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Abstract

This paper presents a selection of bounding box and hit detection algorithms for the 2D
graphic objects defined in the Computer Graphics Interface (CGI), which is the ISO standard
for low-level computer graphics. The algorithms are based on well-known geometric princi-
ples, except for the ellipse algorithms whose underlying methods are new. Such algorithms
are used (among other things) to efficiently implement the picking of graphic objects.

1 Introduction

Object-oriented graphics editors are becoming essential in increasingly diverse fields of appli-
cation, from computer aided design to desk top publishing. A common feature of such editors
is the selection of graphic objects by picking (eg. moving a pointing device such as a mouse
and clicking on the desired graphic object). In order to implement efficient picking of graphic
objects, bounding box and hit detection algorithms are required for each of the graphic objects
supported. Some of the graphic objects frequently available include polylines, circular arcs,
polygons, ellipses and cell arrays.
In general, two kinds of picking are possible:

e Single Picking: picking a single graphic object by specifying a point.
e Fence Picking: picking a group of graphic objects by specifying a rectangular area.

A graphic object’s bounding box is defined as the smallest rectangle which totally encloses
the graphic object. It is used in single picking as a first check to see whether a graphic object is a
possible candidate for selection: if the user-specified pick position lies outside the bounding box
(slightly stretched to allow for a margin of error), then the object is certainly not a candidate. If
the pick position lies inside the bounding box, then a more refined algorithm (the hit detection
algorithm) is used. It determines whether the user-specified pick position lies on or near the
graphic object proper. Fence picking is implemented by comparing the user-specified rectangle
with the bounding boxes of all the graphic objects currently displayed.

Another use for bounding boxes is to reduce the amount of work involved when an area of
the display has to be redrawn (eg. after being obscured by a menu). The clipping rectangle is
set to the area concerned and only those graphic objects whose bounding boxes intersect with
this area need to be redrawn.

The algorithms presented here were developed for the EDEN graphics editing environment
[1] and can be found in the author’s Master’s thesis [2]. The ellipse algorithms (sections 4.4
and 4.5) were developed from scratch; the other algorithms make use of well-known geometric
methods.



2 Bounding Box Algorithms

There follows a presentation of the bounding box calculation algorithms for some of the various
graphic objects defined in CGI [3].

2.1 Polyline

The bounding box of the definition points is determined and then stretched by the line width.

2.2 Polygon

The bounding box of the definition points is determined. If the edge visibility flag is true, the
bounding box is stretched by the edge width.

2.3 Circle

The bounding box of the four extreme points is determined. If the edge is visible, the bounding
box is stretched by the edge width.

2.4 Circular Arc 3 Point

First the circular arc is checked for degeneracy. For a Circular Arc 3 Point, the three definition
points (start point, intermediate point and end point) are checked to see if they are collinear
or coincident. If the arc is degenerate, then the bounding box is calculated according to the
degenerate representation, as defined in [3]. Otherwise, the centre, radius and start, intermediate
and end vectors are determined and the four extreme points (leftmost, rightmost, topmost,
bottommost) on the full circle are calculated (see section 4.2).

The bounding box of the mathematical (infinitely thin) arc is calculated as the bounding
box of the start point, the end point and any extreme points included in the angle from start
vector through intermediate vector to end vector. The bounding box is then stretched by the
line width of the arc to give the actual bounding box of the object.

2.5 Circular Arc 3 Point Close

Analogous to Circular Arc 3 Point, except that in the case of pie closure (a sector of a circle),
the centre is also included in the set of points making up the bounding box. If the edge is visible,
the bounding box is stretched by the edge width.

2.6 Ellipse

An ellipse is defined by its centre and two conjugate radius (diameter) endpoints. If the centre
and conjugate radius endpoints are collinear or coincident, the ellipse is degenerate and the
bounding box is calculated according to the degenerate representation, as defined in [3]. If the
ellipse is non-degenerate, the bounding box is calculated as follows. The four extreme points of
the ellipse are calculated (see section 4.4) and their bounding box determined. If the edge is
visible, the bounding box is stretched by the edge width.

2.7 Elliptical Arc

An elliptical arc is defined by its centre, two conjugate radius endpoints (z1,y;) and (xs,y-),
a start vector and an end vector. If the centre and conjugate radius endpoints are collinear or
coincident, then the elliptical arc is degenerate and the bounding box is calculated according to
the degenerate representation, as defined in [3].



If the arc is non-degenerate, the bounding box is calculated as follows. The four extreme
points on the full ellipse, the intersection of the start vector with the ellipse (start point) and
the intersection of the end vector with the ellipse (end point) are calculated. The bounding box
of the mathematical (infinitely thin) elliptical arc is now calculated as the bounding box of the
start point, the end point and any extreme points included in the angle from start vector to
end vector. This bounding box is then stretched by the line width of the arc to give the actual
bounding box of the object.

