
RepoVis: Visual Overviews and Full-Text Search
in Software Repositories

Johannes Feiner
FH JOANNEUM University of Applied Sciences, Austria

Email: johannes.feiner@fh-joanneum.at

Keith Andrews
Graz University of Technology, Austria

Email: kandrews@tugraz.at

Abstract—Project managers and software developers often
have difficulty maintaining an overview of the structure, evo-
lution, and status of collaborative software projects. Some tools
are available for typical source code management systems, which
provide summary statistics or simple visual representations of
merge-branch graphs. However, comprehensive visual overview
and search facilities for such repositories are lacking.

RepoVis is a new tool which provides comprehensive visual
overviews and full-text search for projects maintained in Git
repositories. The overview shows folders, files, and lines of code
colour-coded according to last modification, developer, file type,
or associated issues. Full-text searches can be performed for
terms of interest within source code files, commit messages, or any
associated metadata or usability findings, with matches displayed
visually in the overview.

The utility of the RepoVis approach is illustrated with three
use cases of real-world software inspection. Insights are presented
into the utility of full-text search and visual presentation of
matches for program comprehension.

Index Terms—Software visualisation, program comprehension,
usability, metrics, visual overview, full-text search, git reposito-
ries.

I. INTRODUCTION

Program comprehension [1, 2] is relevant to most software

development teams in a variety of situations. When new

developers join a project, they must rapidly acquire a solid

understanding of the software development so far. Project man-

agers must maintain an overview of the entire project. Some

of the decisive factors about the software under inspection

include the project team (main contributors), code structure

(folders, files, and lines of code), code quality (code smells,

security, bugs and issues, usability findings, documentation,

test artefacts), and code evolution (commit messages, age of

code fragments, frequency of changes).

Visual overviews and full-text search can be used to help

facilitate rapid program comprehension. RepoVis is a new tool

which provides comprehensive visual overviews for projects

maintained in Git repositories. The overview visualises folders,

files, and lines of code colour-coded according to last modifi-

cation, developer, file type, and associated issues in a manner

similar to Seesoft [3, 4, 5].

In addition, RepoVis provides full-text search for terms

of interest within source code files, commit messages, or

any metadata or usability findings associated with a software

project. Text matches are displayed visually in the overview

and can be combined with other visual filters, as can be seen in

Fig. 1: RepoVis provides a comprehensive visual overview of

a software project with overlaid full-text search results.

Fig. 1. Search shortcuts provide pre-composed combinations

of search terms for specific situations.

The remainder of this paper is structured as follows: Sec-

tion II describes the RepoVis system. Section III describes the

full-text search functionality. Section V discusses use cases

illustrating the utility of the system for analysing real-world

software projects. Related work is discussed in Section VI.

Finally, Section VII dicusses some of the current limitations

of RepoVis and possible future work.

II. THE REPOVIS SYSTEM

RepoVis is designed as a client-server web application. The

RepoVis frontend (client) communicates with the RepoVis

backend (server) via a RESTful web API [7].

A. Architecture

The RepoVis architecture is shown in Fig. 2. The RepoVis

frontend, at the top, runs as a web application inside a web

browser. The frontend is written in JavaScript and uses the

PixiJS [6] library for 2D graphics rendering with WebGL [8]

hardware acceleration. No page reloading is required, since

data is fetched asynchronously. At any one time, the frontend

shows a single version of the project, corresponding to a

1

2018 IEEE Working Conference on Software Visualization

978-1-5386-8292-0/18/$31.00 ©2018 IEEE
DOI 10.1109/VISSOFT.2018.00009

Frontend Client

Backend Server

HTML (Browser)

Restful Web Service on Rack

Native Git
Library in C

HTML (Browser)

HTML5 (Browser)

HTML5
Worker

Overview

JS

Git Repo(s)
in

File System

UsabML

Configuration, Calculations,
and Caching

Results of
Static Code

Analysis

Source
Code

Usability
Issues

Code
Analysis

CouchDB

API Calls

Fig. 2: The RepoVis backend extracts source code, calculates

metrics and integrates usability reports. The frontend is a web

application built with the PixiJS library [6], which supports

WebGL rendering.

particular commit ID. To navigate through time, any commit

can be selected on a time slider and the view is refreshed.

The RepoVis backend, at the bottom, is implemented as a

Rack [9] web service using the Ruby Sinatra [10] framework.

This way, the backend server can optionally be hosted on a

cloud platform for better scalability. Access to Git repositories

is implemented using the libgit2 [11] library with the rugged

wrapper [12] for Ruby. Custom logic is used to integrate

source code metrics and usability findings.

A software project under inspection is cloned locally to the

file system of the RepoVis backend. The source code, commit

messages, and any metadata of interest are then extracted from

the local clone on demand. Metadata such as the age of the

project, the list of developers, and the timestamp when each

line of code was (last) changed by which developer are also

extracted from the commit messages.

Static source code analysis can be triggered on demand

for a particular software project to generate source code

<negative-finding heuristic-id="heu13" rank="1"
is-main-negative="true" id="neg1">

<title>Manual Mode in Setup Wizard</title>
<description><![CDATA[

The most severe problem was discovered
in the manual mode for experts, where the
setup wizard simply does not work correctly.
After going through the ...]]>

</description>
<reproduce>Install Enigmail -> manual setup

wizard.
</reproduce>
<found-by evaluator-id="eval_vk"/>
<severity evaluator-id="eval_kb">

<value>4</value>
</severity>
...
<document type="image">
<description>Selecting the manual mode for
experts in the setup wizard window.

