrauch R. : \Touring a Hyper-CAI System". InMaurer H. (editor),
Computer Assisted Learning. Proc. of 2nd Int. Conf., ICCAL '89, Austin, TX,

USA, pages 541{551, Springer, LNCS 360, May 1989.

[171] Stubenrauch R. and Tomek I. : \Navigation and Browsing Through
Lessons in a Hyper-CAI System". In Proc. 7th International Conference on

Technology and Education, Brussels, Belgium, pages 125{127, CEP Consul-
tants Ltd., March 1990.

[172] Takahashi T. and Kishino F. : \Hand Gesture Coding Based on Ex-
periments using a Hand Gesture Interface Device". ACM SIGCHI Bulletin,
23(2):67{74, April 1991.

[173] Tanimoto S. L. and Runyan M. S. : \PLAY { An Iconic Programming
System for Children". In Chang S., Ichikawa T., and Ligomenides P. A.
(editors), Visual Languages, pages 191{205, Plenum Publishing Corporation,
1986.

[174] Tello E. R. : \Between Man and Machine". Byte, 13(9):288{293, September
1988.

[175] Theoharis T. A., Travis A. R. L., and Wiseman N. E. : \3D Display:
Synthetic Image Generation and Visual E�ect Simulation". Computer Graph-
ics Forum, 9(4):337{348, December 1990.

[176] Tomek I., Khan S.,Muldner T., Nassar M., Novak G., and Proszyn-
ski P. : \Hypermedia { Introduction and Survey". To appear in: Journal of
Micro Computer Applications 14(2), 1991.

[177] Tomek I. and Maurer H. : \The Analyst as a Staring Point for a Hyper-
media System". To appear in: Journal of Micro Computer Applications 14(2),
1991.

[178] Tost D. and Pueyo X. : \Human Body Animation: A Survey". The Visual
Computer, 3(5):254{264, March 1988.

Bibliography 155

[179] Wallace G. K. : \The JPEG Still Picture Compression Standard". Com-
munications of the ACM, 34(4):30{44, April 1991.

[180] Welch T. A. : \A Technique for High Performance Data Compression".
IEEE Computer, 17(6):8{19, June 1984.

[181] Wiener R. S. and Pinson L. J. : The C++ Workbook. Addison-Wesley,
Reading, Massachusetts, 1990.

[182] Wiener R. S. and Pinson L. J. : An Introduction to Object-Oriented

Programming and C++. Addison-Wesley, Reading, Massachusetts, 1988.

[183] Wilhelms J. : \Toward Automatic Motion Control". IEEE Computer Graph-

ics & Applications, 7(4):11{22, April 1987.

[184] Williams D. : \OnmiView { A Real-Time, Auto-Stereoscopic, Multiplanar
3-D Display System". Byte, 16(12):19, November 1990.

[185] Williams G. : \HyperCard". Byte, 12(14):109{117, December 1987.

[186] Winograd T. : \Where the Action Is { Groupware brings clarity and simplic-
ity to the coordination of human action". Byte, 13(13):256A{258, December
1988.

[187] Witten I. H. : Principles of Computer Speech. Academic Press, London,
1982.

[188] Witten I. H. and Maulsby D. : \I, Metamouse". In IIG Report 260,
pages 198{210, IIG, Graz University of Technology, Austria, June 1988.

[189] Yankelovich N., Haan B. J., Meyrowitz N. K., and Drucker S. M.:
\Intermedia: The Concept and the Construction of a Seamless Information
Environment". IEEE Computer, 21(1):81{96, January 1988.

[190] Yankelovich N., Meyrowitz N. K., and van Dam A. : \Reading and
Writing the Electronic Book". IEEE Computer, 18(10):15{30, October 1985.

[191] Zeltzer D. : \Motor Control Techniques for Figure Animation". IEEE

Computer Graphics & Applications, 2(11):53{60, November 1982.

