
A Scalable Architecture for Maintaining Referential

Integrity in Distributed Information Systems

Frank Kappe
(Institute for Information Processing and Computer Based New Media (IICM), Graz

University of Technology,
A-8010 Graz, Austria

fkappe@iicm.tu-graz.ac.at)

Abstract: One of the problems that we experience with today's most widespread
Internet Information Systems (like WWW or Gopher) is the lack of support for main-
taining referential integrity. Whenever a resource is (re)moved, dangling references from
other resources may occur.
This paper presents a scalable architecture for automatic maintenance of referential
integrity in large (thousands of servers) distributed information systems. A central fea-
ture of the proposed architecture is the p-ood algorithm, which is a scalable, robust,
prioritizable, probabilistic server-server protocol for e�cient distribution of update in-
formation to a large collection of servers.
The p-ood algorithm is now implemented in the Hyper-G system, but may in principle
also be implemented as an add-on for existing WWW and Gopher servers.

Key Words: Hypertext, Link Consistency, Distributed Information System, Internet,
Gopher, WWW, Hyper-G, Scalability, p-ood.

Category: H.5.1, C.2.4

1 Introduction

The problem is quite familiar to all net surfers: Every now and then you activate
a link (in the case of WWW [Berners-Lee et al. 94]) or menu item (in the case
of Gopher [Lindner 94]), but the resource the link or menu item refers to cannot
be fetched. This may either be a temporary problem of the network or the
server, but it may also indicate that the resource has been permanently removed.
Since the systems mentioned above rely on Uniform Resource Locators (URLs)
[Berners-Lee 93] for accessing information, it may also mean that the resource
has only been moved to a new location. It may also happen that a resource is
eventually replaced by a di�erent one under the same name (location).

The net e�ect of this is that a certain percentage of references are invalid.
We may expect that this percentage will rise as time goes by, since more and
more documents become outdated and are eventually removed, services are shut
down or moved to di�erent servers, URLs get re-used, etc. Obviously, it would
be desirable to have some support for automatically removing such dangling
references to a resource which is deleted, or at least to inform the maintainers
of those resources.

For the sake of the following discussion, let us stick to the hypertext termi-
nology of documents and links instead of the more general terms resource and
reference. The techniques described will work for any relationship between any
object, but for explanation purposes is is easier to speak only about links and
documents.



Let us assume that we would maintain a link database at every server that
keeps track of all the links involving this server, i.e. emanate from and/or point to
a document that resides on this server. Storing the links outside of the documents
in a link database (like it is done in the Intermedia [Haan et al. 92] and Hyper-G
[Andrews et al. 95, Kappe et al. 94] systems) will not only give us an e�cient
solution for the dangling link problem (as we will see); it also enables more
advanced user interfaces for navigation in the information space, such as local
maps and location feedback [Andrews and Kappe 94].

2 Scalability

An important issue that needs to be addressed when dealing with distributed
algorithms (systems, protocols) is that of scalability. Ideally, the behavior of a
scalable system should not { or "almost not" { depend on variables like the
number of servers, documents, links, or concurrent users of the system. In the
Internet environment, scalability is a very important aspect of system design,
since the values of these variables are already high and are continuing to grow
extremely fast. Looking more closely at the issue, we may distinguish four kinds
of scalability:

{ Scalable Performance: The performance (measured by the response time
perceived by the user) should not depend on the number of concurrent users
or documents. This requirement cannot be met in a centralized system, and
therefore implies the use of a distributed system, where users and docu-
ments are more or less evenly distributed over a number of servers which are
connected by a network.
Unfortunately, it may still happen that for some reason a large number of
users access a small set of documents residing on a single server. Under such
circumstances the distributed system performs like a centralized system,
with all the load placed on a single computer and on a certain part of the
network. Obviously, one has to avoid such situations, e.g. through the use of
replication (placing copies of that scarce resource on a number of servers).
A good example of a scalable system which relies heavily on replication is
the USENET news service [Kantor and Lapsley 86]. When I read news, I am
connected to my local news server which holds copies of the news articles
that have been posted lately. When accessing a certain article, it does not
need to be fetched from the originating site. Therefore, the response time
does not depend on how many other Internet users access the same article
at the same time (it does depend on the number of users connected to my
local news server, though).
When searching through a number of documents, the response time will in-
crease with the number of documents searched. Good search engines use data
structures giving O(logn) access performance, i.e. there exists a constant c
so that the time t it takes to search n documents is smaller than c�logn. Intu-
itively, this means that for large n a further increase of n will have less e�ect
on t, which is good. Therefore we contend that logarithmic performance is
acceptable for an algorithm to qualify as scalable in performance.

{ Scalable Tra�c: Replication may require additional tra�c to be sent over
the network. Obviously, every news article has to be sent to every news



server so that it can be read locally. However, it may well be that most
of the articles that have been sent to my local news server are never read
by anyone here. Care has to be taken that total tra�c increases not more
than linearly with the number of servers. For example, solutions where every
server periodically sends state information directly to all other servers are
not scalable, since it requires O(n2) messages to be sent (n being the number
of servers this time).

{ Scalable Robustness: By robustness we mean that the system should not
rely on a single server or a single network connection to work at all times, nor
should it assume that all servers of a given set are available at a given time.
The multi-server transaction services, master-slave and distributed update
control systems described in the next section are all examples that do not
scale in this respect.

{ Scalable Management: The functioning of the system should not rely on
a single management entity. For example, the Internet's Domain Name Ser-
vice works because its management is distributed. With the current Internet
growth rate of about 3 million hosts per year [Network Wizards 94] (about
10,000 per work day) centralized registration is infeasible. This requirement
also suggests that con�guration and recon�guration of server-server commu-
nication paths should be automatic, as opposed to managed by a central
service.

