
Hyper-G

Speci�cation of Requirements

Frank Kappe, Hermann Maurer

IICM, Institutes for Information Processing Graz,

Graz University of Technology

Ivan Tomek

Jodrey School of Computer Science,

Acadia University, Wolfville, Nova Scotia

Abstract

Hyper-G is the name of an ambitious Hypermedia project1 currently being

developed as a joint e�ort by a number of institutes of the IIG (Institutes

for Information-Processing Graz) of the Technical University of Graz2 and

the Austrian Computer Society.

Study of modern hypermedia systems, information systems, and user in-

terfaces lead to a number of ideas, features, and examples of applications of

Hyper-G. They were condensed, put into a logical relationship, and now form

a framework of requirements that is contained in this report.

The requirements may also be seen as a description of Hyper-G's features.

Care has been taken to isolate requirements from implementation details,

design decisions, examples and applications of Hyper-G. For such issues, the

reader is referred to e.g. [8, 17, 19] and [20].

1Funding of this project by the Austrian Ministry of Science, grant 613.531/5-26/90, is gratefully

acknowledged.

2Yes, the 'G' in Hyper-G stands for Graz.

1

2 Contents

Contents

1 Introduction 3

2 General Requirements 3

3 User-related Requirements 10

4 Author-related Requirements 18

5 System Requirements 18

6 Implementation Requirements 22

References 24

General Requirements 3

1 Introduction

The forthcoming sections contain a hierarchy of requirements for Hyper-G. They

are structured in �ve groups: General Requirements, User-related Requirements,

Author-related Requirements, System Requirements and Implementation Require-

ments. For ease of reference, a unique label is assigned to each requirement in such

a way that, if requirement a is re�ned by requirement b, the label of a is a pre�x of

the label of b.

2 General Requirements

Req. G.1: The system should allow access to all kinds of information one

can think of (Multimedia Axiom).

Let us re�ne this to a set of more speci�c requirements:

Req. G.1.1: Information is organized in documents of a speci�c document

type. Document types include (but are not limited to):

Req. G.1.1.1: Textual Information

Req. G.1.1.2: Technical Drawings

Req. G.1.1.3: Raster Images

Req. G.1.1.4: Digitized Sound

Req. G.1.1.5: Digital Movies

Req. G.1.1.6: Animation

Req. G.1.1.7: Maps

Req. G.1.1.8: Electronic Mail, Bulletin Boards, Computer Conferencing

Req. G.1.1.9: Dialogs (e.g. Menus, Forms)

A system able to handle above document types is generally referred to as a multi-

media system. To put it simple, above requirements state that Hyper-G is such a

multimedia system. Above list is by no means complete; e.g., document types like

synthesized voice and music may be added in the future.

Basic RequirementReq. G.1 introduces the notion of documents. These documents

can be grouped into so-called Document Clusters.

Req. G.1.2: Document Clusters are groups of documents that are seman-

tically equivalent or related.

Hauptstadt des Bun-
deslandes Steier-
mark und zweitgroe-
sste Stadt Oester-
reichs. Sehenswuer-
digkeiten: Mittel-
alterlicher Stadt-
kern, Uhrturm (sie-
he Bild), Theater,
Oper, Museen, viele
Parks und Cafes.

GRAZ

Text (german)

Typical Document Cluster

Image

Sound

cluster links

Text (english)

Capital of the pro-
vince of Styria and
second largest city
of Austria. Touri-
stic attractions:
medieval city cen-
ter, clock-tower,
(see picture) over-
looking city, thea-
ter, opera, variety
of museums. Excel-

GRAZ

4 General Requirements

Examples of \semantically equivalent or related" documents are:

� A text document in German and the English translation.

� A text document and a sound document containing the voice of someone read-

ing the text document.

� A picture and the description of the picture.

A special type of link (semantic link, see Req. G.2.4) is used to link the individual

documents of a document cluster. While a discussion of advantages and disadvan-

tages of document clusters may be found in [8], �gure 1 illustrates an example.

Figure 1: A typical Document Cluster

Req. G.1.3: Documents, as well as links, collections, tours etc. are sub-

classes of the class Hyper-G object. All Hyper-G objects (and

its subclasses) store attributes in addition to the information.

These attributes include:

Req. G.1.3.1: Author and User Group.

Req. G.1.3.2: Creation/Modi�cation/Access/Expiration time.

Req. G.1.3.3: Language.

Req. G.1.3.4: Rights for object's functions, for author, group and world.

Req. G.1.3.5: Price for object's functions, for group and world.

General Requirements 5

Req. G.2: Documents (Req. G.1.1) may be cross-referenced and ac-

cessed by links (Hypertext Axiom).

This means that Hyper-G adopts the well-known hypertext paradigm. Requirements

Req. G.1 together with Req. G.2 state that Hyper-G is what is known as a

hypermedia system.

