

Accessible SVG Charts with AChart
Keith Andrews* Christopher Alexander Kopel†

Graz University of Technology Graz University of Technology

Figure 1: AChart Interpreter showing an accessible multi-line chart.

ABSTRACT

AChart is a suite of open-source web-based tools written in Type-
Script with Node.js to create and interpret semantically-enriched
SVG-based accessible charts. AChart Creator is a command-line
tool which generates accessible SVG charts from CSV fles using
the D3 framework, by injecting ARIA roles and properties from the
AChart taxonomy. AChart Interpreter is a client-side web applica-
tion and executable package which interprets such a semantically-
enriched SVG chart and displays side-by-side graphical and textual
versions of the chart. It can read out the chart using synthetic speech
and its user interface is screen reader compatible. It can be used
both by blind users to gain an understanding of a chart, as well as
by developers and chart authors to verify the accessibility markup
of an SVG chart. AChart Summariser is a command-line tool which
interprets an accessible SVG chart and outputs a textual summary
of the chart. AChart currently supports bar charts, line charts, and
pie charts.

Index Terms: Data visualisation, charts, accessibility, WAI-ARIA
roles and properties for SVG, open-source, web-based, TypeScript,
JavaScript, D3, speech output, screen reader.

1 INTRODUCTION

Interest in the provision of accessible forms of graphics, charts,
and visualisations has been steadily growing, culminating in this
1st Workshop on Accessible Data Visualization at IEEE VIS 2024.
The feld of web accessibility has long sought to make web pages

*e-mail: kandrews@tugraz.at
†e-mail: chr.kopel@gmail.com

more accessible through the use of semantic HTML elements, al-
ternative texts, WAI-ARIA roles, states, and properties [1], tabindex
attributes, and keyboard event listeners.

Many approaches have been proposed to present graphics,
charts, and visualisations in non-visual ways to make them more
accessible. Physical, tactile representations have been created or
3d-printed, both static and refreshable to data changes. Speech
and non-speech audio (sonifcation) have been used to present data
acoustically. Screen reader friendly output can be navigated by key-
board and output as speech or sent to Braille displays.

2 SEMANTIC ENRICHMENT OF SVG CHARTS

Data and semantics can be stored in machine-readable form within
a Scalable Vector Graphics (SVG) chart using SVG text elements
and additional annotations in the form of ARIA roles and properties
and CSS class names. SVG provides three elements for including
text inside a chart: <text> for visible text, <title> for accessible
names (often rendered as tooltips on mouse-over), and <desc> for
accessible descriptions (not rendered visually).

There are dozens of WAI-ARIA attributes (roles, properties, and
states) which can add semantic annotations to elements on web
pages:

• Roles: Indicate the meaning of an element, for example role
="button", role="checkbox", or role="article".

• Properties: Attach data and other information to an ele-
ment, for example aria-label="OK", aria-labelledby="id-of-
label-element", or aria-haspopup="true".

• States: Indicate current state of an element, for example aria-
checked="false" or aria-pressed="true".

Initially intended for use with HTML elements, they can also be
used with SVG elements.

This is a preprint version of the paper to be published at the IEEE Vis 2024
Workshop on Accessible Data Visualization (AccessViz 2024).

mailto:chr.kopel@gmail.com
mailto:kandrews@tugraz.at
mailto:chr.kopel@gmail.com
mailto:kandrews@tugraz.at

Figure 2: Describler with an accessible bar chart.

Furthermore, the WAI-ARIA Graphics Module [2] defnes three
additional roles for graphics documents: graphics-document for a
whole structured, navigable graphic, graphics-object for elements
of graphical structure, and graphics-symbol for single objects whose
concrete visual appearance is semantically irrelevant (like icons).
Further custom roles and properties for charts and visualisations
have been proposed, but are more experimental than standardised.

Describler is an experimental web application for browsing se-
mantically enriched SVG charts and data visualisations [3, 4, 5].
Describler uses dedicated ARIA markup within a chart to convey
its structure. A user can navigate within the chart by keyboard or
mouse and elements of the chart are read out using speech synthe-
sis. The navigation facilities and the speech synthesis work inde-
pendently of any screen reader installed or running. The Describler
application is shown in Figure 2.

3 ACCESSIBLE CHARTS WITH ACHART

The AChart (Accessible Chart) project was launched in 2019
with the goal of providing an open-source software solution for
producing and interpreting accessible charts and data visualisa-
tions in Scalable Vector Graphics (SVG) format. AChart consists
of two complementary software tools: AChart Creator generates
semantically-enriched accessible SVG charts from tabular data, and
AChart Interpreter interprets and reads out the accessible charts. A
third tool, AChart Summariser, produces a solely textual summary
of an accessible chart to the console.

