
Hyper-G Proc. INET '93 F. Kappe

Hyper-G: A Distributed Hypermedia System

Frank Kappe1

Abstract

Hyper-G is a general-purpose, large-scale, distri-

buted hypermedia system currently developed at

the Graz University at Technology. It was de-

signed for handling large amounts of multimedia

data, and care has been taken to provide mech-

anisms for automatic maintenance of a dynami-

cally changing body of information, advanced user

interface features, and e�cient use of network

and computing resources.

While Hyper-G was originally designed to run in

fast, local-area networks, this paper shows how

Hyper-G is currently being transformed into a

global hypermedia information system distribu-

ted over Internet that retains Hyper-G's advanced

functionality such as automatic link generation

and maintenance, navigation facilities, access

rights, and distributed searching, and makes ef-

�cient use of network bandwidth by extensive

caching.

I. Introduction

Hyper-G is the name of an ambitious hyper-

media project currently in progress at the Graz
University of Technology [1]. Hyper-G is de-
signed as a general-purpose, large-scale, distribu-
ted, multi-user, hypermedia information system,
similar in scope to Xanadu [2] and Intermedia
[3]. Based on previous experience with large-scale

information systems (videotex), the aim of the
Hyper-G project is to develop a
exible hyper-
media framework in order to study and possibly
eliminate the problems typically associated with
large-scale hypermedia systems.

The need for a large volume of information
imposes some design decisions for the implemen-
tation of such a system. An important issue for

handling large amounts of data is support for au-

tomatic structuring as well as maintenance of a
dynamically changing body of information. An-
other aspect of the size of hypermedia systems is
that orientation and navigation become more dif-
�cult as the size grows. Problems of users of such

systems include: getting lost in \hyper-space";

having di�culty gaining an overview; not being

1 Dr. Kappe <fkappe@iicm.tu-graz.ac.at> is with

the Institute for Information Processing and

Computer Supported New Media (IICM), Graz

University of Technology, Graz, Austria.

able to �nd information that is known to exist;
determining how much information on a given
topic exists; how much of it has been seen and
how much is left. These issues have been identi-
�ed as crucial for the acceptance of hypermedia
and have been heavily discussed in the literature
[4, 5, 6]. Solutions that work well on small sys-
tems (e.g., global maps) fail completely when ap-
plied to large-scale hypermedia.

After the project started in 1990, a number
of user and system requirements have been iden-
ti�ed [7], turned into a
exible system design
[8], and a prototype system was implemented.
While originally meant to be a research project,
an unexpectedly high demand for such a sys-

tem has resulted in real use even of early proto-

types of Hyper-G for Campus-Wide Information
Systems2 and similar applications.

Because of the high acceptance of networked

information retrieval (NIR) tools like Gopher [9],
WAIS [10, 11] and WorldWideWeb [12] that have

been developed at the same time as the Hyper-G
prototype (each o�ering some subset of Hyper-G
functionality) we have decided to increase the

emphasis on a distributed information system in

phase 2 of the Hyper-G project (starting 1993),

while retaining the original goals of advanced

maintenance and navigation functionality. Also,
compatibility to these NIR tools will be provided
in both directions (i.e. using both their clients
and servers in conjunction with Hyper-G). This
paper describes the modi�cations to the original
design that are made in response to that new re-
quirement.

II. Basic Hyper-G Architecture

This section describes in the necessary detail
the original design of the main Hyper-G compo-
nents as they are used in the prototype imple-

mentation currently available. Given the require-
ments of a large number of (multimedia) docu-
ments and a large number of users it is fairly

2 A text-only interface to the campus-wide infor-

mation system of the Graz University of Tech-

nology that is based on Hyper-G can be tried

out by remote login to host '�nfo.tu-graz.ac.at'.

In addition, the same CWIS may be reached by

Gopher (host '�nfo.tu-graz.ac.at', port 70) and
WWW (URL http://iicm.tu-graz.ac.at/ROOT)

protocols.