Req. G.2.1: The user is o�ered a visual representation of the link, called

anchor . The user may 'activate' the link by activating the

corresponding anchor.

Of course, the actual meaning of 'activate' depends on the user interface. Typically,

the user will point to the anchor using some pointing device and then activate it by

pressing a button. However, other means of activation are possible with unorthodox

user interfaces [8, 10, 14, 20].

Req. G.2.1.1: Anchors belong to links rather than documents. Creation,

modi�cation or deletion of anchors is not regarded as docu-

ment modi�cation.

This implies that even users that have no right to modify a document may create

links (with anchors) from/to that document, if they are granted the right to create

links (annotation).

Req. G.2.1.2: The visual appearance of an anchor depends on the destina-

tion document type, and on whether the destination docu-

ment has already been visited during the active session.

This signi�cantly reduces the number of unwanted re-visits of the same document

in a session. Also, this feature is used to lead the user to 'rare information', such

as video clips, animation, sound, and images, and is most important in the early

phase of Hyper-G. At a later stage, e.g., when high-quality images are not so rare

any more, it may become partially obsolete.

Sometimes, the user would like to have the ability to trace links backward to the

source when being at the target (\Show me the documents with links to the current

document"). This 'associative search' [8] may be considered the opposite of conven-

tional (forward) link following.

6 General Requirements

Hyper-G will support both forward and backward (associative) link following. Note

that there are no new links or link types involved; rather the user is given the choice

of how to use them.

Req. G.2.2: Links are directed, i.e. there are source and destination an-

chors. However, Hyper-G supports forward and backward link

following.

Req. G.2.2.1: When forward following a link (i.e. source to destination), on

activating the source anchor, the system will activate the des-

tination document in such a way that the destination anchor

is visible (if possible).

An example would be a paragraph in a destination text document that is scrolled

so that at least the beginning of the paragraph is visible.

Req. G.2.2.2: When backward following a link (i.e. destination to source),

on activating the destination anchor, the system will activate

the source document in such a way that the source anchor is

visible (if possible).

An example of this would be a part of a map that is scrolled such that the source

anchor linking to the destination document (a more detailed map) is centered in the

display window.

Req. G.2.3: Every document has a default anchor associated with it. The

default anchor covers the whole document and can be used

for both the source and the destination of links.

The default anchor is used to link whole documents, e.g. as destination or when

using semantic links (see Req. G.2.4).

Links can be classi�ed according to a number of classi�cation schemes. The following

requirements specify the types of links distinguished by Hyper-G.

Req. G.2.4: Hyper-G supports semantic links and referential links. Se-

mantic links are used to tightly couple the individual docu-

ments of document clusters.

Link

Referential

User defined

Automatic

Other User

Sys. Adm.

Author

Same User

Static

Dynamic

Cluster

lin
k

pr
io

rit
y

hi
gh

lo
w

General Requirements 7

Semantic links are always user de�ned, as the semantic relation between two docu-

ments can not reasonably be detected automatically. However, referential links may

be further subdivided:

Req. G.2.4.1: Hyper-G supports user de�ned links as well as automatically

generated links.

Req. G.2.4.1.1: Automatically generated links may be pre-generated (static)

or generated on demand (dynamic).

Dynamic links are generated using hidden database key queries (Req. U.3.4.1).

The user may specify a list of active databases that are searched (link �ltering).

Note that according to above de�nition user-de�ned links as well as semantic links

are always static. Figure 2 gives an overview of the basic link types supported by

Hyper-G. The set of link types is extensible, which may be necessary for certain

applications such as Hyper-Animation [11].

Figure 2: Basic Link Types and their Relative Priority

8 General Requirements

Req. G.2.5: A Link Priority is associated with any Hyper-G link. The link

priority is used to reduce the number of links presented to the

user.

Of course, the actual meaning of \priority" will vary with the user interface. In

particular, a user interface may choose to always follow semantic links (highest

priority) without user interference, i.e. to display a whole document cluster at

a time. Also, a user interface may choose not to generate dynamic links (lowest

priority) when there are any higher-priority links available. Figure 2 shows the

relative priority assigned to the basic link types of Hyper-G.

Req. G.2.6: Active Anchors have an associated piece of code that is ex-

ecuted when the anchor is activated. Hyper-G supports a

number of pre-de�ned active anchors for dialog documents

and special e�ects.

Active anchors are most useful with dialog documents (e.g. answer judging) and for

special e�ects (e.g. a special kind of destination anchor might 'fade out' the source

document and 'fade in' the destination document.).

Req. G.3: Hyper-G provides access to very large amounts of data.

As stated in [4], Hyper-G is targeted to mega-quantities of documents and terra-

quantities of bytes. This leads to interesting problems not only for system design,

but { more important { for the users and the authors of such a large system [9]. An

immediate consequence is

Req. G.3.1: Documents and links are maintained automatically.