</description>
<key>krnjic-000258</key>
<filename>krnjic-000258.png</filename>

</document
<document type="video">
<description>After the unsuccessful manual

mode of the setup wizard,...
</description>

</document>
<code-reference project-id="plugin/enigmail"
version-id="commit-eef54326rfe8843ffee23"
class-id="ui/content/enigmailSetupWizard.js"
package-id="ui.content"
method-id="configuration"
line-number="14" />

</negative-finding>

Listing 1: Usability findings in structured UsabML format can

be integrated into RepoVis.

quality reports and associated metrics, for example Pylint [13]

for Python or JSLint [14] for JavaScript. This information

augments the metadata extracted from the local Git repository.

Usability issues can be integrated into RepoVis by providing

them in a structured electronic format like UsabML [15]; an

example is provided in Listing 1. The association between a

usability issue and a block of code must currently be entered

manually for a particular snapshot (commit) of the project.

If such findings are available, they will be visualised and

displayed as shown in Fig. 3.

The RESTful web service endpoint provides a simple API

with JSON-encoded responses. The backend stores data re-

quested by the client as JSON-encoded chunks in a persistent

couchdb [16] document database. This way, time-consuming

operations, such as parsing commit information to determine

the last modification of each line of code at a particular point in

time, can be calculated once (possibly in advance) and stored

to improve performance.

B. Visualisation

RepoVis was inspired by Seesoft [3, 4, 5] and adopts its

metaphor of looking at source code listings hanging on a

wall from far away. The centrepiece is a comprehensive visual

2

Fig. 3: Usability issues loaded from UsabML are shown within

RepoVis.

Fig. 4: RepoVis provides four different colour mappings for

the overview visualisation.

overview of the structure (folders, files, and lines of code) of

a software project at a particular point in time. Source code

files are rendered as boxes, with coloured rows representing

one or more lines of code.

Four predefined mappings are available for the colour-

coding of each row: the age of a line of code (“Last Modifica-

tions”), the developer who last modified it (“Developers”), file

type (“File Types”), and usability findings (“Issues”). These

are shown in Fig. 4. Categorical data such as “Developers”,

“File Types”, and “Issues” is encoded using a palette of

distinct colours chosen for maximum contrast, similar to

those suggested by Kelly [17] and Trubetskoy [18]. For “Last

Modifications”, the age of a line of code is mapped to a colour

scale using the chroma.js JavaScript library [19].

Selecting one or more facets (categories or bins) in the

legend, such as a particular age range or developer, filters the

display to shown only files matching that selection, greying

out any others. This can be seen in Fig. 5.

The RepoVis timeline at the bottom of the screen allows

the user browse through and select any particular commit of

the master branch, causing the corresponding state (snapshot)

Fig. 5: One or more facets can be selected in the legend to

restrict both the display and search scope accordingly. Here,

the files worked on by the developer Ola Bini can be seen.

Fig. 6: Linked views provide details on demand.

of the repository at that point in time to be visualised.

Panning and zooming are provided down to individual lines

of code using the mouse and mouse wheel. The display of

labels and folder outlines can be toggled to reduce visual

clutter. Hovering over the box representing a file reveals its

commit details. Clicking on a file shows its source code in a

linked view, as shown in Fig. 6.

III. VISUAL SEARCH RESULTS

RepoVis supports full-text search within a software reposi-

tory. The search results are displayed in context by highlight-

ing them in the overview visualisation, as shown in Fig. 7. The

scope of the search can be restricted to one or more selected

facets (categories or bins). It is also possible to define and use

search shortcuts.

The search feature is implemented directly in the web client

using simple but effective JavaScript regular expressions. No

3

Fig. 7: Searching for one or more terms (here thunderbird)

within a software repository highlights the files containing

those term(s).

(a) Multiple search terms. (b) Search shortcuts.

Fig. 8: Multiple search terms can be used. Search shortcuts are

auto-suggested and implicitly represent multiple search terms.

request/response cycle is necessary when refining or modify-

ing a search.

A. Search Queries

RepoVis provides a single input field for entering search

terms, as shown in Fig. 8a. The scope of the search defaults

to search within file and path names, developers (committers),

commit messages, and any available code analysis reports

and usability issues. The search can be extended to source

code files on demand, but this option is currently disabled

by default, since it requires the RepoVis client to download

every source code file in the repository, which may take some

considerable time.

Single or multiple search terms can be entered into the

search box. Exact phrases can be entered inside double quo-

tation marks. Incremental search is provided by triggering

the search on every keystroke to immediately update the

visualisation.

TABLE I: Search Shortcuts

Generic Search Shortcuts
G1 #problems bug fix issue crash
G2 #refactoring rename typo obsolete

Topical Search Shortcuts
T1 #security credential encrypt password permission secret
T2 #sensor cam gps cam vibration
T3 #interaction click touch swipe input

B. Search Shortcuts

Search shortcuts are available which prefill the search box

with a set of specific search terms. Some examples are

listed in Table I. Predefined generic search shortcuts include

#problems and #refactoring. These are appropriate to

many software projects in a variety of application fields. In

addition, topical search shortcuts can be defined for specific

application areas.

Search shortcuts are prefixed with a hash # character. They

are automatically suggested when the user starts their input

with a hash # character, as can be seen in Fig. 8b. For

example, #s would bring up the suggestions #security
and #sensor. A partially typed shortcut is sufficient, once it

can be uniquely identified.

C. Result Highlighting

Search results are currently shown by highlighting the files

which contain the corresponding search terms, as shown in

Fig. 7. In future, individual matches within files will be shown.

The combination of filtering and search provides additional

possibilities. When files are filtered to certain facets (categories

or bins), the search scope is also restricted to those facets.

IV. TYPICAL SCENARIO

A typical software inspection with RepoVis is shown in

Fig. 9 and might proceed as follows:

1) A repository of choice is cloned to the backend for

analysis.

2) Search terms are entered into the search box and the

search scope is defined.

3) Different colour mappings can be chosen corresponding

to typical inspection tasks.

4) Individual facets can be included or filtered out.

5) A comprehensive overview shows the locations of

matching search results in context.

6) Details are shown on demand for any particular line of

code.