Describler [4] served as an inspiring proof-of-concept. AChart’s
set of ARIA roles and properties extends and builds upon De-
scribler’s approach. AChart uses roles like chart, chartarea, xaxis
, yaxis, axislabel, datagroup, datapoint, and datavalue. In addition,
AChart uses properties like aria-charttype (with values bar, line
or pie) and aria-axistype, as well as standard properties like aria-
valuemin, aria-valuemax, and aria-labelledby. The full set of roles
and properties used in AChart, and the differences to Describler,
are described in Kopel [6, Chapter 5]. An example chart created by
AChart can be seen in Figure 3 and Listing 1.

4 ACHART CREATOR

AChart Creator is a command-line tool (acreate) which creates
semantically-enriched accessible SVG charts. It currently supports
bar charts, line charts, and pie charts. The tool reads tabular data
from a CSV fle and saves the resulting chart to an SVG fle. The se-
mantics are embedded using native SVG <title>, <desc>, and <text>
elements, in combination with roles and properties from the AChart
taxonomy applied to these and other SVG elements.

The tool is built in the Node.js environment and uses Nexe [7] to
create binary executables. The JavaScript library D3 [8] is used to
construct the charts. Since D3 assumes that it is being run inside a

Most Popular Fruits

Fruit

Apples Bananas Grapefruits Lemons Oranges

A
m

o
u
n
t

5

10

15

20

25

30

35

40

45

9

20

30

8

12

Figure 3: Accessible bar chart created with AChart Creator.

web browser, a simulated DOM is provided by the jsdom package
[9].

The syntax and options of the command can be seen in Listing 2.
A dataset and example command are shown in Listings 3 and 4
respectively. These were used to create the chart shown in Listing 1
and Figure 3. AChart Creator is described in detail in Kopel [6,
Chapter 6]. A showcase video was created by Perko [10]. The
software is open-source and is available on GitHub [11].

5 ACHART INTERPRETER

AChart Interpreter is a web application for interpreting
semantically-enriched accessible charts in SVG format. It is
a kind of screen reader for charts. The application analyses a
chart to create an internal representation of relevant elements,
then displays both the visual chart and a corresponding textual
representation side by side, as can be seen in Figure 1. The Graphic
Panel on the left shows the SVG chart, the Text Panel on the right
shows the derived textual summary.

The current focus element is visually highlighted in both chart
and textual summary and is read out. Navigation is possible both
with keyboard (tab, return, and arrow key) and mouse. In Fig-
ure 4, the user has navigated to the third data point of Data Series 1.
AChart Interpreter is screen reader compatible, but also has built-in
speech output (using the Web Speech API [12]), in case no screen
reader is available, or for use by sighted users. It can be used by de-
velopers and chart authors verify the accessibility markup, as well
as by unsighted end users to explore a chart and have it read out.

The application is written in TypeScript [13], and can be de-
ployed as a web application. In addition, Electron is used to build
self-contained, standalone binary executable packages for various
platforms [14]. AChart Interpreter is described in detail in Kopel
[6, Chapter 7]. A showcase video was created by Perko [15]. The
software is open-source and is available on GitHub [16]. A live
demo is also available [17].

6 ACHART SUMMARIZER

AChart Summariser is a command-line tool, a spin-off of AChart
Interpreter, which outputs a textual summary of an accessible SVG
chart as plain text. With the tool, it is possible to perform auto-
matic sequential analysis of multiple charts using shell scripts and
programmatically process the output.

1 <svg xmlns="http://www.w3.org/2000/svg" version="1.1"
2 viewBox="0 0 750 600" role="graphics -document">
3 ...
4 <g id="ChartRoot" role="chart" tabindex="0" transform="translate(100,100)"
5 aria -labelledby="title desc" aria -charttype="bar" aria -roledescription="Bar Chart">
6 <desc id="desc">Each fruit with volume sold.</desc>
7 <rect role="chartarea" width="600" height="400" fill="none"/>
8 <text id="title" role="heading" text -anchor="middle"
9 font -size="14" x="275" y="-25">Most Popular Fruits </text>