Link maintenance involves such problems as deleting all links from or to a document

that is to be deleted, in order to avoid dangling references and to ensure database

integrity. Also, the system should assist the system administration in protecting the

database against obsolete or outdated documents and/or links.

Req. G.3.1.1: All Hyper-G objects have an Expiration Date associated with

them. Hyper-G objects age. When the expiration date is

reached, the object may be deleted.

This is to protect the database from outdated or obsolete information. A typical

expiration time of a user-supplied document might be six months. Two months

General Requirements 9

before expiration, the user (i.e. the author of the document) is noti�ed (by means

of e-mail) and may extend this period. If no response is received, the object may be

deleted (and with it all associated links).

Of course, some objects may be given a very long life time by the system adminis-

tration. Also, additional factors such as usage count and time of last access may be

used to decide on whether an object is to be deleted.

Req. G.3.2: The mayority of the links is generated automatically.

Especially for text documents, a number of links can be generated automatically

either when inserting the document into the database, or at runtime.

Req. G.3.2.1: Whenever a new document is inserted, (static) links are gen-

erated automatically.

This is especially useful for annotations: A new annotation of a user is automat-

ically linked to other documents, possibly annotations of other users. An o�-line

communication between users and authors starts.

A user related consequence (Req. U.3) of Req. G.3 is given in section 3 (page 10).

An author related consequence (Req. A.2) of Req. G.3 is found in section 4

(page 18).

A system related consequence (Req. S.3) of Req. G.3 is found in section 5

(page 18).

Req. G.4: The system should be easily extensible.

This is especially true for the set of supported document types and user interfaces

(Req. U.1.1) and has some e�ect on the implementation model [8].

10 User-related Requirements

3 User-related Requirements

Req. U.1: The system should be usable by untrained users as well as

expert users.

In general, Hyper-G is likely to see a number of scenarios [8, 10]. One is a university

information system based on Hyper-G where users are expected to communicate with

computers on a regular basis, another one is a so-called viewseum [14, 20] available

to the general public. Hyper-G should adapt to the needs of all user groups.

While expert users may be expected to be familiar with the user interfaces of today's

computers, the casual user must not. Therefore, Hyper-G can be operated using a

number of di�erent user interfaces.

Req. U.1.1: Users control the system with user interface devices suited to

their background knowledge and the application.

Interface Device User Type Typical Application

Keyboard Home User Remote terminal access

Keyboard & Mouse Expert User University Information System

Touch-Screen Visitor Viewseum

Home-Trainer Visitor HOTACT [16]

3D input/output Visitor Advanced 3D-Applications

Table 1: Typical User Interfaces, Users and Applications

Table 1 shows some typical combinations of user interface device, user type, and

application.

Req. U.2: The system should o�er a choice of user languages.

This not only requires the user interface to work with a number of languages, but also

means support of multi-lingual documents (e.g. translations of the same document

provided by the author, or simple computer translations).

Req. U.2.1: The user may specify an ordered list of language preferences.

User-related Requirements 11

Req. U.2.2: A document cluster may include semantically equivalent doc-

uments that di�er only in the Language attribute. A user in-

terface may use this information and the user's preferences to

select which document to show.

Req. U.2.3: The user interface of the runtime system is available in a num-

ber of languages.

Req. U.2.4: The language strategy of the user interface can be temporarily

overridden.

Req. U.3: The user is supported by high-level navigation tools.

Above requirement may also be seen as a consequence of Req. G.3 (large number

of documents). High-level navigation tools include use of user interface metaphors,

database queries, collections, tours and scripts. These concepts are discussed in

some detail in [8].

Req. U.3.1: A variety of user interface metaphors is o�ered, including:

Req. U.3.1.1: Simple Hypermedia [6]

Req. U.3.1.2: Desk-Top (Xerox' Star [7], Apple Macintosh)

Req. U.3.1.3: Stack (HyperCard [21])

Req. U.3.1.4: Book [1]

Req. U.3.1.5: Holiday Travel [5]

Req. U.3.1.6: Library [4]

The list of supported user interface metaphors is extensible, as the user interface is

built upon an underlying 'Hyper-G Kernel' that supports common functions.

Req. U.3.1.7: Most User Interface Metaphors support simple navigation

functions, such as undo, redo, help, drop/goto book-mark,

show copyright, show links, show annotations, show collec-

tion, show tours...

Other means to aid the user's navigation are collections:

ChemistryBiology

Biochemistry Organic Ch. Anorganic Ch.

Natural Sciences

Zoology

from root collection

"descend"

"ascend"

A typical

Collection Hierarchy

12 User-related Requirements

Req. U.3.2: Information is structured in Collections. A collection is a set

of documents or other collections ('subcollections').