7) Additional information, such as corresponding issues

from usability findings or reports from static code anal-

ysis are displayed for that line of code.

V. USE CASES

The following three use cases have been selected as explana-

tory examples where search and filter with visual overviews

can assist in program comprehension.

4

1

2

4

6

7
5

3

Fig. 9: A typical software inspection with RepoVis. 1 A Git repository is cloned to the RepoVis backend. 2 A full-text

search is issued within all available search scopes. 3 A specific colour mapping is chosen under Inspect. 4 The Legend allows

filtering to particular facets. 5 Search matches are visualised in the overview. 6 Details are shown on demand for a particular

line of code. 7 Usability issues or code analysis reports are shown for that line of code.

Use Case 1: Code Quality Inspection

Description: To explore potential technical debt and refac-

toring activities, commit messages can be searched for terms

indicating edits or hints about unfinished or not yet im-

plemented features. It is also possible to find out which

developer(s) performed refactoring activities such as renaming

files or fixing typos.

Example: A search query was performed with the generic

search shortcut #refactor on the open source project

Enigmail [20], an extension to Thunderbird for encrypting

emails.

Implications: Four files are highlighted, as shown in Fig. 10.

Use Case 2: Security Inspection

Description: To locate areas of code related to security,

the topical search shortcut #security can be used. Code

related to the use credentials for login, storing passwords or

performing encryption might be found.

Example: The Enigmail project was inspected to find out

which part of the code deals with security related aspects.

A number of pre-existing usability reports for Enigmail, see

EnigUsab by Andrews and Wozelka [21], were converted to

UsabML [15] in advance and the findings were imported into

RepoVis.

Implications: As shown in Fig. 11, several files are con-

cerned with security. This worked well for Enigmail, but a

limiting factor for other projects was that the search term

#permission delivered many files with the Apache License

2.0 in their header. In general, more rarely used words, such

as #credentials, yield more focused search results. In a

further step of this use case, it is possible to restrict the search

scope to Usability, to reveal matches within usability findings

associated with particular blocks of code.

Use Case 3: Domain-Specific Inspection

Description: For domain-specific inspection, specialised

search shortcuts can be defined. For example, for the analysis

of mobile apps, topical search shortcuts like #sensor or

#interaction might be of interest.

Example: The open source library ZXing [22] supports

reading QR codes within Android apps. A search using the

topical search shortcut #sensor should quickly bring to light

which areas of the project handle the logic for taking photos.

Implications: As can be seen in Fig. 12, several files are

related to camera usage and that some lines of specific files

have been updated recently. Another term implicitly included

in the query for the shortcut #sensor was gps. However, for

the given project this term was not relevant at all.

Discussion

For the selected use cases, full-text searches for multiple

terms worked well in many cases and enabled users of RepoVis

to quickly gain insights. The interactive and visual approach

made it easy to try out various combinations of search terms.

5

Fig. 10: Use Case 1: To inspect code quality, using the short-

cut #refactoring reveals which developer(s) performed

activities on which file(s), such as renaming or fixing typos.

In some cases, far too many results were generated and

too many files highlighted. For domain-specific terms, or for

project-specific terms, expert knowledge is beneficial. With

know-how about typical terms used in the project at hand,

developers can find files of interest even faster. Searching

within the scope of the source code benefits from sources

which are well documented. Sparsely commented files will

contain fewer text passages and hence fewer potential matches.

RepoVis requires little instruction to be used for program

comprehension tasks. The immediate feedback of the search

feature allows users to experiment with search terms and

search shortcuts during the inspection of software systems.

VI. RELATED WORK

RepoVis builds on previous research in many related

fields, including program comprehension, software visualisa-

tion, source code analysis, repository mining, and usability

reporting and issue tracking.

A. Program Comprehension

Program comprehension deals with how software developers

and software project managers comprehend, understand, and

manage software source code. In 1978, Brooks [23] proposed

a behavioural theory for program comprehension in software

engineering. Pennington [24] looked at how expert program-

mers comprehend code. Dasgupta [25] discussed the influence

of the authorship of code on its comprehension.

Sulı́r [1] presents a short overview of approaches and tools

for program comprehension. and Cornelissen et al. [26] review

techniques and tools for program comprehension through dy-

namic analysis of software at run-time. A topology of human

reading techniques for software is presented in Shull et al.
[27]. Different procedures and questions for the analysis of

object-oriented source code are discussed. Techniques which

Fig. 11: Use Case 2: When inspecting security aspects, the

search shortcut #security reveals a series of files related

to encryption, permission, and secret.

focused more on semantics than on syntax showed faster

detection of bugs within the given code.

In education, Nelson et al. [28] promote a comprehen-
sion first approach for young software developers. The tool

ARCC [29] was created to assist with the detection and

comprehension of recurring code snippets. Siegmund et al.
[30] investigated how beacons (semantic cues such as method

signatures) are used by programmers to comprehend large

software programs. Further research in the domain of software

maintenance is surveyed by Koschke [31].

RepoVis builds on the research done in program comprehen-

sion through its visual overviews and full-text search. Program

comprehension tasks such as spotting problematic areas of

code or identifying areas of code recently edited or last edited

by particular programmers can quickly be performed with no

up-front instructions.

B. Software Visualisation

Source code consists of many artefacts and internal struc-

tures, which can be visualised in various ways. Myers [32],

Price et al. [33], and Maletic et al. [34] all present taxonomies

for software visualisation systems.

Seesoft [3, 4, 5] provides a colour-coded overview visu-

alisation of software source code with multiple linked views

and drill-down features. Information murals [35, 36] can be

used to provide a grand overview of large software projects.

MosaiCode [37] draws on a similar metaphor to visualise

entities of large software systems as coloured tiles according

to various attributes or metrics.