3 Related Work

3.1 Gopher, WWW and Hyper-G

In the World-Wide Web [Berners-Lee et al. 94] data model, documents are con-
nected by links. The links are stored directly inside the documents, which has
the advantage of simple server implementation. On the other hand, the absence
of a separate link database not only limits the set of linkable document types
and prohibits advanced user interfaces (overview maps, 3D-navigation, etc.), it
also makes it hard if not impossible to ensure the integrity of the Web. When a
document is removed, it would require parsing all other documents to �nd the
links pointing to that document, so that they could also be removed or at least
the owners of the other documents informed. While such a tool would be con-
ceivable for the local server, it is simply impossible to scan all WWW documents
on all Web servers in the world, without the aid of pre-indexed link databases.
The consequence is that there is no referential integrity in today's World-Wide
Web, not even between documents stored on the same server.

Interestingly, the more primitive Gopher [Lindner 94] system does maintain
referential integrity in the local case. When a document (which is an ordinary
�le on the server's �le system) is deleted (or moved or modi�ed), the menu
item that refers to it (which is a directory entry) is updated as well. This is
automatically taken care of by the underlying operating system (unless you try
real hard to break it and use the symbolic links of UNIX). References to remote
servers remain insecure, however.

While both Gopher and WWW scale quite well with respect to the number
of servers, documents, and links, there is a scalability problem with respect to
the number of users. When a large number of users for some reason decides to



access the same document at the same time, the a�ected server and the network
region around it become overloaded. This phenomenon (Jakob Nielsen calls it a
"Flash crowd" [Nielsen 95] after a 1973 science �ction story of Larry Niven) was
observed during the 1994Winter Olympics in Lillehammer, where the Norwegian
Oslonett provided the latest results and event photographs over the Web and
drowned in information requests. Similar but smaller ash crowds appear when
a new service in announced on the NCSA "What's New" page or in relevant
newsgroups.

This problem may be alleviated by the use of cache servers, which keep
local copies of information which has been recently requested, and give users
requesting the same information again the local copy instead of fetching it from
the originating site. This strategy does not work, however, in two cases:

1. When users access many di�erent documents from a large data set (e.g., an
encyclopedia, a reference database). Replication of the whole dataset would
help, but this would in general require moving fromURLs to URNs (Uniform
Resource Names), which identify the document by its name (or ID) rather
than location.

2. When the information is updated frequently. Some update protocol would be
required that ensures that caches are updated so that the latest version of
the document is delivered.

In the Hyper-G system [Kappe et al. 93] a full-blown database engine is em-
ployed to maintain meta-information about documents as well as their relation-
ships to each other (this includes, but is not restricted to, links). Since the links
are stored in this database and not in the documents themselves, and since mod-
i�cations of documents or their relationships are only possible via the Hyper-G
server, referential integrity can easily be maintained for local documents. The
link database makes links bidirectional, i.e. one can �nd the source from the
destination (as well as vice versa). In order to keep this useful property when a
link spans physical server boundaries, both servers store the link information as
well as replicas of the remote document's meta-information. This means that all
updates related to the documents and the link in question have to be performed
on both servers in order to keep the web consistent, thus requiring an update
protocol between servers.

3.2 Multi-Server Transactions

A possible solution for the update problem is the so-called multi-server transac-
tion or collaborating servers [Coulouris and Dollimore 88]. When a document on
one server has to be modi�ed (or deleted), the server storing the document acts as
coordinator and contacts and informs all other servers which are involved. When
all other servers have acknowledged the receipt of the update, the coordinator
tells them to make the change permanent. A few more details are necessary to
make sure that the transaction is committed by all servers { even in the case of a
server crash in the middle of the transaction { [Coulouris and Dollimore 88], but
in general this method works and has been implemented in a number of systems
(to my knowledge, �rst in the Xerox Distributed File System [Israel et al. 78]).
An earlier version of Hyper-G also adopted this method [Kappe 93].



However, the multi-server transaction has scalability problems in certain sit-
uations. When for some reason many servers (say, 1000) decide to refer to a
speci�c document (e.g., by pointing a link to it or by replicating it), all of them
have to be informed and acknowledge the update before it can be performed.
This not only increases network tra�c and slows down things considerably, but
it also requires that all servers involved have to be up and running or the trans-
action cannot be completed. As the number of participating servers increases
(and given the unreliability of the Internet), the probability that all of them are
reachable approaches zero. This means that it becomes practically impossible
ever to modify a heavily-referenced object.

3.3 Master/Slave Systems

In aMaster/Slave System there is one primary server (the master) and a number
of secondary servers (the slaves). The primary server holds a master copy of the
replicated object and services all update requests. The slaves are updated by
receiving noti�cation of changes from the master or by taking copies from the
master copy. Clients may read data from both master and slaves, but write only
to the master.

This scheme is well-suited to applications where objects are read frequently
and updates happen only infrequently. The Sun Yellow Pages (YP) service
(nowadays known as NIS) is an example of a master/slave system.

The central master server also makes it easy to resolve conicts between
update requests and maintain consistency. The obvious disadvantage is that the
master server has to be up and running in order to perform updates. Otherwise,
this scheme scales very well (provided that we have a good way of propagating
updates from master to slaves).

3.4 Distributed Update Control

The Distributed Update Control [Coulouris and Dollimore 88] scheme allows any
server that holds a copy of an object to perform updates on it, without a single
coordinating server, even when some servers are unreachable, and without the
possibility for conicts.