DCC-1

Hyper-G Proc. INET '93 F. Kappe

obvious to arrive at a client/server design model.
Although the design of a client that provides
advanced navigation facilities while maintaining
user interface consistency over information pro-
vided by a multitude of authors is interesting in
its own right [13], for the purpose of this paper
we will concentrate on the server side.

The Hyper-G server (also called link server

for historical reasons) is a rather complex object
oriented database of objects, i.e. descriptions of
documents, links, anchors, collections, tours, re-
mote databases, etc. (for an in-depth description
of Hyper-G objects and features see [8, 14]) as
well as relations between such objects (e.g., which
anchors are attached to which documents, which
source anchors are connected to which destina-
tion anchors/documents, which documents be-
long to which collection, etc.). The link server
o�ers the following functions:

� It assigns object IDs to objects (currently,

a 32-bit entity) and assures that no two ob-

jects can share the same ID. In addition, it
is guaranteed that when an object is mod-
i�ed, it receives a new object ID so that it
can be distinguished from the old version.

Also, when an object is deleted, its ID can-

not be reused.

� It maps object IDs to objects. In Hyper-G ,
an object ID is just a unique number (sim-

ilar to an ISBN number or a mail message
id) assigned to every object (and hence ev-

ery document). In the link server (and

only there) more information on the ob-
ject is stored (such as title, author, creation
date, and { in the case of documents { also
the data necessary to retrieve the document
from a document server). Therefore, should
a document be changed (say, moved from
server A to server B) only the information

in the link server has to be updated.

� Unlike many other hypertext systems (e.g.,
WorldWideWeb), Hyper-G strictly sepa-
rates links from documents. This allows to
attach links to documents even when the
document itself cannot be changed (e.g.,
because it resides on a CD-ROM or on a re-
mote server and the protocol prevents writ-
ing of documents). In general, this is a de-

sirable feature because it enables users to

annotate material that is otherwise read-

only (e.g., encyclopedias). The link in-
formation, together with meta-information
about objects (title, author, creation date,
etc.) is stored within the link server, while

the documents themselves remain on a so-

called document server (performs similar to
a Gopher server).

� A centralized link store enables the system
to support bidirectional links3, i.e. answer
the question \What other documents refer
to the current document?", which is impor-
tant for two reasons:

{ Whenever a document is deleted or
modi�ed, the system is able to tell
what other documents refer to the
document in question. This means
that in such cases references to nonex-
istent or outdated documents can au-
tomatically be identi�ed and (possi-
bly) removed from the web, thus main-
taining web integrity. Especially in
large multi-user systems, where the
person deleting a document can not
be expected to know of all the links
to that document, this is an essential

feature.

{ Advanced user interfaces for hyper-
media include graphical browsers that
show the \surroundings" of the cur-
rent document. With bidirectional

links, the system is able to show both

the links that have the current doc-
ument as their departure point and

those that arrive at the current doc-

ument.

� Hyper-G extends the primitive node-link
model of hypermedia (that has been com-
pared with GOTOs of programming lan-
guages [15]) by separating organizational
from referential links (compare [16]) and
replacing organizational links with more
high-level structural elements:

{ A Collection is a set of other struc-

tures, and is used to create a collection
hierarchy like the one shown in �gure
1. When users visit a collection, they
are given an overview of all objects be-
longing to that collection, and can se-
lect (and thus visit) any of the objects
contained (similar to a Gopher menu).

{ A Cluster is similar to a collection,
but when visiting a cluster all of its
sub-structures are visited (visualized).
This structure is used to implement

multimedia documents (e.g. play a

3 It should be noted that the link server concept as

well as bidirectional links are also implemented in

the Intermedia system [3].

DCC-2

ChemistryBiology

Biochemistry Organic Ch. Anorganic Ch.

Natural Sciences

Zoology

from root collection

"descend"

"ascend"

A typical

Collection Hierarchy

Hyper-G Proc. INET '93 F. Kappe

Figure 1: The Collection Hierarchy

sound while an image and a text docu-
ment are shown), and to support mul-
tilingual documents and version con-

trol.