Reiss [38] discusses a software visualisation backend called

Bee/Hive including the retrieval of trace, analysis, and se-

mantic data from different sources. The framework is part

6

Fig. 12: Use Case 3: Search is useful to inspect domain-

specific topics. The topical search term #sensor identifies

those parts of the source code of a mobile application dealing

with the camera.

of a comprehensive system called BLOOM [39]. The GSEE

[40] software visualisation framework uses a spreadsheet-like

approach to access “software facts” from a variety of sources.

Voinea and Telea [41] developed the Solid* [42] toolset with

SolidSX [43] for visual exploration of program structure,

dependencies, and metrics.

Software as cities was introduced by Wettel et al. [44]

where classes are arranged in a virtual town corresponding

to the package structure. Nunes et al. [45] used the same

approach to detect problems in the CodeCity system [46].

ExplorViz [47] visualises software as landscapes. Fittkau [48]

further suggest tracing the program flow when using the city

metaphor. The collaborative aspect is implemented in the

web-based tool TeamWATCH [49], allowing cooperation and

source code visualisation in 3D. Teyseyre and Campo [50]

provide an overview of 3D software visualisation tools.

SAMOA [51] provides views onto the source code of mobile

applications with a focus on structural and historical informa-

tion. Microprints [52] are coloured graphics (a coloured box is

generated for each character of the corresponding source code)

which characterise the source code according to its semantics.

Kuhn et al. [53] discuss visualising software artefacts on a

thematic map. CodeSurveyor [54] produces a simlar map-like

visualisation based on an underlying code dependency graph

generated with Frappé [55]. Griswold et al. [56] describe a

software evolution tool called AspectBrowser which uses a

map metaphor for tracking global changes in large systems.

The tool BugMap [57] visualises the distribution of bugs

on a topographic map. D’Ambros et al. [58] discuss the

visualisation of bugs in a bug database.

RepoVis employs the 2D listings hanging on wall visual-

isation metaphor introduced by Seesoft, in combination with

full-text search, source code metrics, and usability findings.

C. Static Source Code Analysis

Software bugs can become extremely expensive to fix once

the software is in production [59]. Finding bugs early is fi-

nancially advantageous. To judge software in terms of quality,

for example to track deterioration over time, it is necessary

to objectively measure code. Many classic software quality

metrics defined many decades ago are still used today, for

example by Halstead [60] and McCabe and Butler [61], or

for object-oriented software by Martin [62]. Some metrics are

specialised for finding patterns as discussed by Hovemeyer

and Pugh [63], others for security [64, 65]. Garbervetsky et
al. [66] propose a distributed system for static code analysis

of large systems with live updates.

Hindle et al. [67] argue that many facets of source code are

similar to natural language processing. A thesaurus of different

terms frequently used by developers is helpful to categorise

and classify artefacts, such as comments in code snippets or

commit messages. To identify topics in source code, Kuhn et
al. [68] use semantic clustering techniques.

Code inspection techniques are supported by RepoVis, but

are currently limited to the integration of static analysis

reports. Arbitrary tools can be configured to be run against the

code on the backend server. RepoVis does not yet incorporate

semantic analysis techniques.

D. Software Repository Mining

Software repository mining utilises not only source code,

but also additional metadata such as commits, version in-

formation, and issue tracking. Tools such as GitcProc [69]

use regular expressions to extract relevant changes within the

codebase.

Software evolution tools make it possible to inspect changes

over time in the source code of a software system, and to

extract differences between commit snapshots. North et al.
[70] explored approaches of understanding Git history. Servant

and Jones [71] created the tool CHRONOS to show slices of

history.

RepoVis augments textual querying of source code and

associated metadata with an overview visualisation.

E. Usability Reporting and Issue Tracking

Reporting and fixing usability findings is essential to im-

prove the user experience (UX). There has been some dis-

cussion as to whether and how usability issues should be

integrated into classic bug-tracking systems [72].

UsabML [73, 15] was designed to provide a structured

report format allowing hand-over of usability findings to

other systems (such as bug trackers) and automated re-use.

UseApp [74] supports usability evaluation and reporting when

7

inspecting or testing mobile apps. RepoVis is able to integrate

usability findings from UsabML reports and then display them

with their associted blocks of source code. Feiner et al. [75]

describe a pathway for the collection and integration of such

findings.

Thung et al. [76] describe an information retrieval approach

to analyse bug reports and attempt to localise the associated

bugs in the source code, which was implemented as an

extension to Bugzilla. However, they did not visualise the

results.

VII. LIMITATIONS AND FUTURE WORK

RepoVis is intended for small to medium-sized software

repositories. More work needs to be done on scaling up the

system to larger repositories.

The full-text search features are currently implemented

in JavaScript on the client, which imposes some limits on

scalability. Possibilities for server-side search are currently

under investigation. Furthermore, the overview visualisation

currently highlights the files in which search matches are

located, not the individual locations within each file. Of course,

this would be highly desirable and has high priority in terms

of future work.

The RepoVis timeline still needs to be perfected and there

are definitely more possibilities to visualise project evolution

and merge-branch graphs.

The visualisation of metrics is limited in RepoVis insofar

as metrics are visualised on a per file basis. For example,

dependencies between files cannot currently be shown.

Usability findings can be imported from UsabML into

RepoVis, but the association of each finding to a particular

block of code in a particular commit currently has to be done

manually by editing the UsabML file. At some point, it would

be desirable to have a user interface for project managers

or developers to graphically associate area(s) of code with a

usability finding. A related issue is how to “migrate” findings

from commit to commit, if associated blocks of code are

moved, edited, or deleted.

Three use cases have been described illustrating the utility of

RepoVis for specific scenarios, but much more evaluation need

to be done. Firstly, some formative usability testing needs to be

done to find and fix usability issues. Secondly, it is intended to

test RepoVis for one or two trial projects over a longer period

of time.