This requires that a server knows about all the other servers that also have
copies (let us call this set of servers the server-set). In a perfect world, all the
copies would be identical, but because of network failures and for performance
reasons it may not be possible or desirable to immediately notify all servers of an
update. We may instead adopt a looser form of consistency (weak consistency),
in which all copies eventually converge to the same value at some time interval
after the updates have stopped.

However, one still wants to be sure that all read requests are based on up-to-
date copies and all updates are performed on the latest version. The trick which
ensures this is majority consensus: updates are written to a (random) majority
of the server-set (more than 50%). Before every read or write operation, the
server that is in charge of performing the request contacts some other servers of
the server-set and requests the object's version number (or modi�cation time)
to identify the current version. When a majority has answered, at least one of it
has the current version. This is because in every two majorities there is at least
one common member.



The advantage of this algorithm is its robustness: There is no single point of
failure and it works even in the face of failure of almost 50% of the server-set.
The downside of it is again scalability: The server-set for any object must be
known to all members of the server-set, and more than 50% of the set has to be
contacted before every write and even read operation. If the set contains, say,
1000 servers, we have to get a response from 501 of them!

This requirement may be relaxed for read operations if we are willing to
accept weak consistency. Still, it is mandatory for write operations to ensure
that no conicting updates can occur.

3.5 Harvest and ood-d

Harvest [Bowman et al. 94] is a new Internet-based resource discovery system
which supports an e�cient distributed "information gathering" architecture. So-
called "Gatherers" collect indexing information from a resource, while the so-
called "Brokers" provide an indexed query interface to the gathered information.
Brokers retrieve information from one or more Gatherers or other Brokers, and
incrementally update their indexes. The idea is that Gatherers should be located
close to the resources they index, while Brokers are located close to the users.

Harvest heavily relies on replication to achieve good performance. The in-
dexes created by the Gatherers are periodically replicated to the Brokers. Since
the indexes tend to be large, this has to be done e�ciently.

Harvest uses a technique called ooding for this purpose. Rather than having
a Gatherer send its indexes to all Brokers, they are sent to only k of them
(e.g., k = 2). It is then the responsibility of the k chosen nodes to distribute the
indexes to another k each, and so on. While of course the total number of indexes
that have to be transferred remains the same, ooding has the nice property of
distributing the network and server load over the whole network.

The ood algorithmused by Harvest is called ood-d [Danzig et al. 94]. Flood-
d tries to minimize the network cost and propagation time of the ood by
computing a "cheap", k-connected logical update topology based on bandwidth
measurements of the underlying physical network. An important requirement
was that this topology should not need manual con�guration (like for exam-
ple the Network News [Kantor and Lapsley 86]), but shall be computed and
updated automatically. Finding a good approximation of the optimal topol-
ogy is computationally expensive, however (�nding the optimum is even NP-
complete), especially when the replication group becomes very large. The pa-
per [Danzig et al. 94] therefore suggests to use a hierarchical scheme of smaller
replication groups. However, it is left open how this hierarchy can be found and
updated automatically.

4 An Architecture for Referential Integrity

Let us assume that we maintain a link database at every server which keeps track
of all the links local to the server as well as those that go in and/or out of the
server, i.e. emanate from and/or point to a document residing on another server.
Maintaining referential integrity is relatively easy in the case of local links. We
will now concentrate on the issue of maintaining integrity in the case of links
which span server boundaries.



A

B C

1

2 3

: surface document : surface link

: core document : core link

Figure 1: Partitioning the Web among Servers (see text)

Figure 1 illustrates this situation. The hyperweb is partitioned by server
boundaries (the servers are labeled A, B, and C in the �gure). Links which span
server boundaries are shown as thicker edges. We will call these links surface
links, and documents connected to other servers by such links shall be called
surface documents (the others are called core links and core documents, respec-
tively). Although not apparent from Figure 1, a server's surface will typically be
small compared to its core.

In order to keep the useful property of bidirectional links, the link infor-
mation of surface links must be stored in both a�ected servers. For increased
performance, the servers also keep replicas of the other surface document's meta-
information. In �gure 1, server A stores document 1 plus a replica of document
2 meta-info and the link between them, while server B stores document 2 plus
replicas of documents 1 and 3 meta-info and the links from 1 to 2 and from 2 to
3.

In this setup, documents on di�erent servers are interconnected as tightly as
the documents on a single server. The bidirectional links enable more advanced
navigation techniques (the link map shown in Figure 1 can actually be computed
and shown to the user), it also simpli�es maintenance of the hyperweb: when
I choose to remove document 2, the system can inform me that this will a�ect
document 1 on server A and document 3 on server C (among others on server
B). I may either use this information to manuallymodify the a�ected documents



and links, or let the system ensure automatically that at least the links from 1
to 2 and from 2 to 3 are removed as well.

The problem which remains is how to inform the other servers that document
2 has been removed. As already mentioned, an earlier implementationof Hyper-G
used the knowledge about what documents are a�ected to directly engage the
other servers in a multi-server transaction to remove document 2 and all links
to and from it. As was also discussed earlier, this approach has problems when
many servers must participate in the transaction (because many links point to
the document).

Therefore, we decided to adopt a weak consistency approach, whereby we
accept that the hyperweb may be inconsistent for a certain period of time, but
is guaranteed to converge to a consistent state eventually. Of course, we would
like to keep the duration of the inconsistency as short as possible.

Like in the master/slave model, updates may only take place at a well-de�ned
server. Unlike the master/slave model, this server is not the same for all oper-
ations, but depends on the document or link being modi�ed (or removed or
inserted): For documents, it is the server which holds the document; for links, it
is the server which holds the document where the link emanates (in our example,
server B would be responsible for updates of document 2, while the link from
1 to 2 would be updated by server A). This reduces the problem of overload
of the master, while eliminating the problem of conicting updates (they are
handled one after the other). One disadvantage remains: the master server must
be available at update time. However, since for security reasons users wishing to
update document 2 must have write permission for document 2 (this is checked
by server B which holds document 2), this fact is inevitable and we have to live
it, anyway.