{ A Tour is a collection that visits all

of its substructures in a certain order

when the tour is visited. It is used to
implement 'linear hypertexts' with au-
tomatically generated 'next' and 'pre-
vious' user interface elements.

The link server is aware of these struc-
tural elements and uses them to maintain
database consistency (e.g. making sure
that every document is a member of at

least one collection, deletion of a document

from a tour automatically joins its neigh-

bors, etc.)

� As every Hyper-G object contains some

meta-information (title, author, creation

date, additional keywords, ...) the link
server can perform complex boolean and
fulltext queries (e.g., \Give me documents

with title containing UNIX, created by

user fkappe after 93/06/01") either over

the whole database or a certain subset of
the collection hierarchy. Unlike Gopher or

WorldWideWeb, Hyper-G does not require
the information provider to set up a cer-
tain search engine for every suitable collec-

tion of documents. Rather, every document

and every collection created is automati-
cally searchable and it is the user's decision
where a search seems feasible.

� A sophisticated, hierarchical access control

scheme built into the link server allows to
restrict access to individual documents and

collections to certain groups of users. The

link server also supports modi�cation of the
database (including rearrangement of the
collection hierarchy and editing of text doc-
uments) by clients, for which access control
is also a precondition. There are plans to
support accounting functions as well, but

they have not been implemented yet.

� The link server is also the ideal place to
gather detailed statistics on the usage of the
system.

The Hyper-G clients connect to the link server

and use it to search and browse through the in-

formation space. Whenever a document (text,

image, sound...) is needed, it is fetched from a

so-called document cache server (see section IV).

While in the original design there is only one link
server, we will now describe how the link server

itself can be distributed.

DCC-3

local

cache

client

Link
Server
(fig. 5)

Document
Cache
Server

to other servers on Internet

Documents:

LAN

Hyper-G Proc. INET '93 F. Kappe

III. The Distributed Link Server

Why do we need a distributed link server at
all? We might also choose to have a number
of independent servers running at di�erent sites,
with documents within one server referring to ob-
jects in a di�erent server in order to allow cross-
references between servers (similar to Gopher and
WorldWideWeb). However, this simple approach
su�ers from a number of shortcomings:

� We would lose Hyper-G 's ability to auto-
matically maintain consistency of the in-
formation space. To illustrate this, con-
sider the following example: A site has
made available an interesting collection of
data. Immediately other people would in-
clude references to it either by including
it into their local hierarchy (like Gopher)
or by creating hypertext links to it (like
WorldWideWeb). When the original site
chooses to remove, modify, or just move

the data to a di�erent site, it is di�cult if
not impossible to �nd out who has created
references to the original information, to
contact them, and to have that references

updated/removed. In any case, it would

require a signi�cant (manual) maintenance
e�ort.

� It would not be possible to perform (e.g.,
fulltext) searches over a certain subset of
the collection hierarchy, if that hierarchy is

distributed over a number of servers.

� The possibilities for caching are somewhat
limited in this setup, causing a lot of net-
work tra�c.

� The approach leads to an e�ect that Ted
Nelson has called \balkanization" [17]: In-
formation tends to be organized by geo-
graphical location rather than by content.

This is due to the di�culties of maintain-
ing a collection of related information that
is spread over a number of servers.

Figure 2 shows the architecture of Hyper-G
(a more detailed analysis of which can be found
in [18]). Clients are not required to connect to a
number of Hyper-G servers. Rather, clients talk
to the same server all the time. Should infor-
mation from a remote server be needed, the local
server fetches it and delivers it to the client. This

approach o�ers the following advantages:

� It keeps clients simple and allows for a

connection-oriented protocol.

� It enables caching of remote information in
the local link server.

Figure 2: Hyper-G Architecture

� It eases maintenance of users and access
rights in the local link server (user has to
identify to one server only).

� It enables the link server to gather statistics

and user pro�les on a per-session basis.