VIII. CONCLUDING REMARKS

RepoVis is a new tool which provides both comprehensive

visual overviews and full-text search for projects maintained

in Git repositories. Its visual overview shows folders, files,

and lines of code colour-coded according to last modification,

developer, file type, or associated issues. Full-text searches

can be performed for terms of interest within source code

files, commit messages, or any associated metadata or usability

findings, with matches displayed visually in the overview.

Much work remains to be done, but RepoVis has the

potential to support both software developers and project

managers maintain an overview of the structure, evolution,

and status of their software projects.

REFERENCES

[1] M. Sulı́r, “Program comprehension: A short literature

review,” in Proc. 15th Scientific Conference of Young
Researchers (SCYR), FEI TU of Košice, May 19, 2015,

pp. 282–286, ISBN: 8055321302. [Online]. Available:

http://mat.us.to/papers/Sulir15program.pdf.

[2] A. R. Santos, I. do Carmo Machado, and E. S. de

Almeida, “Aspects influencing feature-oriented soft-

ware comprehension: Observations from a focus group,”

in Proc. 11th Brazilian Symposium on Software Compo-
nents, Architectures, and Reuse (SBCARS 2017), (Fort-

aleza, Ceará, Brazil), ACM, Sep. 18, 2017, 10:1–10:10,

ISBN: 1450353258. DOI: 10.1145/3132498.3133838.

[3] S. G. Eick, J. L. Steffen, and E. E. Sumner Jr.,

“Seesoft — a tool for visualizing line oriented software

statistics,” IEEE Transactions on Software Engineering,

vol. 18, no. 11, pp. 957–968, Nov. 1992. DOI: 10.1109/

32.177365. [Online]. Available: http://www.cs.kent.edu/
∼jmaletic/softvis/papers/eick1992.pdf.

[4] S. G. Eick, “Graphically displaying text,” Journal of
Computational Graphics and Statistics, vol. 3, no. 2,

pp. 127–142, 1994. DOI: 10 . 1080 / 10618600 . 1994 .

10474635. [Online]. Available: http : / / www. cs . kent .

edu/∼jmaletic/softvis/papers/eick1994.pdf.

[5] T. Ball and S. G. Eick, “Software visualization in the

large,” IEEE Computer, vol. 29, no. 4, pp. 33–43, Apr.

1996. DOI: 10 . 1109 / 2 . 488299. [Online]. Available:

http : / / www. cs . kent . edu / ∼jmaletic / softvis / papers /

BallEick1996.pdf.

[6] M. Groves. (Jan. 20, 2013). PixiJS, [Online]. Available:

http://pixijs.com/ (visited on 03/27/2018).

[7] R. T. Fielding, “Architectural styles and the design of

network-based software architectures,” PhD thesis, Uni-

versity of California, Irvine, 2000. [Online]. Available:

https : / /www.ics .uci .edu/∼fielding/pubs /dissertation/

fielding dissertation.pdf.

[8] WebGL. (Mar. 3, 2011). WebGL – OpenGL ES for the

web, [Online]. Available: https : / / khronos .org /webgl/

(visited on 05/21/2018).

[9] C. Neukirchen. (May 17, 2007). Rack: A ruby web-

server interface, [Online]. Available: http://rack.github.

io (visited on 03/29/2018).

[10] B. Mizerany. (Sep. 9, 2007). Sinatra, [Online]. Avail-

able: http://sinatrarb.com (visited on 04/23/2018).

[11] libgit2. (Oct. 26, 2008). Libgit2 – the git linkable

library, [Online]. Available: https://github.com/libgit2/

libgit2 (visited on 03/27/2018).

[12] V. Marti and S. C. A. Schreiber. (May 2, 2010). Rugged,

[Online]. Available: https://github.com/libgit2/rugged

(visited on 03/27/2018).

[13] S. Thenault. (May 19, 2003). Pylint, [Online]. Avail-

able: https://pylint.org/ (visited on 03/27/2018).

8

[14] D. Crockford. (Nov. 7, 2010). JSLint, [Online]. Avail-

able: https://www.jslint.com (visited on 03/27/2018).

[15] J. Feiner, K. Andrews, and E. Krajnc, “UsabML –

the usability report markup language: Formalising the

exchange of usability findings,” in Proc. 2nd ACM
SIGCHI Symposium on Engineering Interactive Com-
puting Systems (EICS 2010), (Berlin, Germany), ACM,

Jun. 19, 2010, pp. 297–302, ISBN: 1450300839. DOI:

10.1145/1822018.1822065.

[16] couchdb. (Mar. 23, 2008). Couchdb, [Online]. Avail-

able: http : / / couchdb . apache . org/ (visited on

07/06/2018).

[17] Kelly, Twenty-two colors of maximum contrast. Color

Eng., 1965, pp. 26–27.

[18] S. Trubetskoy. (Jan. 11, 2017). List of 20 simple,

distinct colors, [Online]. Available: https://sashat.me/

2017/01/11/list-of-20-simple-distinct-colors/ (visited

on 06/11/2018).

[19] G. Aisch. (Apr. 30, 2018). Chroma.js, [Online]. Avail-

able: http : / / gka . github . io / chroma . js/ (visited on

07/13/2018).

[20] P. Brunschwig. (Jul. 30, 2012). Enigmail, [Online].

Available: https://enigmail.net/ (visited on 03/27/2018).

[21] K. Andrews and R. Wozelka. (2015). Enigusab, [On-

line]. Available: https://projects.isds.tugraz.at/enigusab/

(visited on 03/27/2018).

[22] S. Owen and D. Switkin. (Mar. 1, 2008). ZXing barcode

scanning library for java, android, [Online]. Available:

https://github.com/zxing/zxing (visited on 05/20/2018).

[23] R. Brooks, “Using a behavioral theory of program

comprehension in software engineering,” in Proc. 3rd In-
ternational Conference on Software Engineering (ICSE
1978), (Atlanta, Georgia, USA), IEEE Press, 1978,

pp. 196–201. [Online]. Available: https:/ /dl .acm.org/

citation.cfm?id=803210.