This recursive de�nition yields a hierarchical structure of collections:

Req. U.3.2.1: The collection hierarchy is an acyclic directed graph. There

are a number of 'root' collections.

To put it simple, 'acyclic directed graph' means that the terms 'ascending' and

'descending' the structure are well de�ned like in a tree, however, a collection may be

a subcollection of a number of collections. For example, the collection 'Biochemistry'

might be a subcollection of collection 'Chemistry' as well as of 'Biology' (see �gure 3).

Figure 3: A typical Collection Hierarchy

Req. U.3.2.2: Any document in the system is a member of at least one

collection. The user may �nd the collection(s) a document

belongs to, get a graphical representation of the collection

hierarchy at that point, 'ascend' or 'descend' the hierarchy,

and �nd other documents belonging to the collection.

Note that because of the logical de�nition of the collection hierarchy, and because

User-related Requirements 13

of the relatively small number of collections, graphical browsing of the collection

hierarchy seems feasible.

In addition, the user may go on \guided tours":

Req. U.3.3: Guided Tours allow to traverse the information network in a

way speci�ed by the author (of the tour). However, tours do

not have to be a linear list of document clusters to be visited,

but may utilize the full exibility of the hypermedia system.

Req. U.3.3.1: Document clusters may be visited by a number of tours.

When the user follows tour a and visits a document clus-

ter that is also visited by tour b, the user may switch tours at

this point.

That is, the user can get a list of the tours visiting that document cluster, and

may choose a tour to follow. However, at some later point, the user should have

the opportunity to continue the original tour. It turns out that requirement Req.

U.3.3.1 leads to the concept of labeled links, i.e. links that are labeled with the

tour name [8].

Within tours, advanced navigation facilities are possible. Especially in the case of

educational tours the user should be supported in making sure that nothing has

been overlooked:

Req. U.3.3.2: The user is o�ered information on what parts of the tour have

already be seen and what parts have not.

In addition to the database queries that are made behind the scenes when generating

dynamic links, Hyper-G o�ers user controlled database queries:

Req. U.3.4: Hyper-G supports Database Queries to allow fast access to

relevant information.

Two types of queries may be distinguished:

Req. U.3.4.1: Key Queries allow for pre�x search in the database(s).

14 User-related Requirements

This type of query is most useful at the beginning of a session, when the user wants

to gain an overview of what is in the database(s) related to a given topic (keyword).

Key queries may be combined by 'and', 'or' and 'not' operators.

Req. U.3.4.1.1: The user may specify a list of active databases. Only these

databases are searched.

This not only increases speed, but also reduces the number of unwanted links (link

�ltering). Note that dynamic links are done by key queries, too, so that the list of

active databases also applies to the generation of dynamic links.

Req. U.3.4.1.2: The system allows for inexact match key queries.

This may be done in two ways:

� Either the user may specify a kind of regular expression to be searched for, or

� The system itself tolerates a certain amount of spelling errors (e.g. \naboleon"

should �nd \Napoleon").

Hyper-G will o�er both approaches. In addition, the use of synonym databases and

hierarchical synonym classi�cation schemes will be investigated.

Req. U.3.4.2: Form Queries are more exible, but collection-speci�c queries.

The user is allowed to �ll out a form with a number of at-

tributes that may be combined to perform complex queries.

Forms may be �lled out iteratively, showing after each incre-

mental step the quantity of information found and hints on

how to continue.

The user interface for database queries (especially form queries) is most easily made

by dialog documents with active anchors.

Req. U.4: The system is con�gurable on a per-user basis. It remembers

a user's preferences between sessions.

This means that users may con�gure the system to adapt to their special needs (e.g.,

language preferences (see Req. U.2).). Moreover, this con�guration is retained by

the system until the next session. Of course, this implies that the system is able to

distinguish between users by some login procedure and keeps con�guration �les. It

also suggests use of user groups, access rights and so on.

User-related Requirements 15

Req. U.4.1: The system maintains a user pro�le, describing:

Req. U.4.1.1: Security Data (User name, user group(s), account number,

password, access rights

Req. U.4.1.2: The user's system entry point (login menu, starting collection)

Req. U.4.1.3: The user's language preferences

Req. U.4.1.4: Preferred user interface metaphor

Req. U.4.1.5: Preferred user interface metaphor's options

Req. U.4.1.6: User logging (full/system/o�)

Req. U.4.1.7: Default active databases for queries

Req. U.4.1.8: Whether user may change pro�le

A few explanations are necessary:

The security data is used to identify the user. However, the system may also be

used anonymously (Req. U.6), in which case the default user pro�le of the user's

terminal is applied. Of course, anonymous users cannot alter the con�guration3.