Updates of core documents or core links require no further action (integrity is
maintained by the local link database). However, other servers need to be noti�ed
of updates happening at a server's surface (i.e. updates of surface documents or
surface links). We chose to use a ood algorithm similar to the one employed
by Harvest to propagate updates from the master to the slaves (i.e. all other
servers), because of its scalability (the tra�c generated does not depend on the
number of references to the object in question), because it does not require
that the recipients are available at update time, and because it can be used
for other purposes as well (like distributing server addresses and statistics, and
maintaining the consistency of replicas and caches).

5 The p-ood algorithm

The ood-d algorithm described in [Danzig et al. 94] is optimized for minimizing
the cost of the ood. This makes sense because it is designed for applications
which need to ood large amounts of data. Our application { sending update
noti�cations { sends only small messages ("document 2 removed" can be encoded
in a few bytes), and hence has somewhat di�erent requirements:

{ Speed: Messages should propagate fast in order to minimize the duration
of inconsistencies.

{ Robustness: The protocol should guarantee eventual delivery of every mes-
sage to every server, even when some servers are down. When a server that



has been unavailable comes up again, it should receive all the messages it
has missed in between.

{ Scalability:The time it takes to inform all servers should not depend heav-
ily on the number of servers. Likewise, the amount of tra�c generated should
not depend heavily on the number of servers. Of course, since every message
must be sent to every server at least once, O(n) is a lower bound for the
total tra�c generated.

{ Automatic:We do not want to con�gure ood paths manually (like in the
News service).

{ Priority: Since we intend to use the protocol for other purposes as well, it
would be nice to have a priority parameter attached to every message that
determines its acceptable propagation delay and bandwidth consumption.

A

B

C

D

E

F

G

H

Figure 2: One step of the p-ood algorithm (p = 1:5)

The p-ood algorithm is a probabilistic algorithm which ful�lls the above re-
quirements. Figure 2 illustrates its behavior. The servers are arranged in a circle
(for example by sorting them according to their Internet address; see section
7.1 for a discussion how this can be done in a better way). Every server knows
all other servers (updates of the server list will of course be transported by the
algorithm itself).

Servers accumulate update messages which are generated either by the server
itself (as a result of modi�cation of a surface document or surface link), or are
received from other servers, in their update list. Once in a while (every few
minutes) the update list is sent to p other servers (p � 1). We will call this time
period a step of the algorithm. For p = 1, updates are sent only to the immediate
successor, otherwise they are also sent to p� 1 other servers that are chosen at



random. If p is fractional, they are sent to other servers only with probability
p � 1. For example, p = 1:3 means that one message is sent to the successor,
and another one with probability .3 to a random server; p = 3:2 means that it
is sent to the successor, two other random servers plus one other random server
with probability .2.

Figure 2 shows one step of the p-ood algorithm with p = 1:5. Note that at
every step the operations described above are performed by all servers in parallel,
i.e. within the step time period every server performs one step (the clocks of the
servers do not have to be synchronized). We may observe that at every step p �n
update lists are sent (n being the number of servers).

The higher the value of p, the shorter the time it takes to reach all servers,
but the higher the amount of tra�c generated (it happens that the same message
is received more than once by some servers). The algorithm in principle allows
the assignment of di�erent values of p to individual messages, so we may call p
the priority of the message.

After a message has successfully been transmitted to a server's immediate
successor, it is removed from the sending server's update list and not sent again
to any server in future steps. Messages are time-stamped using a per-server
sequence number, so that duplicates can be discarded and messages can be
processed in the correct order by the receiver. This ensures that messages are
removed after they have been received by all servers and keeps the update lists
relatively short.

What happens when a server is down or unreachable? Since a message must
not be discarded from the update list until it has successfully been sent to
the successor (we assume that a reliable transport protocol like TCP is used
and that receipt is acknowledged), the message will e�ectively wait there until
the successor comes up again. Almost immediately after that, the accumulated
update messages will be sent. In a way, every server is responsible for delivering
messages to its successor. The penalty is that when a server is down for a long
period of time, its predecessor's update list grows.

Setting the priority p = 1 (send messages only to the successor) will e�ectively
block update messages in case of an unreachable server and is therefore not
feasible. A higher values of p not only speeds up the propagation of the messages
signi�cantly, but also contributes to the robustness of the algorithm. In the
example of Figure 2, a crash of server B would not inhibit update messages from
server A being propagated to the other servers.

A few extensions of p-ood are necessary for real use. They are described
later in section 7, in order to not burden the reader with additional complexity
at this point.

6 Simulation Results

This section presents data gathered by running extensive simulations of p-ood.
We will �rst concentrate on "perfect world" simulations (i.e. all servers are reach-
able) and then look at the e�ect of network and server faults.

6.1 The Behavior of p-ood in the Perfect World

In this �rst set of experiments we want to �nd out how weak exactly our weak
consistency is, i.e. how long it takes to arrive at a consistent state after updates



have stopped, how this time depends on the number of servers and the priority
factor p, and how much tra�c is generated over time.