[24] N. Pennington, “Stimulus structures and mental

representations in expert comprehension of com-

puter programs,” Cognitive Psychology, vol. 19,

no. 3, pp. 295–341, 1987. [Online]. Available:

https : / / pdfs . semanticscholar . org / 3036 /

e10df2e4855c56bf174fc1e00f6dd4100f55.pdf.

[25] C. Dasgupta, “That is not my program: Investigating the

relation between program comprehension and program

authorship,” in Proc. 48th Annual Southeast Regional
Conference (ACM SE 2010), (Oxford, Mississippi),

ACM, 2010, 103:1–103:4, ISBN: 1450300642. DOI: 10.

1145/1900008.1900142.

[26] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moo-

nen, and R. Koschke, “A systematic survey of pro-

gram comprehension through dynamic analysis,” IEEE
Transactions on Software Engineering, vol. 35, no. 5,

pp. 684–702, Apr. 3, 2009. DOI: 10.1109/TSE.2009.28.

[27] F. Shull, G. H. Travassos, J. Carver, and V. R. Basili,

“Evolving a set of techniques for OO inspections,”

University of Maryland, Tech. Rep., 1999. [Online].

Available: http: / /www.cs.umd.edu/projects/SoftEng/

ESEG/papers/CS-TR-4070.pdf.

[28] G. L. Nelson, B. Xie, and A. J. Ko, “Comprehension

first: Evaluating a novel pedagogy and tutoring system

for program tracing in CS1,” in Proc. ACM Conference
on International Computing Education Research (ICER
2017), (Tacoma, Washington, USA), ACM, Aug. 18,

2017, pp. 2–11, ISBN: 1450349684. DOI: 10 . 1145 /

3105726.3106178.

[29] W. Z. Nunez, V. J. Marin, and C. R. Rivero, “Arcc:

Assistant for repetitive code comprehension,” in Proc.
11th Joint Meeting on Foundations of Software En-
gineering (ESEC/FSE 2017), (Paderborn, Germany),

ACM, Sep. 4, 2017, pp. 999–1003, ISBN: 1450351050.

DOI: 10.1145/3106237.3122824.

[30] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeis-

ter, C. Kästner, A. Begel, A. Bethmann, and A. Brech-

mann, “Measuring neural efficiency of program com-

prehension,” in Proc. 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2017), (Paderborn,

Germany), ACM, Sep. 4, 2017, pp. 140–150, ISBN:

1450351050. DOI: 10.1145/3106237.3106268.

[31] R. Koschke, “Software visualization in software main-

tenance, reverse engineering, and re-engineering: A

research survey,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 15, no. 2,

pp. 87–109, 2003. DOI: 10.1002/smr.270.

[32] B. A. Myers, “Taxonomies of visual programming and

program visualization,” Journal of Visual Languages &
Computing, vol. 1, no. 1, pp. 97–123, Mar. 1, 1990. DOI:

10.1016/S1045-926X(05)80036-9. [Online]. Available:

http://cs.cmu.edu/∼bam/papers/vltax2.pdf.

[33] B. A. Price, I. S. Small, and R. M. Baecker, “A tax-

onomy of software visualization,” in Proc. 25th Hawaii
International Conference on System Sciences (HICSS
1992), vol. 2, Jan. 1992, pp. 597–606. DOI: 10.1109/

HICSS.1992.183311.

[34] J. I. Maletic, A. Marcus, and M. L. Collard, “A task ori-

ented view of software visualization,” in Proc. 1st IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT 2002), (Paris,

France), Jun. 26, 2002, pp. 32–40. DOI: 10 . 1109 /

VISSOF.2002.1019792.

[35] D. F. Jerding and J. T. Stasko, “The information mu-

ral: A technique for displaying and navigating large

information spaces,” in Proc. 1995 IEEE Symposium
on Information Visualization (InfoVis 1995), (Atlanta,

Georgia, USA), IEEE Computer Society, Oct. 1995,

pp. 257–271, ISBN: 0818672013. DOI: 10.1109/2945.

722299. [Online]. Available: https : / / cc . gatech . edu /
∼stasko/papers/infovis95.pdf.

[36] D. F. Jerding and J. T. Stasko, “Using information mu-

rals in visualization applications,” in Proc. 8th Annual
ACM Symposium on User Interface and Software Tech-
nology (UIST 1995), (Pittsburgh, Pennsylvania, USA),

9

ACM, Nov. 15, 1995, pp. 73–74, ISBN: 089791709X.

DOI: 10.1145/215585.215660.

[37] J. I. Maletic, D. J. Mosora, C. D. Newman, M. L. Col-

lard, A. M. Sutton, and B. P. Robinson, “MosaiCode:

visualizing large scale software: A tool demonstration,”

in Proc. 6th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT
2011), (Williamsburg, Virginia, USA), Sep. 29, 2011,

pp. 1–4, ISBN: 1457708221. DOI: 10 . 1109 / VISSOF.

2011.6069457.

[38] S. P. Reiss, “Bee/Hive: A software visualization back

end,” Apr. 20, 2001.

[39] S. P. Reiss, “An overview of bloom,” in Proc. 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools and Engineering (PASTE 2001),
(Snowbird, Utah, USA), ACM, 2001, pp. 2–5, ISBN:

1581134134. DOI: 10.1145/379605.379629.

[40] J.-M. Favre, “A flexible approach to visualize large

software products,” in Proc. Workshop on Software
Visualization (ICSE’01), (Totonto, Canada), May 12,

2001. [Online]. Available: http://www-adele.imag.fr/

Les.Publications/intConferences/WSV2001Fav.pdf.

[41] L. Voinea and A. C. Telea, “Visual clone analysis

with solidsdd,” in Proc. 2nd IEEE Working Conference
on Software Visualization (VISSOFT 2014), (Victoria,

British Columbia, Canada), Sep. 29, 2014, pp. 79–82.