In principle, the user's system entry pointmight be any Hyper-G object. However, to

de�ne a root-level collection (remember, the collection hierarchy may have more than

one root) or a dialog document that performs a database query would be reasonable.

The user's language preference is an ordered list of languages (Req. U.2.1). The

selection 'Hungarian' { 'German' { 'English', for example, means that if a Hungarian

version of a document is available, show it, else show the German version, else

the English one. If none of the user's list is available, the system may display

an appropriate error message, or display whatever it has. Also, the user interface

language is to be set to the language of the �rst choice, if possible.

The preferred user interface metaphor's options are further options speci�c to the

preferred user interface metaphor. For example, the user may specify to prefer short

versions instead of long versions of text or voice documents, if semantically equivalent

versions are available in a document cluster; or to prefer hearing a voice document

rather than reading a semantically equivalent text document. In addition, preferred

document managers [8] that should be used to display certain document types can

be speci�ed. An interface metaphor might even allow to con�gure the exact layout

(position, size) of the various windows.

User logging (Req. U.5.1) can be turned to 'full' (full user state logged), 'system'

(only the items necessary for Req. U.5.1.2 logged) or 'o�'.

3However, semi-identi�ed and anonymously identi�ed users potentially can (Req. U.6.1 and
Req. U.6.2).

16 User-related Requirements

The list of active databases is actually a list of active collections, to which queries

are to be passed.

Req. U.5: At any time, the user may return to a previous user state.

This applies to all the previous states of an active session, which yields sort of an

undo function. As a special case, when entering a new session, the user may return

to where the previous session was left. Req. U.5 requires the system to remember

user states, keep user logs etc.:

Req. U.5.1: For every user, the system maintains a user log. The log stores

a sequence of user states.

The log enables the system to return to a previous state (Req. U.5). The user

state records all information necessary to do this. In addition, some graphical rep-

resentation of the user's path through the information network may be displayed

(history).

Req. U.5.1.1: Identi�ed, semi-identi�ed and anonymously identi�ed users

may also navigate backwards to the user states of previous

sessions.

This is done by having persistent user logs, i.e. by saving the user log across sessions.

Of course, this feature is not available for anonymous users. User identi�cation

modes are discussed under Req. U.6.

Req. U.5.1.2: User logs may be used by authors and/or system administra-

tors to maintain the database.

Sometimes, users get stuck because of misleading or missing links, etc. The user

logs may be used to �nd such weaknesses of the database. Not all the information

of the user state is required to be logged ('User logging' set to 'system' would be

su�cient (Req. U.4.1.6).). For example, only unsuccessful database queries need

to be logged for this purpose. In particular, anonymous users may be traced also.

Req. U.6: The system can be used anonymously.

An information system that is to be used by a large number of users on a regular

basis raises a data security problem. If users are known by name, the system might

User-related Requirements 17

be used to �nd out who looks for certain information, monitoring users working time,

etc. To avoid such problems from the beginning on, users may login anonymously, as

in the Austrian videotex system [15]. The modes semi-identi�ed and anonymously

identi�ed still allow to perform most operations of the system:

Req. U.6.1: The system may be used in Semi-Identi�ed Mode. In this

mode, the real identity of the user is known to the system,

but not to other users.

Req. U.6.2: The system may be used in Anonymously Identi�ed Mode. In

this mode, the real identity of the user is not known to the

system. However, the user's pseudo-identity persists across

sessions.

Advantages and disadvantages of the four user identi�cation modes are discussed in

more detail in [8].

Req. U.7: Certain system features and information items are chargeable.

For example, printing a screen dump or saving it to disk may cost some (small)

amount of money. In addition, information providers may charge something for

the access to certain pieces of information, remote databases, etc. In conjunction

with Req. U.6 this implies that a rather tricky charging mechanism has to be

implemented.

Req. U.7.1: Any Hyper-G object may be priced. The price is speci�ed

by the author of the object (Req. G.1.3.5). The system

automatically tells the user in advance the price of the object

to be accessed, if its greater than zero.

In order to charge both identi�ed and anonymous users, Hyper-G supports two

charging schemes:

Req. U.7.2: Hyper-G maintains user accounts for identi�ed, semi-identi-

�ed and anonymously identi�ed users. Whenever a priced

object is shown, the object's costs are deducted from the user's

account.

18 Author-related Requirements

In theory, objects may also have a negative price, in which case the amount is

added to the user's account. Identi�ed and semi-identi�ed users may be allowed to

overdraw their account, and will receive an invoice at regular intervals.

Req. U.7.3: At special terminals, anonymous users may be charged also.

This is done by letting the users (anonymously) buy tokens of a certain value, and

then deduct from that value until the remaining value on the token reaches zero.

Tokens will typically be credit card-like magnetic cards or IC-cards. Of course,

anonymous and anonymously identi�ed users are not allowed to overdraw their ac-

count.