Whether one proceeds in a clockwise or anti-clockwise direction from start vector to end
vector is determined as follows: “The elliptical arc is drawn from the start point to the end
point in the direction from the first conjugate radius endpoint to the second conjugate radius
endpoint through the smaller of the two ellipse segments enclosed by the conjugate radii.” [3].
In practice this means that the arc is drawn clockwise if z,y, < z,y, and anti-clockwise if
T1Y2 > T2Y1-

2.8 Elliptical Arc Close

Analogous to Elliptical Arc, except that in the case of pie closure (a sector of an ellipse), the
centre is also included in the set of points making up the bounding box. If the edge is visible,
the bounding box is stretched by the edge width.

3 Hit Detection Algorithms

Hit detection refers to the process of determining whether a test point is on or near (within a
certain tolerance, §) a graphic object. Hit detection is required for the single-picking of graphic
objects, as explained in the introduction.

This section describes some of the hit detection algorithms used for particular graphic objects.
A first check is always whether the test point is inside or outside the graphic object’s bounding
box (stretched by §). If it is outside, then the object is certainly not hit. If it is inside, then the
object may or may not be hit, according to its type and geometry: further inspection is required.
The following notes present some of the hit detection algorithms used for graphic objects.

3.1 Polyline

The polyline is hit, if the distance of the test point from any of the individual line segments is
less than the tolerance, 6. The “distance from point to line” algorithm (see section 4.1) is used,
with the line width of the object also taken into account:

hit detected <« distance < ; (line width) +46

3.2 Polygon

The polygon is hit, if the test point is within 6 of any edge. A filled polygon is also hit if
the test point lies inside the polygon. The edge check uses the “distance from point to line”
algorithm (see section 4.1), with the edge width taken into account if the edge is visible. For
a filled Polygon, the “point inside polygon” algorithm (see section 4.3) is used for the interior
point test.

3.3 Circle

The circle is hit, if the test point is within ¢ of the perimeter. If the edge is visible, the edge
width is also taken into account. For a filled circle, the circle is also hit if the test point lies
inside the circle.



3.4 Circular Arc 3 Point

The circular arc is hit, if the test point is within 6 of the full circle and is also included within
the angle defining the arc. The line width of the arc must also be taken into account.

3.5 Circular Arc 3 Point Close

The closed circular arc is hit, if the test point is within 6 of the perimeter and is included within
the angle defining the arc. For pie closure, a hit is also registered if the test point is within §
of either the line between centre and start point or the line between centre and end point. For
chord closure, a hit is registered if the test point is within ¢ of the line between start point and
end point. If the edge is visible, the edge width is also taken into account.

For a filled closed arc, a hit is also registered if the test point lies inside the closed arc. For
pie closure this means the test point must be inside the full circle and included in the angle
defining the arc. For chord closure there are two cases, as shown in Figure 1:

1. The arc’s defining angle is less than or equal to 7, in which case the test point must be
inside the pie, but outside the triangle formed by centre, start and end points.

2. The arc’s defining angle is greater than m, in which case the test point must either be
inside the pie or inside the triangle formed by centre, start and end points.

Figure 1: Interior of a Circular Arc 3 Point Close (Chord)

3.6 Ellipse

The ellipse is hit, if the test point is within é of the perimeter. If the edge is visible, the edge
width is also taken into account. For a filled ellipse, the ellipse is also hit if the test point lies
inside the ellipse. The algorithm “point near ellipse” (see section 4.5) and the simple interior
point test are used.




3.7 Elliptical Arc

The elliptical arc is hit, if the test point is within ¢ of the full ellipse and is also included within
the angle defining the arc. The “point near ellipse” algorithm (see section 4.5) is used, with the
line width of the arc also taken into account.

3.8 Elliptical Arc Close

Analogous to Circular Arc 3 Point Close.

4 Geometric Algorithms

4.1 Distance from Point to Line

For hit detection during picking, a common problem is to find the distance of a given point from
a given line. Assume that the point is P = (z,,y,) and the line is the line between A = (z,,¥,)
and B = (z,vs), as shown in Figure 2.
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Figure 2: Distance from Point to Line

Defining v as the vector AB, r as the vector AP and using the vector form of the line
equation, the point (V) on the line nearest P can be determined as follows:
v o= (xvayv) = B-A = (xb — ZayYp _ya)
r = (xr7y7‘) = P-A = (xp_xmyp_ya)

N=Atto; t="_"0="0T bbb
v-v x2 + 42




The distance, d, from P to N is given by:

d = |r—tv|
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In order to check if the distance is smaller than a given e, it is sufficient to use d* and €2,
since d < € & d? < €2. This avoids the need to take a square root.

4.2 Centre and Radius of Circle Passing Through 3 Given Points

For certain graphic objects (Circular Arc 3 Point, Circular Arc 3 Point Close) it is necessary to
determine the centre and radius of a circle passing through three given points.

Assuming that the three points are P, = (z1,41), P> = (22,¥2) and P3 = (r3,y3) and using
straightforward geometry, the centre of the circle can be determined as the intersection of the
bisectors of P, P», P, P; and P3P,. This is shown in Figure 3.