DOI: 10.1109/VISSOFT.2014.22.

[42] D. Reniers, L. Voinea, O. Ersoy, and A. Telea, “The

solid* toolset for software visual analytics of program

structure and metrics comprehension: From research

prototype to product,” Sci. Comput. Program., vol. 79,

pp. 224–240, Jan. 2014. DOI: 10.1016/j.scico.2012.05.

002.

[43] D. Reniers, L. Voinea, and A. Telea, “Visual exploration

of program structure, dependencies and metrics with

solidsx,” in Proc. 6th IEEE International Workshop
on Visualizing Software for Understanding and Anal-
ysis (VISSOFT 2011), (Williamsburg, Virginia, USA),

Sep. 29, 2011, pp. 1–4. DOI: 10.1109/VISSOF.2011.

6069461.

[44] R. Wettel, M. Lanza, and R. Robbes, “Software sys-

tems as cities: A controlled experiment,” in Proc.
33rd International Conference on Software Engineering
(ICSE 2011), (Waikiki, Honolulu, Hawaii, USA), ACM,

May 21, 2011, pp. 551–560, ISBN: 1450304451. DOI:

10.1145/1985793.1985868.

[45] R. Nunes, M. Rebouças, F. Soares-Neto, and F. Cas-

tor, “Visualizing swift projects as cities: Poster,” in

Proc. 39th International Conference on Software En-
gineering Companion (ICSE-C 2017), (Buenos Aires,

Argentina), IEEE Press, May 20, 2017, pp. 368–370,

ISBN: 1538615894. DOI: 10.1109/ICSE-C.2017.115.

[46] R. Wettel and M. Lanza, “Visually localizing design

problems with disharmony maps,” in Proc. 4th ACM
Symposium on Software Visualization (SoftVis 2008),
(Ammersee, Germany), ACM, Sep. 16, 2008, pp. 155–

164, ISBN: 1605581127. DOI: 10 . 1145 / 1409720 .

1409745.

[47] F. Fittkau, A. Krause, and W. Hasselbring, “Software

landscape and application visualization for system com-

prehension with explorviz,” Inf. Softw. Technol., vol. 87,

no. C, pp. 259–277, Jul. 4, 2016. DOI: 10.1016/j.infsof.

2016.07.004.

[48] F. Fittkau, “Live trace visualization for system and

program comprehension in large software landscapes,”

Dissertation, Dissertation, Department of Computer Sci-

ence, Faculty of Engineering, Kiel University, Dec.

2015, ISBN: 3739207167.

[49] M. Gao and C. Liu, “Teamwatch demonstration: A

web-based 3d software source code visualization for

education,” in Proc. 1st International Workshop on Code
Hunt Workshop on Educational Software Engineering
(CHESE 2015), (Baltimore, MD, USA), ACM, Jul. 14,

2015, pp. 12–15, ISBN: 9781450337113. DOI: 10.1145/

2792404.2792408.

[50] A. R. Teyseyre and M. R. Campo, “An overview

of 3D software visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 1,

pp. 87–105, 2009. DOI: 10.1109/TVCG.2008.86.

[51] R. Minelli and M. Lanza, “Software analytics for mobile

applications – insights & lessons learned,” in Proc. 17th

European Conference on Software Maintenance and
Reengineering (CSMR 2013), Mar. 5, 2013, pp. 144–

153. DOI: 10.1109/CSMR.2013.24.

[52] S. Ducasse, M. Lanza, and R. Robbes, “Multi-level

method understanding using microprints,” in Proc. 3rd

IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT 2005), (Bu-

dapest, Hungary), Sep. 25, 2005, pp. 1–6. DOI: 10.1109/

VISSOF.2005.1684300.

[53] A. Kuhn, P. Loretan, and O. Nierstrasz, “Consistent lay-

out for thematic software maps,” in Proc. 15th Working
Conference on Reverse Engineering, 2008, pp. 209–

218. DOI: 10.1109/WCRE.2008.45.

[54] N. Hawes, S. Marshall, and C. Anslow, “Codesur-

veyor: Mapping large-scale software to aid in code

comprehension,” in Proc. 3rd IEEE Working Conference
on Software Visualization (VISSOFT 2015), (Bremen,

Germany), Sep. 27, 2015, pp. 96–105. DOI: 10.1109/

VISSOFT.2015.7332419.

[55] N. Hawes, B. Barham, and C. Cifuentes, “Frappé:

Querying the linux kernel dependency graph,” in

Proc. Graph Data-management Experiences & Systems
(GRADES 2015), (Melbourne, Australia), ACM, Jan.

2015, 4:1–4:6, ISBN: 1450336116. DOI: 10 . 1145 /

2764947.2764951.

[56] W. G. Griswold, J. J. Yuan, and Y. Kato, “Exploiting

the map metaphor in a tool for software evolution,”

in Proc. 23rd International Conference on Software
Engineering (ICSE 2001), (Toronto, Ontario, Canada),

IEEE Computer Society, May 12, 2001, pp. 265–274,

ISBN: 0769510507.

10

[57] J. Gong and H. Zhang, “Bugmap: A topographic map

of bugs,” in Proc. 9th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2013), (Saint Peters-

burg, Russia), ACM, Aug. 18, 2013, pp. 647–650, ISBN:

1450322379. DOI: 10.1145/2491411.2494582.

[58] M. D’Ambros, M. Lanza, and M. Pinzger, “”A

Bug’s Life” visualizing a bug database,” in Proc.
4th IEEE International Workshop on Visualizing Soft-
ware for Understanding and Analysis (VISSOFT 2007),
(Banff, Canada), Jun. 24, 2007, pp. 113–120, ISBN:

1424405998. DOI: 10.1109/VISSOF.2007.4290709.

[59] G. Tassey, “The economic impacts of inadequate infras-

tructure for software testing,” Strategic Planning, May

2002.