10
11 <g id="xScale" role="xaxis" aria -axistype="category" aria -roledescription="x-Axis"
12 aria -labelledby="x-title" tabindex="0" transform="translate(0,400)" ... >
13 <text y="50" x="300" text -anchor="middle" fill="black" font -size="12"
14 role="heading" id="x-title">Fruit</text>
15 <path class="domain" stroke="currentColor" d="M0.5,6V0.5H600.5V6"/>
16 <g class="tick" opacity="1" transform="translate(77.778,0)">
17 <line stroke="currentColor" y2="6"/>
18 <text fill="currentColor" y="9" dy="0.71em" role="axislabel" id="x1">Apples </text>
19 </g>
20 <g class="tick" opacity="1" transform="translate(188.889,0)">
21 <line stroke="currentColor" y2="6"/>
22 <text fill="currentColor" y="9" dy="0.71em" role="axislabel" id="x2">Bananas </text>
23 </g>
24 ...
25 </g>
26 ...
27 </g>
28 <g id="dataarea" role="dataset">
29 <g tabindex="0" transform="translate(44.444,351.22)" role="datapoint" aria -labelledby="x1">
30 <rect class="bar" width="66.667" height="48.78"/>
31 <text x="33.334" y="10" ... role="datavalue" id="value1">9</text>
32 </g>
33 <g tabindex="0" transform="translate(155.556,243.902)" role="datapoint" aria -labelledby="x2">
34 <rect class="bar" width="66.667" height="156.098"/>
35 <text x="33.334" y="10" ... role="datavalue" id="value2">20</text>
36 </g>
37 ...
38 </g>
39 </g>
40 </svg >

Listing 1: Part of an accessible SVG bar chart generated by AChart Creator. Note the semantic enrichment conveyed by applying
attributes such as aria-charttype="bar", role="xaxis", and role="datapoint" to the SVG elements.

1
2
3
4
5
6

acreate [--chart] CHART -TYPE
[--dataset CSV -FILENAME] [--output SVG -FILENAME]
[--chart -title TITLE] [--chart -desc DESCRIPTION]
[--x-axis -title TITLE]
[--y-axis -title TITLE]
[--legend -title TITLE]

1
2
3
4
5
6

Fruit ,Amount
Apples ,9
Bananas ,20
Grapefruits ,30
Lemons ,8
Oranges ,12

7 [--target SOFTWARE]
8 [--column DATA -COLUMN] [--no-sort] Listing 3: The fruit dataset in CSV format.
9 [--no-legend] [--no-tooltips] [--no -bar -values]

10 [--no-segment -values] [--no-segment -percentages]
11 [--segment -percentage -precision PLACES]
12 [--svg -precision PLACES]
13
14
15

[--version] [--help] [--columns]
[--rotate -x-labels [ROTATION]]
[--rotate -y-labels [ROTATION]] [--colors]

1
2
3

acreate --chart bar --dataset fruit.csv \
--chart -title "Most Popular Fruits" \
--chart -desc "Each fruit with volume sold ."

Listing 2: The syntax and options of the AChart Creator
acreate command. Listing 4: The AChart Creator acreate command to create

an accessible bar chart from the fruit dataset.

https://height="48.78
https://transform="translate(44.444,351.22
https://xmlns="http://www.w3.org/2000/svg
https://height="48.78
https://transform="translate(44.444,351.22
https://xmlns="http://www.w3.org/2000/svg

Figure 4: AChart Interpreter. The user has navigated to the third data point of Data Series 1.

7 CONCLUDING REMARKS

AChart defnes an extended taxonomy of ARIA roles and proper-
ties, inspired by those of Describler, and uses these and standard
SVG text elements to semantically enrich an SVG chart to make it
accessible. AChart Creator is a command-line tool to create such
accessible SVG charts from CSV fles. AChart Interpreter is an ap-
plication to view, explore, and read out such accessible SVG charts,
which could potentially also be reworked into a browser extension.
AChart currently supports bar charts, line charts, and pie charts.
The project provides a working proof of concept and will hopefully
contribute to the evolution of more widely accepted standards for
annotating SVG charts for better accessibility.

ACKNOWLEDGEMENTS

Keith Andrews conceived of and led the AChart project. Christo-
pher Kopel was the main developer, as part of his Master’s the-
sis work [6], supported by Inti Gabriel Mendoza Estrada. Further
contributions were made by Alexander Grass, Lea Novak, Dan-
ica Radulovic, Lukas Bodner, Daniel Geiger, and Lorenz Leitner.
Later, Moritz Erlacher, Lisa Habich, Alexander Perko, and Markus
Stradner worked on experimental extensions to AChart for stacked
and grouped bar charts, scatterplots, and parallel coordinates.

REFERENCES

[1] W3C. Accessible Rich Internet Applications (WAI-ARIA)
1.3. W3C First Public Working Draft. World Wide Web Con-
sortium (W3C), Jan. 23, 2024. https://w3.org/TR/wai-aria
-1.3/.

[2] W3C. WAI-ARIA Graphics Module. W3C Recommendation.
World Wide Web Consortium (W3C), Oct. 2, 2018. https:
//w3.org/TR/graphics-aria-1.0/.