P, (x,,Y,)

P3 (X3 ) y3)

F; (Xl 1 yl)

FC kY

Figure 3: Centre and Radius of Circle Through 3 Points

The points A and B are given by:
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The equation of AC is:

_ 2@ —xo)r 4 (Y2 + ) (Y2 — 1) £ (X2 + 21) (22 — 71)
2(y2 — 1)

The equation of BC' is:

_ 2(wy — z3)z + (ys + ¥2)(ys — y2) + (w3 + 22) (23 — 12)
2(ys — y)

The centre of the circle C' = (z.,y.) is found by setting the two equations equal:

e = [ (Y2 —y)(ys +92)(Ys — y2) + (y2 — y2) (25 + 32) (73 — T2)
— (s —v2) (W2 +y) (W2 —91) — (ys — 1) (w2 + 1) (22 — 1) | /
2[ (ys — y2) (@1 — @2) — (y2 — Y1) (72 — 73) ]

If (y3 —y2) (1 — x3) — (Y2 — y1) (22 — 23) = 0, the three points are collinear or coincident and
no solution is possible.

2(xy — z2)xe 4+ (Y2 + y1) (Y2 — Y1) + (22 + 21 ) (22 — 241)
2(y2 — 1)

Yo = Y2 F Y1

2(zy — x3)Tc + (Y5 + ¥2)(yYs — ¥2) + (w3 + 25) (235 — 72)
2(ys — ¥2)

Ye = Y2 =11

The radius, 7, of the circle can now be found as the distance between C and any of P, P
or Ps:

ro= e - @)+ (g — )2

4.3 Point Inside Polygon

For hit detection while picking a filled polygon, it is necessary to determine whether a given
point (the current pick position) lies inside or outside the polygon.

To solve this problem the odd/even parity test is used. A test ray from the given point
extends infinitely in any direction (for example in the positive y direction). If the ray intersects
an odd number of the polygon’s edges, the point lies inside the polygon. If the ray intersects
an even number of edges, the point lies outside the polygon. Should the ray pass through a
(polygon) vertex tangentially, no intersection is counted. How the test works is illustrated in
Figure 4.

Kappe [4] presented an efficient implementation of the odd/even parity test, with a test ray
extending to 400 in the y direction. It is based on the observation that the test point divides the
plane into four quadrants. If both endpoints of an edge are in the same quadrant, then the test
ray certainly does mot intersect the edge. If the two edge endpoints are in different quadrants,
there are six cases, as shown in Figure 5. A specifies the left endpoint of an edge, B the right
endpoint. The ray only intersects the edge in cases 1, 5a and 6a.

The special case of the test ray passing through a vertex point is handled by designating
the vertical dividing line as belonging to the lefthand quadrants (but not to the righthand
quadrants). If the test ray passes through the vertex tangentially, then either zero (ray to left
of polygon) or two (ray to right of polygon) intersections are counted; in either case an even
number.
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Figure 4: Odd/Even Parity Test
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Figure 5: Polygon Edge Intersection by Quadrants




4.4 Extreme Points of Ellipse

The equation of an ellipse centered at the origin has the form:
S(z,y) = Az + Bay + Cy* + F =0

where the coefficients A, B, C' and F' are determined by the coordinates of the two conjugate
diameter endpoints. Any ellipse can be assumed, without loss of generality, to be centered at
the origin, since if this is not the case, then a simple translation can be applied.

Assuming that the first conjugate diameter endpoint, cdl = (x,%;), and the second, cd2
= (z3,92), then the coefficients are given by:

A = yi+y
B = =2(z1y; + 7292)
C = zi+a
F —(z1Y2 + To11)*

A point P = (z,,y,) is inside the ellipse if:
S(xp,yp) = Aa:f, + Bz,y, + C’yZ +F <0

The four extreme points of an ellipse (leftmost, rightmost, bottommost and topmost) are
used in calculating the bounding box of an ellipse or elliptical arc, as shown in Figure 6.

Figure 6: Extreme Points of Ellipse
The parametric form of the ellipse equation:

ccos(t)
= dcos(t+0)



where ¢ = /22 + 23 = VC and d = \/y? + y2 = VA, makes it easy to see that the four extreme
points E;, E,, E, and E, on the ellipse are where z = —/C, z = +V/C,y = —VAand y = +VA
respectively.

Hence the four extreme points are given by:

E = (—\/—, %) leftmost
(\/6 , %) rightmost

E, = (%, —\/Z) bottommost
(

;i, \/Z) topmost

4.5 Point Near Ellipse

For hit detection while picking an ellipse, it is necessary to determine whether the pick position
P = (z,,y,) is within a certain distance ¢ of the ellipse.

Figure 7: Distance of Point P from Ellipse

Since there is no easy formula for the distance d of a point from an ellipse (Figure 7), the
following mechanism was derived. An 8-way star of radius 6 is constructed around the point P,
as shown in Figure 8. If at least one of the nine points is within the ellipse and at least one is
outside the ellipse, then the star straddles the ellipse and P is within ¢ of it. The simple test
for an interior point:

S(z,y) = Az* + Bay + Cy* + F <0

is used on each of the star’s nine points.



Figure 8: 8-Way Star Around Point P

It is possible that certain very thin ellipses may fall between the spokes of the star and not
be hit, even though they are within 6 of P. However, such ellipses are rare in practice and can
still be picked by moving P slightly inside the ellipse.
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