4 Author-related Requirements

Req. A.1: Any user is a potential author.

The database may be manipulated by potentially every user, either by manipulating

documents or links (annotation). Of course, access rights control the user's ability

to change existing data items or create new ones.

Req. A.2: The author is supported by high-level information editing

tools.

These information editing tools divide into document preparation tools and link

editing tools. They are not part of the Hyper-G runtime system and discussed in

[8].

5 System Requirements

This section describes requirements related to system administration.

Req. S.1: A number of terminals is attached to the system. On any

terminal a Hyper-G session may be started. The capabilities

of the terminals may di�er.

System Requirements 19

That is, the terminals are not all the same. There may be terminals with special

user interfaces, communication features, hard/softcopy capabilities etc. As a conse-

quence, Hyper-G must not rely on the presence of speci�c terminal facilities.

Req. S.1.1: For each terminal, there is a terminal pro�le, describing:

Req. S.1.1.1: Terminal facilities, such as:

Req. S.1.1.1.1: Input Devices

Req. S.1.1.1.2: Voice I/O capability

Req. S.1.1.1.3: Digital Sound I/O capability

Req. S.1.1.1.4: Digital Video I/O capability

Req. S.1.1.1.5: Hardcopy capability

Req. S.1.1.1.6: Softcopy (diskette) capability

Req. S.1.1.1.7: Communication capabilities (E-Mail, conferencing)

Req. S.1.1.1.8: Charging of anonymous users

Req. S.1.1.2: Security information, such as:

Req. S.1.1.2.1: The terminal's access rights (operations allowed on this

terminal)

Req. S.1.1.2.2: The rights of anonymous users at this terminal

Req. S.1.1.3: The prices of speci�c terminal facilities

Again, a few explanations are in order:

Useful combinations of Input Devices are listed in table 1. Some terminals may be

equipped with hardcopy or softcopy devices ('softcopy' means that the user/visitor

can take a diskette back home with selected documents on it).

Hard- and Softcopy facilities are usually priced (Req. S.1.1.3). The charging

of anonymous users may be done using tokens, coins, or terminals equipped with

magnetic or IC-Card readers or similar devices (Req. U.7.3).

Req. S.2: Access rights control whether a given user on a given terminal

may perform a certain function on an object.

We can further re�ne this concept:

20 System Requirements

Req. S.2.1: The right of a certain user on a certain terminal to perform

a speci�c function of certain Hyper-G object is deduced from

the object's protection bits (for author, group and world ,

Req. G.1.3.4), the user's rights Req. U.4.1.1 and the

terminal's access rights Req. S.1.1.2.1. Anonymous users

get the terminal's default right (Req. S.1.1.2.2). Users of

user group system may override rights.

To be speci�c, the user's right to perform a certain operation is calculated in the

following way: For any operation (e.g. read, write, print, copy, link to, link from)

there is an associated bit, say bit number i. If it's set to '1', this means \allowed", a

'0' means \not allowed". These protection bits are stored together with the following

entities:

� Any Hyper-G object holds protection bits for:

{ Author (object.author.bits)

{ Group (object.group.bits)

{ World (object.world.bits)

� Protection bits are associated with every user (user.bits).

� Access rights are also associated with terminals (terminal.bits).

In addition, a user may be a member of a number of user groups (user 2 Gi).

Members of group system may override any protection bits with exception of termi-

nal.bits, i.e. system administration can only be done from a subset of the terminals

as an additional security measure. Also, if for example a terminal does not support

printing, it does not make too much sense to insist on your right to print something.

With these prerequisites in mind, the protection algorithm looks like shown in �g-

ure 4.

This protection scheme is somewhat similar to the UNIX approach, but with the

following modi�cations:

� There are terminal protection bits. This serves for two reasons:

{ The terminal's protection bits are taken into account for all users, in-

cluding the system administration. This means that the system adminis-

trators may login at any terminal, however, the speci�c rights needed to

perform system administration (e.g. the right to delete objects) are only

granted at speci�c terminals.

{ The protection bits also specify certain functions to do with the docu-

ment that are not available at all terminals, e.g. hardcopying. A termi-

nal that does not support that speci�c function would set the according

protection bit to \not allowed", overriding any di�erent settings of user

and/or document protection bits.

System Requirements 21

if user 2 system

then bits := terminal.bits

else if user = object.author

then bits := object.author.bits and user.bits and terminal.bits

else if user 2 object.group

then bits := object.group.bits and user.bits and terminal.bits

else bits := object.world.bits and user.bits and terminal.bits

if (bits and 2i) 6= 0

then /* function #i allowed */

else /* function #i not allowed */

Figure 4: Hyper-G Protection Scheme

� The users themselves have protection bits associated with them. This may

be used to speci�cally deny certain rights from a user. For example, for some

reason a user may be (temporarily) denied the right to annotate something,

without the need to change the rights of the objects or modify user groups.