[60] M. H. Halstead, Elements of Software Science. Elsevier,

May 1977, ISBN: 0444002057.

[61] T. J. McCabe and C. W. Butler, “Design complex-

ity measurement and testing,” Communications of the
ACM, vol. 32, no. 12, pp. 1415–1425, Dec. 1989. DOI:

10.1145/76380.76382.

[62] R. Martin, Oo design quality metrics - an analysis of
dependencies, 1994. [Online]. Available: http:/ /www.

objectmentor . com / resources / articles / oodmetrc . pdf

(visited on 12/19/2009).

[63] D. Hovemeyer and W. Pugh, “Finding bugs is easy,”

SIGPLAN Notices, vol. 39, no. 12, pp. 92–106, Dec.

2004. DOI: 10.1145/1052883.1052895. [Online]. Avail-

able: http://cs.nyu.edu/∼lharris/papers/findbugsPaper.

pdf.

[64] I. Chowdhury, B. Chan, and M. Zulkernine, “Security

metrics for source code structures,” in Proc. 4th In-
ternational Workshop on Software Engineering for Se-
cure Systems (SESS 2008), (Leipzig, Germany), ACM,

May 17, 2008, pp. 57–64, ISBN: 1605580422. DOI: 10.

1145/1370905.1370913.

[65] L. Krautsevich, F. Martinelli, and A. Yautsiukhin, “For-

mal approach to security metrics – what does ”more

secure” mean for you?” In Proc. 4th European Con-
ference on Software Architecture: Companion Volume
(ECSA 2010), (Copenhagen, Denmark), ACM, Aug. 23,

2010, pp. 162–169, ISBN: 1450301797. DOI: 10.1145/

1842752.1842787.

[66] D. Garbervetsky, E. Zoppi, and B. Livshits, “Toward

full elasticity in distributed static analysis: The case

of callgraph analysis,” in Proc. 11th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE
2017), (Paderborn, Germany), ACM, Sep. 4, 2017,

pp. 442–453, ISBN: 9781450351058. DOI: 10 . 1145 /

3106237.3106261.

[67] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. De-

vanbu, “On the naturalness of software,” Commun.
ACM, vol. 59, no. 5, pp. 122–131, May 2016. DOI:

10.1145/2902362.

[68] A. Kuhn, S. Ducasse, and T. Girba, “Semantic clus-

tering: Identifying topics in source code,” Information

and Software Technology, vol. 49, pp. 230–243, Jan. 4,

2007. DOI: 10.1016/j.infsof.2006.10.017.

[69] C. Casalnuovo, Y. Suchak, B. Ray, and C. Rubio-

Gonzàlez, “Gitcproc: A tool for processing and clas-

sifying github commits,” in Proc. 26th ACM SIGSOFT
International Symposium on Software Testing and Anal-
ysis (ISSTA 2017), (Santa Barbara, CA, USA), Jul.

2017, pp. 396–399, ISBN: 1450350763. DOI: 10.1145/

3092703.3098230.

[70] K. J. North, A. Sarma, and M. B. Cohen, “Under-

standing git history: A multi-sense view,” in Proc. 8th

International Workshop on Social Software Engineering
(SSE 2016), (Seattle, Washington, USA), ACM, 2016,

pp. 1–7, ISBN: 145034397X. DOI: 10.1145/2993283.

2993285.

[71] F. Servant and J. A. Jones, “Chronos: Visualizing slices

of source-code history,” in Proc. 1st IEEE Working
Conference on Software Visualization (VISSOFT 2013),
(Eindhoven, Netherlands), Sep. 27, 2013, pp. 1–4. DOI:

10.1109/VISSOFT.2013.6650547. [Online]. Available:

http://spideruci.org/papers/servant13sep.pdf.

[72] C. E. Wilson and K. P. Coyne, “The whiteboard: Track-

ing usability issues: To bug or not to bug?” Interactions,

vol. 8, no. 3, pp. 15–19, May 2001. DOI: 10 . 1145 /

369825.369828.

[73] J. Feiner and K. Andrews, “Usability reporting with

UsabML,” in Proc. 4th International Conference on
Human-Centered Software Engineering (HCSE 2012),
M. Winckler, P. Forbrig, and R. Bernhaupt, Eds.,

vol. 7623, Lecture Notes in Computer Science, Springer

Berlin / Heidelberg, Oct. 29, 2012, pp. 342–351, ISBN:

3642343465. DOI: 10.1007/978-3-642-34347-6 26.

[74] J. Feiner, K. Andrews, and E. Krainz, “Convenient

mobile usability reporting with UseApp,” in Proc. 9th

Forum Media Technology (FMT 2016), (St. Pölten,

Austria), W. Aigner, G. Schmiedl, K. Blumenstein, M.

Zeppelzauer, and M. Iber, Eds., CEUR Workshop Pro-

ceedings, Nov. 24, 2016, pp. 41–46. [Online]. Available:

http:/ /ceur- ws.org/Vol- 1734/fmt- proceedings- 2016-

paper5.pdf.

[75] J. Feiner, E. Krainz, and K. Andrews, “A new approach

to visualise accessibility problems of mobile apps in

source code,” in Proc. 20th International Conference
on Enterprise Information Systems (ICEIS 2018), S.

Hammoudi, M. Smialek, O. Camp, and J. Filipe, Eds.,

vol. 2, SciTePress, Feb. 22, 2018, pp. 519–526, ISBN:

9897582983. DOI: 10 .5220/0006704405190526. [On-

line]. Available: https://ftp.isds.tugraz.at/pub/papers/

feiner-iceis2018-qac.pdf.

[76] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo,

“Buglocalizer: Integrated tool support for bug local-

ization,” in Proc. 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(FSE 2014), (Hong Kong, China), ACM, Nov. 16,

2014, pp. 767–770, ISBN: 1450330568. DOI: 10.1145/

2635868.2661678.

11