[3] Doug Schepers. Describler. 2015. http://describler.com/.

[4] Doug Schepers. describler: SVG Dataviz Accessibility Tool.
Mar. 31, 2017. https://github.com/shepazu/describler.

[5] Doug Schepers. Accessible SVG Data Visualization. Feb. 18,
2015. https://youtu.be/W1VUr544i84.

[6] Christopher A. Kopel. “Accessible SVG Charts with AChart
Creator and AChart Interpreter”. Master’s thesis. Graz Uni-
versity of Technology, Austria, May 16, 2021. https://ftp
.isds.tugraz.at/pub/theses/ckopel-2021-msc.pdf.

[7] Nexe. Nexe. July 4, 2024. https://github.com/nexe/nexe.

[8] Michael Bostock. D3.js Data-Driven Documents. July 8,
2024. http://d3js.org/.

[9] jsdom. jsdom. July 14, 2024. https://github.com/jsdom/jsd
om.

[10] Alexander Perko. AChart Creator Showcase Video. Graz
University of Technology, Apr. 29, 2021. https://youtu.be
/NLKqTTnKLII.

[11] Christopher A. Kopel, Keith Andrews, Inti Gabriel Men-
doza Estrada, Alexander Grass, Lea Novak, and Danica
Radulovic. AChart Creator. May 14, 2021. https://githu
b.com/tugraz-isds/achart-creator.

[12] MDN. Web Speech API. Feb. 19, 2023. https://developer.m
ozilla.org/docs/Web/API/Web_Speech_API.

[13] Microsoft. TypeScript: Typed JavaScript at Any Scale.
July 14, 2024. https://typescriptlang.org/.

[14] OpenJS. Electron. OpenJS Foundation. July 14, 2024. https
://electronjs.org/.

[15] Alexander Perko. AChart Interpreter Showcase Video. Graz
University of Technology, Apr. 29, 2021. https://youtu.be
/NLKqTTnKLII.

[16] Christopher A. Kopel, Keith Andrews, Inti Gabriel Mendoza
Estrada, Lukas Bodner, Daniel Geiger, and Lorenz Leitner.
AChart Interpreter. May 14, 2021. https://github.com/tug
raz-isds/achart-interpreter.

[17] Christopher A. Kopel, Keith Andrews, Inti Gabriel Mendoza
Estrada, Lukas Bodner, Daniel Geiger, and Lorenz Leitner.
AChart Interpreter. Online demo. May 15, 2021. https://t
ugraz-isds.github.io/achart-interpreter/.

https://w3.org/TR/wai-aria-1.3/
https://w3.org/TR/wai-aria-1.3/
https://w3.org/TR/graphics-aria-1.0/
https://w3.org/TR/graphics-aria-1.0/
http://describler.com/
https://github.com/shepazu/describler
https://youtu.be/W1VUr544i84
https://ftp.isds.tugraz.at/pub/theses/ckopel-2021-msc.pdf
https://ftp.isds.tugraz.at/pub/theses/ckopel-2021-msc.pdf
https://github.com/nexe/nexe
http://d3js.org/
https://github.com/jsdom/jsdom
https://github.com/jsdom/jsdom
https://youtu.be/NLKqTTnKLII
https://youtu.be/NLKqTTnKLII
https://github.com/tugraz-isds/achart-creator
https://github.com/tugraz-isds/achart-creator
https://developer.mozilla.org/docs/Web/API/Web_Speech_API
https://developer.mozilla.org/docs/Web/API/Web_Speech_API
https://typescriptlang.org/
https://electronjs.org/
https://electronjs.org/
https://youtu.be/NLKqTTnKLII
https://youtu.be/NLKqTTnKLII
https://github.com/tugraz-isds/achart-interpreter
https://github.com/tugraz-isds/achart-interpreter
https://tugraz-isds.github.io/achart-interpreter/
https://tugraz-isds.github.io/achart-interpreter/
https://t
https://github.com/tug
https://youtu.be
https://electronjs.org
https://typescriptlang.org
https://ozilla.org/docs/Web/API/Web_Speech_API
https://developer.m
https://b.com/tugraz-isds/achart-creator
https://githu
https://youtu.be
https://github.com/jsdom/jsd
http://d3js.org
https://github.com/nexe/nexe
https://ftp
https://youtu.be/W1VUr544i84
https://github.com/shepazu/describler
http://describler.com
https://w3.org/TR/graphics-aria-1.0
https://w3.org/TR/wai-aria

	Introduction
	Semantic Enrichment of SVG Charts
	Accessible Charts with AChart
	AChart Creator
	AChart Interpreter
	AChart Summarizer
	Concluding Remarks