� The system may be used anonymously, in which case users get their rights

from the terminal pro�le (Req. S.1.1.2.2).

As stated in Req. G.1.3.5, a Hyper-G object has a price associated with a partic-

ular function (e.g. read, hardcopy, softcopy, link to, link from) for group and world

(of course, if the corresponding function is prohibited by the associated protection

bit, the 'price tag' is meaningless; also, the price for the author is always zero). Cal-

culation of the price to be paid by a speci�c user is done similar to the protection

scheme described above. If the user is a member of the speci�ed user group, the

'group' price tag is used, else the 'world' price is to be paid.

A typical application would be to specify that linking-to an object (e.g. using it in

a tour) costs amount w for anybody except users of group mybestfriends, which pay

amount g.

It should be noted that variable-length lists have been avoided in the design of

Hyper-G object's attributes, because of their implementation overhead associated

with database design. As a consequence, in order to distinguish between a number

of user groups, more database objects pointing to the same piece of information

(e.g. document) have to be established. In our above example, in order to let users

of user group mysecondbestfriends pay amount g1, a second Hyper-G object with

'group' set to mysecondbestfriends has to be created.

Also, the terminal has prices associated with certain functions, which are added to

the price determined by the object (e.g., the price for a hardcopy is calculated by

22 Implementation Requirements

the price the author speci�ed plus the price the terminal's price for a copy). However,

the amount collected for using the Hyper-G object is transferred to the author, while

the amount collected by the terminal is for the system (administration).

So, as a conclusion:

Req. S.2.2: The price to be paid for a certain function on a certain object

at a certain terminal is determined by the object's price tags

(for group or world, Req. G.1.3.5) and the terminal's price

for that particular function.

Req. S.3: The system should avoid uncontrolled growth of unimportant

or outdated information.

The system administration should be supported in �nding such information and

deleting it at regular intervals.

6 Implementation Requirements

Req. I.1: Access to information should be reasonably fast.

This requirement is somehow contradictory to Req. G.3 (large amount of data).

However, it is well-known that a response time larger than about 250 milliseconds

confuses users[2]. A lower response-time variance seems to be more important than

absolute response times [3]. Also, users are willing to accept, e.g., to wait a few

seconds for a database query, if the system supplies them with immediate feedback

of acceptance of the query. We have seen systems (e.g. videotex [12, 13]) whose

acceptance by the public has been dampened by less than optimal response time.

Above requirement has signi�cant impact on the design of the databases (speed

vs. space tradeo�s) and the computers used. From the requirements of previous

sections it is quite obvious that Hyper-G will use a set of databases to store its

documents, links, anchors etc. Because Hyper-G's data items are structured in

an object-oriented way (e.g. they are all derived from a class 'Hyper-G object')

it would be best to use object-oriented databases to do the job. Unfortunately,

only experimental object-oriented database systems suitable for our purposes exist

at this time. Also, a standard relational database system would turn out to be too

Implementation Requirements 23

slow to handle the huge number of objects Hyper-G developed for. In addition, there

are legal problems associated with the use of commercial database systems. Hence

we decided to build our own (simple, but speedy) database management system

customized to the special needs of Hyper-G.

In fact, Hyper-G will use two kinds of databases (some arguments for this split are

discussed in [8]):

Req. I.1.1: The Keys & Attributes Database (KAD) holds the keys and

attributes of all Hyper-G objects. In order to gain speed, the

database is split into specialized databases holding:

Req. I.1.1.1: documents

Req. I.1.1.2: links

Req. I.1.1.3: anchors

Req. I.1.1.4: collections

Req. I.1.1.5: tours

The attributes stored with each object are listed under Req. G.1.3. The keys

are used to search for the object using the simple key queries described under Req.

U.3.1.4 as well as to link the links to the anchors and the anchors to the documents.

The KAD will be implemented using simple text �les with inverted indices. It does

not contain documents, only pointers to the documents are stored.

The documents themselves are stored as part of a collection database. While some-

times this collection database will just contain pointers to the actual documents

(e.g. to raster images), text documents (e.g. the entries of an encyclopedia) might

be grouped together in one �le, as this allows a collection-wide full text search that

is needed for associative dynamic links and form queries. Also, the graphical ap-

pearance of anchors is stored together with the documents, while their attributes

are stored in the KAD.

Req. I.1.2: The documents and anchors are stored in collection databases,

while their keys and attribute are held in the KAD. The actual

layout of the databases will vary with the type of collection.

The collection supports collection-wide full-text search (if ap-

plicable) and/or form queries.

Note that the notion that the collection itself performs this actions and the exact

layout of the database is not to be known outside conforms to the object-oriented

design principles of encapsulation and data hiding.