0

50

100

0 10 20 30 40 50 60

%
 s

er
ve

rs

propagation delay

p = 1.1
p = 1.2
p = 1.5
p = 2.0

0
20
40
60
80

100
120
140
160
180

0 10 20 30 40 50 60

m
es

sa
ge

s

average update list size

p = 1.1
p = 1.2
p = 1.5
p = 2.0

0
100000
200000
300000
400000
500000
600000

0 10 20 30 40 50 60

m
es

sa
ge

s

time (in steps)

network traffic

p = 1.1
p = 1.2
p = 1.5
p = 2.0

Figure 3: Performance of p-ood at di�erent values of p (n = 1000; m = 1000)

Figure 3 gives us a feeling of how p-ood performs. It is assumed that m
update messages have been generated at the n di�erent servers before the simu-
lation starts, and we watch their propagation to the other servers, in particular
how long it takes until they arrive there. It turns out that it does not matter
whether all m updates are made on a single server or whether they are distrib-
uted randomly over the n servers, but the random placements gives smoother
curves, so I have chosen this method for producing the graphs.

The top graph shows how the update information is propagated to the 1000
servers, using di�erent values of p. A higher value of p gives faster propagation,
e.g. at p = 2 and n = 1000, 50% of the servers are reached after about 4 steps,
99% after 7 steps, and the last one is typically updated after 10-13 steps. The
price for faster propagation is a higher load on the servers and networks: The
middle graph shows the average size of the update list held at each server, and
the bottom graph shows the tra�c in messages that is sent at each step.

Since every message has to be sent to every server at least once, every al-
gorithm that delivers every message to every server will need to transmit at
least m � n messages, so we will call this number the optimum tra�c. Under



perfect-world conditions, the total tra�c sent by p-ood is p � n � m messages,
or p � optimum. The point is that the ood algorithm distributes this tra�c
nicely over time and over the whole network, as opposed to the trivial solution
where every server simply sends all its updates to all other servers (which re-
quires only optimum messages to be sent). The lower the value of p, the more
network-friendly the update.

Clearly, there is a tradeo� between fast propagation and peak network load.
Figure 3 suggests that a good setting of p is somewhere between 1 and 2.

0
2
4
6
8

10
12
14

0 200 400 600 800 1000 1200 1400 1600 1800 2000

tim
e 

(s
te

ps
)

number of servers

99% updated
50% updated

Figure 4: Time to update 50% (99%) of the servers (p = 1:5) by n

Figure 4 demonstrates the remarkable scalability of p-ood with respect to
the number of servers. The time to reach 50% and 99%1 of the servers is plotted
against the number of servers. The logarithmic performance of p-ood is clearly
visible, meaning that that p-ood is well-suited for use in the context of very
large server groups.

Figure 5 plots the propagation delay (again, reaching 50% and 99% of the
servers) versus the priority p for a constant number of servers (n = 1000).

When I �rst ran the experiments, I was surprised to see that the messages
traveled about twice as fast as I had expected. For example, for p = 1 it takes
about 500 steps (not 1000) to reach all 1000 servers, for p = 2 it takes about 4
(not 9; 29 = 512) steps to reach the �rst 500 servers, etc.

It turns out that this happens because the clocks in the servers which deter-
mine the step time are not synchronized. When one server's timer expires and
the server then sends its update list to another server, the other server's timer
will in general not expire a full step time later, but after some random time
interval between 0 and the step time. On average, it will expire after half of the
step time, which explains the observed e�ect.

In the simulation, the behavior of the parallel server processes was modeled
on a single computer, i.e. for every step the individual servers performed their
update operations one after the other. If implemented carelessly, this serialization
could lead to wrong results: In the example of �gure 2, processing the servers in
the order A-B-C-D-E-F-G-H would always propagate all updates to all servers
in one single step! Instead, reality was modeled more closely by processing the
servers in the order given by a randomly chosen permutation of the servers,

1 The time to update 100% of the servers is of course always an integral value and
subject to a great deal of randomness. The 99% value can be interpolated and is less
a�ected by randomness, so I decided to use this value to get smoother curves in the
graphs. The 100% value is about 3-6 steps higher.



1

10

100

1000

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

pr
op

ag
at

io
n 

de
la

y 
(s

te
ps

)

priority (p)

99%
50%

Figure 5: Time to update 50% (99%) of the servers by p (n = 1000)

mimicking the random expiration of the server's timers. Still, messages will travel
slightly slower in reality, especially if the step time is not large compared to the
average transmission time of updates lists.

6.2 Network and Server Failure

Since one of the major requirements for our ood algorithm was its robustness
with respect to network and server failures, we will now take a close look to this
issue.

First, let me make the distinction between soft or transient errors and hard
or persistent errors. Soft errors are temporary network errors due to routing
problems or network overload. This type of errors occur rather frequently in the
Internet, but usually only for a short period of time. Hard errors last longer (e.g,
as a result of a hardware failure) but fortunately happen less frequently.

Figure 6 shows the e�ect of soft errors on the propagation delay and the
tra�c generated. The propagation delay (i.e. the time to reach 50%/99% of the
servers) increases only slowly with increased soft error rate. A soft error rate
of 10% means that in every step 10% of the update propagations will fail (10%
of the servers are unreachable), which are chosen randomly. In the next step,
another random set of 10% fail, but is unlikely that the two sets are identical.