The distributed link server is able to guaran-
tee web consistency and to perform distributed
searches, both across server boundaries. For the

client, the existence of servers other that the lo-

cal server is not visible; the local server performs

like a \super-server" that knows about all the in-
formation stored in all other servers. In a way,

it behaves similar to a domain name server that

can be queried with the gethostbyname() system

call on UNIX machines, knows about some local

names, asks other servers for remote names, and
caches the results for higher performance, all in-
visible for the calling process.

In order to see how this can be done, we
have to dig into the internals of the link server
a little bit more. We will �rst concentrate on

the functions that are necessary to maintain re-
lationships between documents and collections
(e.g., \what collections does this document be-
long to?", \what documents have links pointing

to this document?", etc.) over di�erent servers,

and discuss the problem of distributed searching
later.

Information describing relationships between
Hyper-G objects is not contained in the objects

themselves, but rather in relations that are ad-
ministrated by the link server. These relations

are the only information that has to be shared

between link servers in order to answer the ques-

tions raised above. For ease of explanation, we
will now concentrate on one such relation, the

document-collection relation.

DCC-4

Document-Collection Relation

Server Restart

000012AB

000012AB

0000147F

00103CD1

00103CD2

00103CD2

Parent Child

Search TreeSearch Tree

FindChildren() FindParents()

Hyper-G Proc. INET '93 F. Kappe

Figure 3: Implementation of the Document-Collection Relation

In general, we assume that Hyper-G data is
read mostly and modi�ed rather infrequently, so

that we are willing to spend more time on in-
sertion/deletion than on search and retrieval of
objects. Being an object-oriented database, the

link server internally performs functions like (in
C++ notation):

doc->FindParents()

col->FindChildren()

to �nd the parents (i.e. the collection(s) it
belongs to) of a document and the children (i.e.
the subdocuments) of a collection, respectively.
A more complex function like

doc->Delete()

uses the FindParents() function to �nd all
the parents of the document to be deleted and
instruct them to remove that document from
the list of their children before actually delet-
ing the document. Internally, FindParents()

and FindChildren() are implemented using the
document-collection relation as shown in �gure 3.

The relation (the tabular array in the middle

of �gure 3) is supplemented by two search trees

that allow rapid access (O(log n)) to the rela-
tion from both sides. The left tree is used during
the FindChildren() operation as the leaves store

the Object IDs of the children of a given par-
ent collection, while the right tree is used for the

FindParents() operation as its leaves store the

parent collection(s) of a given document. When

inserting or deleting a relation, the relation table
as well as both trees have to be updated. As in-

dicated in the lower part of �gure 3, the trees are
only auxiliary data structures that can be gener-
ated from the relation table on server restart. Af-

ter that, the original table is accessed only when

modifying the relation (which we assume to be

a rather infrequent operation). Most of the time
the two trees will su�ce.

There exists a similar arrangement of rela-
tions for dealing with links (anchor-document re-
lation and source anchor-destination anchor re-
lation) that work the same way and are used to

�nd source and destination documents (anchors)
of links, as well as all links (anchors) attached to

a certain document. However, in order to show

how relations are dealt with in the distributed
environment, it is su�cient to discuss the distri-
bution of the document-collection relation.

III.A. Distributed Relations

When evolving the single link server into a

distributed link server, we �rst have to extend

our notion of Object IDs. To achieve a unique

identi�er for every object in the Hyper-G world,

we use a very simple scheme: A unique server ID

is assigned to every Hyper-G server, and each
server generates unique 32-bits IDs for its do-
main. Thus, the concatenated 64-bit ID is unique

DCC-5

Server A Local ID Server B Local ID

Server A Server B

Parent (on A) Child (on B)

stored in both servers

FindChildren() FindParents()

Relation:

Hyper-G Proc. INET '93 F. Kappe

Figure 4: Distributed Document-Collection Relation

over the whole world of Hyper-G servers.

When we look at the distributed document-

collection relation, we may distinguish two cases:

1. Both the parent and the child object re-
side on the same server (as indicated by

having the same server part of the ID). In

this likely yet trivial case, an entry in the

document-collection relation of the server

where both objects reside is made, and only

on that server. Searching, insertion and
deletion are performed as usual.