Req. I.1.3: The databases themselves ensure database integrity.

24 References

For example, if a document is to be deleted, also the anchors of the document as well

as the links to/from that anchors are deleted. This facilitates database maintenance

as required by Req. G.3.1 and Req. S.3.

Sometimes it will not be feasible to keep all the data in Hyper-G's local databases.

Therefore, Hyper-G will support access to remote databases (e.g. o�cial airline

guide, phone books, any kind of data that keeps changing), but this access will be

hidden from the user. In particular, that kind of data will be embedded into the

user interface metaphor and will be accessible by links.

Req. I.2: Hyper-G supports access to remote databases. Access to such

databases shall be hidden from the user.

That means that users is confronted with a consistent user interface metaphor

throughout the system, so that they would not be able to tell whether an infor-

mation item is retrieved from a local or remote database (except, perhaps, because

of a delay when retrieving remote information).

References

[1] Benest I. D. : \A Hypertext System with Controlled Hype". In Proc. of the

Hypertext II Conference, York, 1989.

[2] Card S. K., Morgan T. P., and Newell A. : The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, N.J., London,

1983.

[3] Carson G. S. : \Graphics, Networking, and Distributed Computing". In

Proc. Workshop on Graphics and Communications (ESPRIT Project 2463 -

ARGOSI), Breuberg, Germany, Springer, October 1990.

[4] Davies G., Maurer H., and Preece J. : Presentation Metaphors for a very

large Hypermedia System. IIG Report 282, IIG, Graz University of Technology,

Austria, April 1990. To appear in: Journal of Micro Computer Applications 2

(1991).

[5] Hammond N. and Allison L. : \The Travel Metaphor as Design Principle

and Training Aid for Navigating Around Complex Systems". In Diaper D.

and Winder R. (editors), People and Computers III, Cambridge university

Press, 1987.

References 25

[6] H�utter M. : Design und Implementierung eines Hypermedia Basis Systems.

Master's thesis, Technical University Graz, Austria, June 1991. In German.

[7] Johnson J., Roberts T. L., Verplank W., Smith D. C., Irby C.,

Beard M., and Mackey K. : \The Xerox Star: A Retrospective". IEEE

Computer, 22(9):11{26, September 1989.

[8] Kappe F. : Aspects of a Modern Multi-Media Information System. PhD

thesis, Technical University Graz, Austria, 1991. Will also be published as IIG

Technical Report.

[9] Kappe F. : \Spezielle Eigenschaften gro�er Hypermedia-Systeme". In Proc.

of Hypertext/Hypermedia '91, Graz, Austria, Springer, May 1991. In German.

To appear.

[10] Kappe F. : \Unorthodoxe Anwendungen von Hypermedia-Systemen". In

Wallmannsberger J. (editor), Hypertext - State of the Art, R. Oldenbourg,

Vienna, Munich, 1991. In German. To appear.

[11] Kappe F. and Maurer H. : \Animation in Hyper-G - An Outline". In

Haase V. and Zinterhof P. (editors), Proc. Future Trends in Information

Technology '90, Salzburg, Austria, pages 235{248, Austrian Computer Society,

R. Oldenbourg, Vienna, Munich, September 1990.

[12] Maurer H. : Bildschirmtext mu� ein Erfolg werden. IIG Report B42, IIG,

Graz University of Technology, Austria, February 1984. In German.

[13] Maurer H. : Bildschirmtext�ahnliche Systeme. IIG Report B11, IIG, Graz

University of Technology, Austria, 1981. In German.

[14] Maurer H. : The Viewseum - An Introduction. IIG Report 279, IIG, Graz

University of Technology, Austria, April 1990.

[15] Maurer H., Roszenich N., and Sebestyen I. : \Videotex without Big

Brother". Electronic Publishing Review, 4:201{214, 1984.

[16] Maurer H. and Soral G. : HOTACT: HOmeTrainer And Computer

Technology. IIG Report 283, IIG, Graz University of Technology, Austria,

August 1990.

[17] Maurer H. and Tomek I. : \Broadening the Scope of Hypermedia Princi-

ples". To appear in: Hypermedia 3 (1991).

[18] Maurer H. and Tomek I. : Hypermedia Bibliography. IIG Report 286, IIG,

Graz University of Technology, Austria, November 1990. An updated version

appears in: Journal of Micro Computer Applications 2 (1991).

[19] Maurer H. and Tomek I. : \Some Aspects of Hypermedia Systems and their

Treatment in Hyper-G". Wirtschaftsinformatik, 32(2):187{196, April 1990.

[20] Maurer H. and Williams M. : \Hypermedia Systems and other Computer

Support in Museums". To appear in: Journal of Micro Computer Applications

2 (1991).

[21] Williams G. : \HyperCard". Byte, 12(14):109{117, December 1987.