The bottom graph of Figure 6 shows how tra�c increases with increased
soft error rate. The set of messages that is sent increases, but the number of
acknowledged messages (i.e. that are sent successfully) remains constant. Since



0
5

10
15
20
25
30
35
40

0 10 20 30 40 50
tim

e 
(s

te
ps

)

propagation delay

99% updated
50% updated

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50

(x
 o

pt
im

um
)

soft error rate (%)

network traffic

messages sent
messages sent & acknowledged

Figure 6: E�ect of soft errors on propagation delay and tra�c (p = 1:5; n = 1000)

p-ood detects duplicate messages and messages that arrive out of order itself,
we could in principle use an unreliable protocol like UDP to transmit messages
and acknowledgments. However, UDP is very much subject to soft errors (e.g.,
packets dropped). Using TCP, the transport protocol repairs a large number
of soft errors itself. When a server is temporarily unreachable, this will usually
already been detected during the opening of the connection, and the messages
will never be sent in this case. This means that for TCP the "messages sent"
graph is not signi�cant, i.e. the number of messages actually sent is constant
with respect to soft errors.

up

down

MTBF MTTR

time

Figure 7: MTBF and MTTR

Hard errors are usually described by the two variables Mean Time Before
Failure (MTBF) and Mean Time To Repair (MTTR) (Figure 7). Then uptime,
i.e. the fraction of time the server is up, is de�ned as

uptime =
MTBF

MTBF +MTTR



In our simulations, we will measure MTBF and MTTR in units of steps.
For MTTR = 1 we have soft (transient) errors, larger values of MTTR mean
that a same server is down for a longer time. It is expected that server uptime
will be well over 90% (this is already a bad value; it means that a server will be
unreachable for 2.4 hours per day). In the beginning,MTTR=(MTBF+MTTR)
servers are marked as down, with the time they remain down chosen randomly
between 0 and MTTR. The others are assigned a time they remain up between
0 and MTBF. It is assumed that the servers which are down also carry update
messages (they could have been accumulated before they went down; the servers
could be only unreachable from the outside but running). During the simulation,
servers that come up remain up for MTBF steps, those that go down remain
down for MTTR steps.

0
20
40
60
80

100
120

0 10 20 30 40 50 60 70 80 90 100

tim
e 

(s
te

ps
)

propagation delay

99% updated
50% updated

1
2
3
4
5
6
7
8
9

0 10 20 30 40 50 60 70 80 90 100

(x
 o

pt
im

um
)

mean time to repair (steps)

network traffic

messages sent
messages sent & acknowledged

Figure 8: E�ect of hard errors (p = 1:5; n = 1000; uptime = 90%)

In Figure 8, uptime is constantly 90%, and MTTR varies between 1 and
100. The top graph shows the e�ect on the propagation delay. Because of the
probabilistic nature of p-ood there is almost no e�ect on the remaining servers,
which is why the time to reach 50% of the servers remains almost constant. Of
course, there is an impact on the time to reach 99% of the servers (because only
90% are available), which grows linearly with MTTR. The number of messages
sent also grows linearly. This time the number of messages that are sent and
acknowledged (i.e. the ones that would be sent when we use TCP) also increases,
but only slowly.

Figure 9 takes a closer look at the e�ect of hard errors on the performance of
p-ood. In order to make the e�ects clearly visible, 10% of the servers (100) are
held down (or unreachable) until step 50, when they all come up simultaneously.
The graphs can be divided in three phases:

During the �rst phase (until about step 17), updates propagate almost as
usual (only slightly slower than the p = 1:5 curve in Figure 3), but level o� when



0

50

100

0 10 20 30 40 50 60 70
%

 p
ro

ce
ss

ed

messages processed

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70

m
es

sa
ge

s
average update list size

0

50000

100000

150000

200000

250000

0 10 20 30 40 50 60 70

m
es

sa
ge

s

time (in steps)

network traffic

messages sent
messages sent & acknowledged

Figure 9: 10% of the servers are down until step 50 (p = 1:5; n = 1000; m = 1000)

approximately 81% of the updates are processed (because 90% of the updates
are then processed by 90% of the servers; remember that the 10% unreachable
servers also generated 10% of the updates).

In the second phase (steps 18 to 49) the system is in a more or less stable
state. Since this state may last for a long time (until the servers come up again;
in our experiment this is step 50), it is worth analyzing what happens exactly
during this phase. We may observe that the set of servers can be partitioned in
three disjoint groups:

1. Those that are down. If we call d the fraction of servers that are down, then
the number of servers in this group is d � n (in our example: d = 0:1; n =
1000) d � n = 100).

2. The predecessors of the servers that are down. Since a predecessor may also
be down (with probability d), in which case it belongs to the previous group,
the number of members of this group is (d� d2) � n (in our example: 90).

3. The others, i.e. those that are up and not predecessors of an unavailable
server. The number of such servers is (1� d)2 � n (in our example: 810).

The members of group 3 are able to ush their whole update list already
during the �rst phase, i.e. their update list size during phase 2 is zero. Members
of group 2 keep messages destined for the group 1 members. The number of
such messages is (1 � d) �m at each server. The unavailable servers carry m=n



messages each. The average update list size (as plotted in the middle graph of
Figure 9) during phase 2 is therefore

(d� d2) � n � (1 � d) �m + d � n � m
n

n
= m � (d� 2d2 + d3 +

d

n
) (= 81:1)

The members of group 2 constantly try to send messages to their successors
(which are group 3 members) and to other random servers. At p = 1:5, every
group-2-server sends .5 messages per step to random nodes (which will succeed
with probability (1 � d)), plus one message per step to its successor (which is
guaranteed to fail). The members of group 1 and 3 send nothing. The total
number of messages sent at each step of phase 2 can therefore be calculated
as p � (d � d2) � n � (1 � d) � m, in our example 1:5 � 90 � 900 = 121; 500. Out
of these, (1 � p)=p are successful (in our example, one third or 40500). The
calculation corresponds nicely with the simulated results shown in the bottom
graph of Figure 9. Again, the number of messages sent and not acknowledged
is insigni�cant if we use TCP as transport protocol, because the fact that a
server is down is discovered already when attempting to open the connection,
and nothing will be sent if the open fails.

In the third phase, after the unavailable servers come up at step 50, the
members of group 2 immediately succeed in propagating their update lists to
their successors, which causes the dramatic e�ects shown in Figure 9 shown
around step 50. After that, it takes a few more steps to propagate the updates
that were kept by the unavailable servers to all servers.