2. The parent collection resides on server A
and the child on server B (�gure 4). In

that case, the relation is entered into the

relation table on both servers, as well as
into the left tree of server A and into the
right tree of server B. When searching for
the children of the object on server A, the
left tree of server A is searched (leaves of

left tree hold all children). When searching

for the parents of the object on server B the

right tree of server B is searched (leaves of

right tree hold all parents).

As a rule of thumb, searching is always done

on the server that stores the object one wants

to know something about. It is always obvious

where to look for information, and searching a re-
lation can be completed by a single server. When
a relation is going to be modi�ed, however, the

two servers have to be synchronized in modi�-

cation of their relations, which requires a spe-

cial server-to-server protocol and may take some

time (this is consistent with our \read-mostly"

assumption). Observe that at most two servers
are involved in such an operation (no broadcasts

necessary).

It is important to note that the ability to �nd
the children as well as the parents of every object

in the web (as well as �nding the document with

links pointing to the current document) enables

the system to maintain database consistency over

server boundaries, and to present to the user a
graphical overview of both the collection hierar-
chy and the hyperlinks around the current docu-

ment, regardless of server boundaries.

Because of performance considerations the 64-
bit IDs are not really used in the relations. In-
stead, we stick with 32-bit local IDs and dummy
objects created for remote objects. These dummy
objects also serve as a local cache for remote ob-

jects.

III.B. Distributed Searching

To see how distributed searching can be per-
formed, we again have to take a closer look at
the implementation of the link server. As shown

in �gure 5, the link server internally consists of

a low-level database (called dbserver for histori-

cal reasons) and a number of high-level database
engines (called hgserver), one per user. The
dbserver knows about objects and relations on
a primitive level and is used to perform fast,
atomic functions (as well as critical tasks like ob-
ject locking), while the hgservers know about the
user's context, have a more high-level view of the
database (e.g. know what has to be done when
an object is to be deleted and translate this to a
series of calls to dbserver) and are able to spend

more time on completion of the client's request

as they run in parallel. The ftserver is speci�cally

dedicated to full text retrieval, document clus-
tering and automatic link generation, can run on
a di�erent machine because of high memory con-

DCC-6

dbserver ftserver

hgserver hgserver

client client

dbserver ftserver

hgserver

client

Local Link Server Remote Link Server

Hyper-G Proc. INET '93 F. Kappe

Figure 5: Internals of Link Server { Distributed Searching

sumption, and also performs operations in paral-
lel.

Searching the Hyper-G database involves ba-

sically three steps:

1. Find the IDs of the documents that match
the query. This step performs rather fast
(O(log n) where n is the number of docu-

ments in the server) and returns an array

of object IDs. It is performed by ftserver

(when the contents of a text document is
searched) and dbserver (deals with all other
searches).

2. The list returned by the previous step is

matched against the set of activated collec-
tions (i.e. the ones that the user switched
on for this search operation). This is done
by the user's hgserver, in cooperation with
dbserver and can be slow if many hits are
returned by the previous step. The object
IDs that were found to reside in activated

collections are returned to the client.

3. In a last step, the client may request the
full objects for the set of object IDs found
(minus some that are already cached in the
client), so that the title and other informa-
tion on the object can be displayed. This
operation is again rather slow but can be
performed by hgserver alone.

As shown in �gure 5, a user's hgserver can

also connect to dbservers and ftservers of remote

link servers. A bidirectional asynchronous pro-

tocol between hgserver and the other link server
components allows to broadcast a call to a num-

ber of dbservers and ftservers simultaneously and

collect the answers that are returned during a
certain timeout period.

This feature makes is possible to perform a
distributed search over any number of servers in
parallel. With a constant timeout period (say,

15 seconds) it does not take longer to query all

Hyper-G servers in the world than only two of

them. Of course, too short a timeout period will
result in loss of some of the answers, as will failure

of a network connection.

IV. The Document Cache Server

In order to speed up access to documents
(text, images, movies, sound...) and to conserve
network bandwidth, Hyper-G uses a document

cache server to store documents (shown in �gure
2).

Clients do not connect directly to the doc-
ument server that stores the desired document.