6.3 Tra�c Estimates

Let us now try to estimate the (additional) amount of network tra�c that would
be caused by applying the described architecture to a distributed information
system. In order to do so, we assume the following values of variables:

{ 1,000 servers (n).
{ 100 surface objects (documents and links) per server, i.e. we assume a total
of 100,000 surface objects. Note that the number of core objects would be
much higher but is irrelevant here.

{ 10% of the surface objects are updated per day, i.e. a total of 10,000 up-
dates messages (m) have to be propagated every day. Again, updates of core
objects are irrelevant.

{ Note that while the tra�c generated is dependent on the number of servers
and documents, it does not depend on the number of users of the system.

Then, the total number of messages sent per day is p�optimum, with optimum
= n � m = 107 messages (every message shall be delivered to every server). A
message is a few bytes long (say, 10). At p = 1:5, we would generate network-wide
tra�c of 1:5� 108 bytes (150 MB) per day, or 4.5 GB per month.

On the other hand, the NSFnet currently (Nov. 94) transmits about 22,462
GB per month [Merit Network Information Center 94]. If we assume that 25%
of the whole (non-local) Internet tra�c pass the NSFnet (i.e. the whole tra�c
is about 90,000 GB/month), this means that the update messages of our infor-
mation system would cause an additional 0.005 % of network tra�c; in other
words, the e�ect is negligible.



Since every update message has to be propagated to every server, the nature
of p-ood can be compared to the USENET news service. However, the messages
are much smaller than news articles. The numbers given are for perfect-world
performance. Consult Figures 6 and 8 to see the e�ect of soft and hard errors
on network tra�c.

7 Extensions of p-ood

The description of p-ood in section 5 was a bit simplistic for the purpose of
understanding the simualtion results. However, the following details have to be
addressed when actually implementing p-ood:

7.1 Arranging the Servers

A potential weakness of p-ood is its random usage of logical Internet connec-
tions, without knowledge of the underlying physical network. There is no pref-
erence of fast links over slow ones, as in ood-d. On the other hand, random
selection of ood paths propagates the updates faster than the cost-based selec-
tion [Danzig et al. 94], which tends to use the same links again and again.

However, p-ood chooses its propagation paths in both non-probabilistic (the
immediate successor) and probabilistic (among the other servers) ways. The
amount of randomness is controlled by the p parameter. Since for reasonable
values of p (see the simulations in section 6) most tra�c runs over the static
circle of servers (see �gure 2), clever arrangement of servers in this circle can
vastly reduce network cost and delay, without giving away the advantages of fast
propagation and robustness by random choice of some of the ood paths.

Computing the optimal circle using actual bandwidth measurements would
be di�cult, since it would require gathering a fully connected matrix of band-
width between servers. Furthermore, the measurements would have to be re-
peated quite frequently, because global network utilization changes with the
time of the day. Hand-con�guring is not considered an option. Therefore, we
choose a more pragmatic, heuristic approach:

Servers are sorted according to their reversed fully-quali�ed domain name.
Server i then is the successor of server i�1, and the �rst server is the successor of
the last one. Sorting by reverse domain name (i.e. by last character �rst) results
in all servers in for example Belgium (domain .be) being neighbors in the circle,
followed by the servers in Germany (domain .de) and so forth. Within Germany,
the servers located in, e.g., Berlin will be neighbors (domain -berlin.de). Since
in most cases local connectivity is cheaper and faster than international connec-
tions, this simple trick will result in better use of the available bandwidth2. No
computations (other than sorting) and measurements are necessary.

7.2 Adding and Removing Servers

When a server is added to or removed from the server list, p-ood itself { with
a high priority p { is used to notify all servers. The servers modify their server
list accordingly (using the sort order described in section 7.1).

2 Unfortunately, host names in the US domains (.edu, .com, .gov, .mil, .net) in general
do not give any hints on the host's geographical location, with the exception of the
new .us domain).



During propagation of server list updates (addition and removal of servers,
moving a server to a di�erent host) it is important that a server uses its old
server list for ooding, until the message has been acknowledged by the successor.
Simple modi�cations of server attributes (e.g., description, Internet address, e-
mail of administrator) do not require such precautions.

7.3 Recovery after Catastrophic Events

When operating a large number of servers it may and will happen (not too often,
hopefully) that catastrophic events occur which result in loss of information (for
example a head crash on the server's disk). In such cases, operation needs to be
resumed from a backup copy of the information base. If the backup copy is n
days old, then the restarted server has lost all its updates of the last n days.
This is inevitable, though.

However, other servers may also have a now obsolete picture of our server's
surface. For example, somebody may have recently (less than n days ago) created
a new document in our server, with a link pointing to (or from) another document
on another server. The document has now disappeared and of course this link
also has to be destroyed in order to keep a consistent state. In other words, the
other servers also have to roll back to the situation n days ago.

In such a situation, our server may ood a special message that contains its
whole surface (documents and links), thus requesting all other servers to check
this picture against their view of our server, and adjust their information about
our server accordingly.

7.4 Repairing Inconsistencies

Under certain conditions an inconsistency in the hyperweb may occur. For ex-
ample, let us assume that a link is made from a document on server A to a
document on server B. The document on server B was not previously on the
surface. At about the same time (i.e., before the update message reecting this
operation arrives at server B) server B deletes the document the links is going
to point to. Since it is not on the surface there is no need to inform other servers
about the deletion, so server A will not be noti�ed and will keep its link.

Server B can detect this inconsistency when the update message from server
A eventually arrives, since it requests creation of a link to a non-existing object.
It may now ood a "document removed" message for this non-existing object,
as if it had been on the surface.

Alternatively, we may choose to live with such (rare) inconsistencies for a
while, and have all servers periodically ood their whole surface, like after a
catastrophic event (section 7.3). This would serve as a fall-back mechanism that
deals with all kinds of inconsistencies and errors, including unforeseeable hard-
ware and software errors in the update server. Since this messages may be rather
long, they should be sent infrequently and with low priority. The exact time and
priority will have to be determined when we have a feeling of how often such
problems occur.



8 Summary

The paper presents a scalable architecure for guaranteeing referential consistency
in large, distributed information systems, for example distributed hypermedia
systems like Gopher, WWW, and Hyper-G.

Server objects (documents, links) are divided into surface and core objects.
We assume that servers are able to maintain referential integrity for core objects
(like the Hyper-G server), so only surface objects need to be treated specially
when modi�ed. A fast, robust, prioritizable ood algorithm, p-ood, is speci-
�ed to propagate messages containing update information about surface objects
between servers.

Extensive simulations of p-ood show that the protocol is scalable, fast, and
can cope with spurious errors and persistent failure of servers and networks. The
tra�c generated is negligable compared to total Internet tra�c.

The architecture described and p-ood is now implemented in the Hyper-G
system, but can in principle applied to any kind of distributed information sys-
tem.

References

[Andrews and Kappe 94] Andrews, K., Kappe, F.: \Soaring Through Hyperspace: A
Snapshot of Hyper-G and its Harmony Client". In Herzner, W., Kappe, F.
(editors), Proc. of Eurographics Symposium on Multimedia/Hypermedia in
Open Distributed Environments, Graz, Austria. Springer (1994), 181{191.

[Andrews et al. 95] Andrews, K., Kappe, F., Maurer, H.: \Hyper-G: Towards the Next
Generation of Network Information Technology". Information Processing and
Management (1995). Special issue: Selected Proceedings of the Workshop on
Distributed Multimedia Systems, Graz, Austria, Nov. 1994.

[Berners-Lee 93] Berners-Lee, T.: \Uniform Resource Locators". Available on
the WWW at URL http://info.cern.ch/hypertext/WWW/Addressing/URL

/Overview.html (1993).
[Berners-Lee et al. 94] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., Se-

cret, A.: \The World-Wide Web". Communications of the ACM, 37, 8 (1994),
76{82.

[Bowman et al. 94] Bowman, C. M., Danzig, P. B., Hardy, D. R., Manber, U.,
Schwartz, M. F.: \Harvest: A Scalable, Customizable Discovery and Access
System". Technical Report CU-CS-732-94, Department of Computer Science,
University of Colorado, Boulder (1994). Available by anonymous ftp from
ftp.cs.colorado.edu in /pub/cs/techreports/schwartz/Harvest.ps.

[Coulouris and Dollimore 88] Coulouris, G. F., Dollimore, J.: \Distributed Systems:
Concepts and Design". Addison-Wesley (1988).

[Danzig et al. 94] Danzig, P., DeLucia, D., Obraczka, K.: \Massively Replicating
Services in Autonomously Managed Wide-Area Internetworks". Techni-
cal report, Computer Science Department, University of Southern Cali-
fornia (1994). Available by anonymous ftp from catarina.usc.edu in
/pub/kobraczk/ToN.ps.Z.

[Haan et al. 92] Haan, B. J., Kahn, P., Riley, V. A., Coombs, J. H., Meyrowitz, N. K.:
\IRIS Hypermedia Services". Communications of the ACM, 35, 1 (1992),
36{51.

[Israel et al. 78] Israel, J. E., Mitchell, J. G., Sturgis, H. E.: \Separating Data from
function in a Distributed File System". In Lanciaux, D. (editor), Operating
Systems: Theory and Practice, 17{27. North-Holland, Amsterdam (1978).



[Kantor and Lapsley 86] Kantor, D., Lapsley, P.: \Network News Transfer Protocol { A
Proposed Standard for the Stream-Based Transmission of News. Internet RFC
977". Available by anonymous ftp from nic.ddn.mil in �le rfc/rfc977.txt

(1986).
[Kappe 93] Kappe, F.: \Hyper-G: A Distributed Hypermedia System". In Leiner, B.

(editor), Proc. INET '93, San Francisco, California. Internet Society (1993),
DCC{1{DCC{9.

[Kappe et al. 94] Kappe, F., Andrews, K., Faschingbauer, J., Gaisbauer, M., Pichler,
M., Schipinger, J.: \Hyper-G: A New Tool for Distributed Hypermedia". IIG
Report 388, IIG, Graz University of Technology, Graz, Austria (1994). Also
available by anonymous ftp from iicm.tu-graz.ac.at in directory pub/Hyper-
G/doc.

[Kappe et al. 93] Kappe, F., Pani, G., Schnabel, F.: \The Architecture of a Massively
Distributed Hypermedia System". Internet Research: Electronic Networking
Applications and Policy, 3, 1 (1993), 10{24.

[Lindner 94] Lindner, P.: \Internet Gopher User's Guide". University of Minnesota
(1994). Available by anonymous ftp from boombox.micro.umn.edu as �le
pub/gopher/docs/GopherGuide Jan12-94.A4.ps.

[Merit Network Information Center 94] Merit Network Information Center: \NSFNET
Backbone Statistics". Up-to-date �gures are available by anonymous ftp from
nic.merit.edu in /nsfnet/statistics (1994).

[Network Wizards 94] Network Wizards: \Internet Domain Survey". Up-to-date �g-
ures are available on the WWW at URL http://www.nw.com/zone/WWW

/top.html (1994).
[Nielsen 95] Nielsen, J.:\Multimedia & Hypertext" (1995). to appear.

This article was processed using the LaTEX macro package with JUCS style