Rather, all document requests are routed through
the document cache. The client sends the docu-
ment object (including ID, host, port, protocol,
path. . .) to the document cache. If the document

requested has not yet been cached, the request
is forwarded to the document server that stores
the document. The document cache retrieves the
document from the document server and simul-
taneously retransmits it to the client and stores
it in the cache. If the document is found in the

cache, it is transmitted directly from the cache

server.

The document cache server should be con�g-

ured to control a certain amount of mass storage
(e.g. a few hundred megabytes of a hard disk)
and use it as cache memory for incoming doc-

DCC-7

Hyper-G Proc. INET '93 F. Kappe

uments. When that space gets �lled, the server
removes the document that has not been accessed
for the longest time (\least-recently-used" strat-
egy). It is intended that the document cache
server resides in the same LAN as the client, so
that transmission from cache to client is reason-
ably fast.

A problem typically associated with caching
in distributed environments is that of modi�ca-
tion of what is cached. E.g., when a document
gets modi�ed, we have to make sure that the user
sees the new version of the document when it is
retrieved the next time and not an old copy that
remained in the cache. Other systems do this by
assigning expiration dates to objects, or notify-
ing all caches whenever objects get changed or
deleted, which in turn requires to maintain a list
of all caches and what they have cached, and so
forth.

Fortunately, however, the problem does not
arise at all in our design. Remember, the link

server guarantees that new object IDs are as-
signed to modi�cations of objects and that IDs of
deleted objects cannot be reused. When a docu-
ment gets modi�ed the new version receives a new
document ID that is passed to the client when

the user visits that document. The client will

pass the new object to the cache server. There-

fore, it is impossible that the cache server �nds

the new object in its cache and will automati-
cally reload the new document from the docu-

ment server. An old copy of the document re-

siding in the cache cannot be accessed any more

and will therefore eventually be deleted because
of the \least-recently-used" strategy of the cache.

The cache server may also be used as a pro-
tocol and format converter. In order to ac-
cess information stored within other databases
(e.g. WAIS, Gopher, WorldWideWeb) clients

may connect to the document cache server who

will retrieve and cache the document for the

client. In addition, the client may request the
document in a speci�c representation (say, a cer-

tain image format and/or quality), and the cache

server would convert it for the client and cache

the result (and possibly also the original represen-

tation). This approach makes clients more simple
as it relieves them from knowing about the odd-

ities of other information retrieval protocols and

�le formats. Software maintenance becomes eas-
ier because only the cache server's code has to

be modi�ed in order to support new protocols

and �le formats (remember, there may be a large
number of clients tailored to di�erent platforms

and user types).

Acknowledgments

Partial Support of the Hyper-G project by
the Austrian Ministry of Science, Joanneum Re-
search, and the European Space Agency is grate-
fully acknowledged.

References

[1] F. Kappe and H. Maurer, \Hyper-G: a
large universal hypermedia system and
some spin-o�s," ACM Computer Graph-

ics, experimental special online issue, May
1993. Available by anonymous ftp
from siggraph.org in directory publica-
tions/May 93 online/Kappe.Maurer.

[2] T. H. Nelson, Literary Machines, Edition

87.1. South Bend, IN: The Distributors,
1987.

[3] B. J. Haan, P. Kahn, V. A. Riley,

J. H. Coombs, and N. K. Meyrowitz, \IRIS

hypermedia services," Communications of

the ACM, vol. 35, pp. 36{51, Jan. 1992.

[4] D. E. Egan, J. R. Remde, and T. K. Lan-
dauer, \Lost in hyperspace: cognitive map-
ping and navigation in a hypertext environ-

ment," in Hypertext: Theory into Practice,

(R. McAleese, ed.), pp. 105{125, Blackwell
Scienti�c Publications Ltd., 1989.

[5] J. Nielsen, \The art of navigating through

hypertext," Communications of the ACM,

vol. 33, pp. 296{310, March 1990.

[6] J. Nielsen, Hypertext & Hypermedia. San
Diego, CA: Academic Press, 1990.

[7] F. Kappe, H. Maurer, and I. Tomek,
\Hyper-G { speci�cation of requirements,"
IIG Report 284, IIG, Graz University of
Technology, Austria, Apr. 1991. Also ap-

peared in: Proc. CIS '91. Also available by

anonymous ftp from iicm.tu-graz.ac.at in di-
rectory pub/Hyper-G/doc.

[8] F. Kappe, Aspects of a Modern Multi-Media

Information System. PhD thesis, Graz Uni-
versity of Technology, Austria, June 1991.
Also available as IIG Report 308; IIG, Graz
University of Technology (Jun 1991), and by

anonymous ftp from iicm.tu-graz.ac.at in di-
rectory pub/Hyper-G/doc.

[9] B. Alberti, F. Anklesaria, P. Lindner,

M. McCahill, and D. Torrey, \The in-
ternet gopher protocol: a distributed

document search and retrieval protocol,"

DCC-8

Hyper-G Proc. INET '93 F. Kappe

March 1992. Available by anonymous ftp
from boombox.micro.umn.edu in directory
pub/gopher/gopher protocol.

[10] R. M. Stein, \Browsing through terabytes
{ wide-area information servers open a new
frontier in personal and corporate informa-
tion services," Byte, vol. 16, pp. 157{164,
May 1991.

[11] B. Kahle, H. Morris, F. Davis, K. Tiene,
C. Hart, and R. Palmer, \Wide area in-
formation servers: an executive informa-
tion system for unstructured �les," Elec-

tronic Networking: Research, Applications

and Policy, vol. 2, pp. 59{68, Spring 1992.

[12] T. Berners-Lee, R. Cailliau, J. Gro�, and
B. Pollermann, \WorldWideWeb: the in-
formation universe," Electronic Networking:

Research, Applications and Policy, vol. 2,
pp. 52{58, Spring 1992.

[13] K. Andrews and F. Kappe, \Strait-jacketing

authors: user interface consistency in large-
scale hypermedia systems," in Hypermedia

'93, Zurich, Switzerland, (H. P. Frei and

P. Sch�auble, eds.), (Berlin), pp. 130{137,
Springer, March 1993.

[14] F. Kappe, H. Maurer, and N. Sherbakov,

\Hyper-G { a universal hypermedia sys-

tem," Journal of Educational Multimedia

and Hypermedia, vol. 2, no. 1, pp. 39{66,
1993.

[15] L. DeYoung, \Linking considered harmful,"
in Hypertext: Concepts, Systems and Appli-

cations; Proc. ECHT'90, (A. Rizk, N. Stre-
itz, and J. Andr�e, eds.), pp. 238{249, Cam-
bridge University Press, 1990.

[16] R. A. Botafogo, E. Rivlin, and B. Shnei-
derman, \Structural analysis of hypertexts:
identifying hierarchies and useful metrics,"
ACM Transactions on Information Systems,
vol. 10, pp. 142{180, Apr. 1992.

[17] T. H. Nelson, \Unifying tomorrow's hyper-
media," in Online 88 Information: Proc.

12th International Online Information Meet-

ing, pp. 1{7, 1988.

[18] F. Kappe, G. Pani, and F. Schnabel, \The

architecture of a massively distributed hy-
permedia system," Internet Research: Elec-

tronic Networking Applications and Policy,

vol. 3, pp. 10{24, Spring 1993.

Author Information

Dr. Kappe <fkappe@iicm.tu-graz.ac.at> re-
ceived both M.Sc. and Ph.D. degrees from the
Graz University of Technology. He is now direc-
tor of the \Hypermedia" research group at the
Institutes for Information Processing and Com-
puter Based New Media (IICM) of Graz Univer-
sity of Technology, Graz, Austria. As such, he is
responsible for the development of the Hyper-G
hypermedia system which is described in this pa-
per. He is also a project manager at the Insti-
tute for Multi-Media Information Systems (IM-
MIS) of Joanneum Research, Graz, Austria; a
company that develops commercial hypermedia
applications based on Hyper-G .

DCC-9

